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Tuberculosis (TB) has been plaguing human civilization for centuries, and currently around
one-third of the global population is affected with TB. Development of novel intervention
tools for early diagnosis and therapeutics against Mycobacterium tuberculosis (M.tb) is
the main thrust area in today’s scenario. In this direction global efforts were made to use
aptamers, the chemical antibodies as tool for TB diagnostics and therapeutics. This
review describes the various aptamers introduced for targeting M.tb and highlights the
need for development of novel aptamers to selectively target virulent proteins of M.tb for
vaccine and anti-TB drugs. The objective of this review is to highlight the diagnostic and
therapeutic application of aptamers used for tuberculosis. The discovery of aptamers,
SELEX technology, different types of SELEX development processes, DNA and RNA
aptamers reported for diseases and pathogenic agents as well have also been described
in detail. But the emphasis of this review is on the development of aptamers which can
block the function of virulent mycobacterial components for developing newer TB vaccine
candidates and/or drug targets. Aptamers designed to target M.tb cell wall proteins,
virulent factors, secretory proteins, or combination could orchestrate advanced diagnosis
and therapeutic measures for tuberculosis.

Keywords: aptamer, Systematic Evolution of Ligands by Exponential Enrichment, Mycobacterium tuberculosis,
tuberculosis, diagnosis, therapeutics
INTRODUCTION

Tuberculosis (TB) caused by Mycobacterium tuberculosis (M.tb) is a leading cause of death from a
single infectious agent worldwide. World health organization (WHO) estimates that 10 million
people died of TB in 2018. In this scenario, development of novel approaches for early diagnosis and
therapeutics against M.tb is main thrust area. Since conventional control measures have been
partially successful in keeping TB epidemic under check, identification of biomolecules which can
block the function of virulent mycobacterial components is crucial for developing newer TB vaccine
candidates and/or drugs. In this context, aptamers, also known as ‘chemical antibodies’, that
specifically recognizeM.tb or inhibit the function of its virulent proteins are being developed (Chen
et al., 2007). The aptamers are reported 30 years ago in 1990 (Tuerk and Gold, 1990; Ellington and
Szostak, 1992). Aptamers are single-stranded DNA or RNA oligonucleotides that are capable of
binding target molecules with high specificity and affinity. Structurally, they are relatively small
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biomolecules (ranging from 20 to 60 nucleotides) and mimic
antibodies as they specifically bind to their targets. In comparison
to antibodies, they have shorter generation time, lower
manufacturing cost, higher modifiability, better thermal stability,
higher target potential, and most importantly, no batch-to-batch
variability. Due to multiple advantages over antibodies, they are
being used as diagnostics, biosensors, and targeted therapeutics
(Zhang et al., 2018) and are touted as a replacement for the use of
antibodies in ELISA (Toh et al., 2015). In this article, we review the
discovery of aptamers with special emphasis on how they are
useful for diagnosis and therapeutic purposes against M.tb.
SELEX: AN ART OF APTAMER SYNTHESIS

Aptamers can be synthesized in large amounts as they are
structurally stable for longer storage without or with minimal
loss in activity. The procedure of in vitro synthesis of aptamers is
known as “Systematic Evolution of Ligands by Exponential
enrichment (SELEX)” (Stoltenburg et al., 2007). Aptamer
generation is a long and exhaustive process. Conventionally, an
oligonucleotide library contains a pool of 50−90 single-stranded
random nucleotide sequences bordered by primer binding sites
flanking at both ends. The mechanism of aptamer generation
involves the following steps: (i) generation of random library
of 1014−1016 single stranded oligonucleotides, (ii) incubation
of oligonucleotides with its target, (iii) separation of bound
oligonucleotides from unbound ones, (iv) selection of specific
oligonucleotides, amplification by PCR (DNA aptamers) or RT
−PCR (RNA aptamer), and (v) finally characterization of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
aptamer by sequencing (Figure 1). For the synthesis of RNA
aptamer library, single-stranded DNA library having T7 RNA
polymerase promoter sequence at 5′-region is generated. Such
single-stranded DNA library is converted to double-stranded
DNA, and in vitro transcription is performed to generate the
desired RNA aptamers. All the steps are repeated till the desired
oligonucleotide (or aptamer) with high binding affinity is
obtained. Once the desired clones are obtained, they are
further optimized to maximize the function. They are
truncated or reduced in size to achieve minimal aptamer
length with maximum binding affinity for the target. The
preferred optimal length for aptamers is 15−45 nucleotides
with molecular weight of ∼5−15 kDa. Aptamers bind to their
targets with pico to micromolar binding affinity. In recent times,
various types of SELEX processes have been developed for
specific purposes (Table 1). SELEX process-generated aptamers
are non-modified, and they are further subjected to various
modifications at sugar moiety, phosphate modifications,
nucleoside modification, and capping modifications. Some of the
examples ofmodifications are; 2′-fluoro (2′-F) ribose, 2′-amino (2′-
NH2) ribose, 2′-O-methyl (2′-OMe) ribose (Figure 2) (Maier and
Levy, 2016). “Slow off-rate modified aptamers-(SOMAmers)” are
new class of aptamers where deoxyribose thymine (dT) bases are
replaced by deoxyribose uridine (dU) base at 5′ position in the
heterocyclic ring in oligonucleotide pool. Several replacements can
be made at 5′ position to generate a vast range of aptamers with
different binding affinity and kinetics properties increasing the
possibilities of finding suitable aptamer (Maier and Levy, 2016).
Naturally occurring nucleotides are D-oligonucleotide, and they
form right-handed helix. Mirror image aptamers (spiegelmers) are
FIGURE 1 | Systematic evolution of ligands by exponential enrichment (SELEX) procedure. A library of aptamers with random oligonucleotides is incubated with
target. Unbound aptamers are washed off during multiple round selection. The specific aptamer is enriched from the pool and subjected to various bioanalytical and
biological assays. Aptamers are either further developed for several applications like therapeutics and diagnostics (successful) or again feed into the same SELEX
cycle (unsuccessful).
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L-oligonucleotides, and they form left-handedhelix. For spiegelmer
generation, first conventional D-oligonucleotides are selected
against mirror-image target. The selected D-oligonucleotides are
chemically synthesized in reverse configuration as L-
oligonucleotides (Figure 2) (Vater and Klussmann, 2015).
Suitable modifications can be incorporated either during selection
process (SELEX) or post-selection (post-SELEX) step. Non-
modified aptamers are generally less stable and immunogenic
than modified aptamers. Modifications prevent aptamers from
nuclease-mediated degradation, increase binding affinity, and
allow coupling with other molecules, drugs, or nanoparticles
(Smith and Zain, 2019). After initial modification, aptamers go
through several analytical assays for the assessment of the effect of
modification on their binding affinity with target. Final aptamer
product is different from the initial one and may possess single or
multiple modifications in its structure. Aptamers are studied
extensively for their pharmacological kinetics, toxicological
feature, metabolism, and physiological clearance (Li et al., 2017;
Smith and Zain, 2019).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
APPLICATIONS OF APTAMER

Applications of SELEX and aptamer platform can be used for
both diagnosis and drug delivery. In recent times, several
research articles have reported the generation of aptamers
against microbial pathogens and diseases (Table 2) (Cho et al.,
2011; Hong and Sooter, 2015; Nimjee et al., 2017). Trypanosama
cruzi is a blood-borne parasite and known to cause Chagas
disease. RNA aptamer generated using whole cell SELEX method
was able to detect T. cruzi trypomastigotes in the blood
(Nagarkatti et al., 2012). Aptamers can easily be coupled with
magnetic bead and fluorescent molecule. Exploring this ability,
DNA aptamer-based sandwich assay was developed to detect
soluble protein of Leishmania major (Bruno et al., 2014).
Plasmodium lactate dehydrogenase (PLDH) and Plasmodium
falciparum glutamate dehydrogenase (PfGDH) convert a blue-
dye Resazurin to Resorufin (pink). Magnetic bead-coated
aptamers were developed to capture and separate PLDH,
PfGDH from serum. The conversion from blue to pink color
TABLE 1 | Types of SELEX development processes.

S. No. Type Description Reference

1. Negative SELEX For removal of non-specific aptamers Ellington and Szostak 1992
2. Counter SELEX For removal of cross-reactive aptamers by incubating them

targets obtained from related species
Jenison, 1994

3. Genomic SELEX For the identification of binding
motif present in the genome of an organism

Singer et al., 1997

4. In vivo SELEX Aptamers are generated in vivo, inside the cell and then
characterized

Coulter et al., 1997

5. Chimeric SELEX In this method, well- characterized aptamers are fused together so that the resulting aptamer
can bind to different targets (one aptamer can recognise two or more different
targets)

Burke and Willis, 1998

6. Cell-SELEX For the development of aptamers which recognise markers present
in whole cell

Homann and Goringer, 1999

7. Indirect SELEX In this SELEX method, the
binding of aptamers with their targets are metal-ion dependent

Kawakami et al., 2000

8. Photo- SELEX In this method, nucleotides are light-sensitive and irradiation with UV rays is employed to
select the specific aptamer-target
from the pool

Golden et al., 2000

9. Toggle SELEX For identification of cross- reactive aptamers by using toggled targets Bianchini et al., 2001
10. Tailored SELEX Aptamers often contain primer- hybridization site. Introduction of cleavable primer

hybridization site in aptamers will select for primer-free-aptamers.
Vater et al., 2003

11. CE (Capillary electrophoresis)-
SELEX

This process selects high affinity aptamers in a few cycles (2-4)
thus shortens the aptamer selection process

Mendonsa and Bowser, 2004;
Mosing and Bowser 2009

12. FluMag SELEX Targets are tagged with fluorophores Stoltenburg et al., 2005
13. Target expressed on cell

surface- SELEX (TECS-
SELEX)

In this method, a cell is engineered to express a recombinant protein which will be used as
target protein for
aptamer development

Ohuchi et al., 2006

14. Nanoselection based SELEX One step method to isolate
aptamers using fluorescence and atomic force microscopy

Peng et al., 2007

15. MonoLEX Column chromatography and pyrosequencing is used to select
specific aptamer sequences

Nitsche et al., 2007

16. Microfluidic SELEX Selection of aptamers are performed on a microfluidic chip Cho et al., 2010.
17. High- throughput SELEX In this method, high-throughput DNA sequencing and advanced bioinformatic analysis is

coupled
for aptamers selection

Hoon et al., 2011

18. Particle display SELEX Flow cytometry based method for aptamer selection Wang et al., 2014
19. Hi-fidelity SELEX Digital-PCR is used to intensify

the SELEX selection and development
Ouellet et al., 2015

20. Isogenic cell SELEX Aptamers are first selected against targets overexpressed on isogenic cell line, then counter-
selected against microRNA
mediated silencing of targets

Takahashi et al., 2016
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was measured using either spectrophotometer or by qualitative
visual interpretation. This is a low cost, portable, user-friendly
diagnostic test (Singh et al., 2019). Salmonella sp. contamination
is responsible for food-borne infections. Therefore, the detection
of Salmonella sp. in contaminated food is a critical preventive
measure in public health. By coupling 6-carboxyfluorescein
(FAM), 27-nucleotide aptamer (LA27) was developed to detect
LPS from Salmonella typhimurium (Ye et al., 2019). Also,
aptamer-modified magnetic multifunctional nanoprobe (APT-
FMNP) was developed to detect S. typhimurium in milk, serum,
and urine (Li et al., 2018). DNA-based aptamer to detect
tularemia antigen from different subspecies of Francisella
tularensis was designed at the Air Force research laboratory of
USA. It was found that novel anti-tularemia aptamer cocktail can
be used as a detection reagent for a potential biological warfare
agent like F. tularensis (Vivekananda and Kiel, 2006).

The first aptamer approved for use as therapy in humans
was a RNA-based molecule (macugen, pegaptanib) which is
administered locally to treat age-related macular degeneration
(AMD) by targeting vascular endothelial growth factor.
Macugen received FDA approval in December 2004 for the
treatment of AMD (Ng et al., 2006). RB006 aptamer binds to
factor IXa and specifically blocks the conversion of factor X to
factor Xa (Nimjee et al., 2005). Conversion of factor X to factor
Xa is an important step in prothrombin assembly and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
thrombin generation. Hemophilia is a genetic disorder which
causes defective intrinsic blood coagulation pathway. In
hemophilia, coagulation factor VII and factor IX are
deficient. Aptamer ARC19499 binds to tissue factor pathway
inhibitor (TFPI), a negative regulator of extrinsic pathway,
allowing the initiation of extrinsic coagulation pathway
(Waters et al., 2011). AXL is a tyrosine kinase receptor
overexpressed in solid tumor types. Aptamer GL21.T
conjugated with an anti-tumor microRNA, let-7g, was
injected via intravenous route in mice. A decrease in tumor
growth was noticed in mice with A549 (Axl+)-Luc tumor
xenograft (Esposito et al., 2014). Cytotoxic T cell antigen-4
(CTLA-4) is a cell surface receptor that decreases the immune
reaction against tumors. Tetramer-RNA aptamer could inhibit
CTLA-4 function in mice B16/F10.9 melanoma allograft model
when injected intraperitoneally (Santulli-Marotto et al., 2003).

It is known that human immunodeficiency virus (HIV)
attacks CD4+ T-cells, macrophages, and dendritic cells. An
incapacitated immune system fails to protect humans and
leads to development of acquired immunodeficiency syndrome
(AIDS). Gp120 is a glycoprotein of HIV virus that binds to CD4+

T-cell receptor and invades the host. A novel dual inhibitory
function-based anti-gp120 aptamer-siRNA chimera (A-1 and B-
68) could bind to gp120, thus preventing the viral entry in CHO
cell line (Zhou et al., 2011). A modified thioaptamer, R12-2,
A B D E

F G

H

C

FIGURE 2 | Different types of modifications in aptamers. Chemical modifications at 2′ position (A, B), 5′ and 3′ (C, D) ends of the sugar component, replacement of
oxygen (O) with sulfur (S) (E), incorporation of functional chains (F) or benzyl or naphthyl group (G) at the nitrogenous base. Generation of Spiegelmers (H). Aptamers
are generated against target having mirror image configuration. Aptamers that bind to mirror image configuration of target are selected, PEG, polyethylene glycol; Br,
bromine; F, fluorine.
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could specifically bind to HIV-1 RNaseH and inhibit viral
replication in cell culture (Somasunderam et al., 2005). Ebola
virus causes life-threatening hemorrhagic fever. Interferons
mediate anti-viral function in humans, and VP35 protein of
EBOLA inhibits the production of interferon regulatory factor 3
(IRF-3). Aptamers (1G8-14 and 2F11-14) could bind to interferon
inhibitory domain (VP35IID) of VP35 protein, preventing the
inhibition of IRF-3 in vitro (Basler et al., 2003; Cardenas et al.,
2006). Staphylococcus aureus causes staphylococcal toxic shock
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
syndrome (TSS), food-borne infection, and hospital-acquired
infection. Enterotoxin B (SEB) from S. aureus activates T cells to
generate cytokine storm. Aptamer A11 was developed to inhibit
SEB activity, preventing cytokine storm (Wang et al., 2015).
Anthrax disease is caused by a toxin secreted from Bacillus
anthracis. An important component of anthrax toxin is a lethal
factor (LF) that has protease activity. LF cleaves and activates
mitogen-activated protein kinase kinase (MAPKK). ssDNA
aptamer (ML12) prevents the protease activity of LF reducing its
TABLE 2 | Aptamers reported for microbial pathogens and diseases.

S. No. Target Diseases or Pathogenic agent References

DNA aptamer
1. AS1411 Acute myeloid leukemia Ireson and Kelland, 2006
2. SARS-CoV N protein Pathogenic agent Cho et al., 2011
3. E. coli K88 Pathogenic agent Hong and Sooter, 2015
4. Salmonella Paratyphi A Pathogenic agent Hong and Sooter, 2015
5. Listeria monocytogenes Pathogenic agent Hong and Sooter, 2015
6. Shigella dysenteriae Pathogenic agent Hong and Sooter, 2015
7. Streptococcus mutans Pathogenic agent Hong and Sooter, 2015
8. Francisella tularensis subspecies(subsp.) japonica bacterial antigen Pathogenic agent Hong and Sooter, 2015
9. HIV reverse transcriptase Pathogenic agent Hong and Sooter, 2015
10. Dengue virus type-2 envelope protein domain III Pathogenic agent Hong and Sooter, 2015
11. HCV envelope surface

glycoprotein E2
Pathogenic agent Hong and Sooter, 2015

12. Avian influenza H5N1 Pathogenic agent Hong and Sooter, 2015
13. Mycobacterium

tuberculosis H37Rv
Pathogenic agent Hong and Sooter, 2015

14. ARC1772 Thrombosis Nimjee et al., 2017
15. PTK7 aptamer Leukemia Nimjee et al., 2017
16. Nu172 Anticoagulation Maimaitiyiming et al., 2019
17. E10030 Age-related macular

degeneration (AMD)
Maimaitiyiming et al., 2019

18. N55 Atherosclerosis Sola et al., 2020
19. GBI-10 In several types of tumors Sola et al., 2020
20. SQ-2 Pancreatic ductal

adenocarcinoma (PDAC)
Sola et al., 2020

RNA aptamer
21. A9 and A10 Prostate cancer Nimjee et al., 2017
22. RNA 14-16 against

p68, helicase
Liver metastasis Nimjee et al., 2017

23. Pegaptanib AMD Nimjee et al., 2017
24. ARC1905 AMD Maimaitiyiming et al., 2019
25. ARC19499 Hemophilia Maimaitiyiming et al., 2019
26. NOX-H94 Anemia Maimaitiyiming et al., 2019
27. EYE001 AMD Maimaitiyiming et al., 2019
28. MRP1Apt Melanoma cancer stem cells Sola et al., 2020
29. A1 Breast cancer cells Sola et al., 2020
30. G-3 HIV infection blockade Sola et al., 2020
31. P30-10-16 Influenza B virus infection

blockade
Sola et al., 2020

32. PB Prostate cancer Sola et al., 2020
33. GL21.T Axl-dependent cancers Sola et al., 2020
SOMAmer: Slow-Off-rate-Modified-Aptamer
34. Clostridium

difficile binary toxin (CdtA)
Pathogenic agent Ochsner et al., 2014

35. Proprotein convertase subtilisin/kexin
type 9

Disease Gawande et al., 2017

36. Vaccine antigen in the human papillomavirus (HPV) vaccine
Gardasil

Pathogenic agent Trausch JJ et al., 2017

37. Glypican-3 SOMAmer Hepatocellular carcinoma
(HCC)

Duo et al., 2018

38. Mycobacterium
tuberculosis

Pathogenic agent Golichenari et al., 2018
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toxicity. It is being considered as a potential drug target against LF
(Lahousse et al., 2018).

In addition, aptamers are also discovered as anti-cancer agents
and used in the treatment of neurological disorders. One of the
most promising aptamer, AS1411, induces growth inhibition in
vitro and has shown activity against human tumor xenografts in
vivo (Ireson and Kelland, 2006). Nucleolin is an external
membrane protein over-expressed in cancerous cells. Aptamer
AS1411 could bind to nucleolin, inhibiting its activity (Girvan
et al., 2006; Soundararajan et al., 2008). AS1411 was the first drug
identified to target nucleolin and used in the clinical trial of cancer
treatment (Mongelard and Bouvet, 2010). Target specificity is an
important trait of anti-cancer therapeutic. Prostate-specific
membrane antigen (PSMA) is a biomarker for solid tumors.
RNA aptamers (A9 and A10) against PSMA were identified. A
polymeric nanoparticle with docetaxel drug–aptamer complex was
able to reduce tumor growth in xenograft mice when injected
intraperitoneally (Dassie et al., 2009). CT26 is a colon cancer cell
line. In an effort to identify, specifically located aptamer, mice
bearing intrahepatic tumor were injected Cy3-labeled RNA
aptamers. Aptamers 14–16 were found to be localized in
intrahepatic CT26 tumor tissues (Mi et al., 2010). Blood–brain
barrier is major obstacle in the treatment of neurological diseases.
Bioavailability of drugs is restricted in the brain. Aptamer pool of
randomRNA sequences was injected into tail vein of mice, and the
localization of aptamers was checked in the brain. Aptamer A15
showed specific localization in the brain (Cheng et al., 2013).
Aptamers are used for inhibition of biofilm formation, microbial
toxins, and also as anti-bacterial agents. The use of aptamers for
therapeutic purpose often encounters several roadblocks like
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
stability, renal clearance, or filtration, elimination of excess un-
bound aptamers, biodistribution, or bioavailability at the desired
tissue locations (Kovacevic et al., 2018; He et al., 2020).

Modifications in aptamers enable them to overcome the above
mentioned hurdles and impart flexibility to execute various
functions like: drug delivery, drug conjugation, imaging,
biosensor, or aptamer tagging (especially useful for RNA aptamer)
(Figure 3). In the current COVID-19 scenario, aptamers are being
explored for the diagnosis as well as treatment options world-wide.
In a recent article, aptamers have been reported against receptor-
binding-domain (RBD) which could prevent binding of RBD with
ACE2 receptor reflecting the potential of aptamers in SARS-CoV-2
(severe acute respiratory syndrome coronavirus 2) virus diagnosis
and treatment (Song et al., 2020). Further, an aptamer that could
bind to viral nucleoprotein, nucleolin, has been developed as a
proof-of-concept for SARS-CoV-2 detection (Thomas, 2020). N
protein of SARS-CoV-2 is essential for viral genome assembly; thus
aptamer against N protein of SARS-CoV-2 might extend its use in
diagnosis and treatment simultaneously (Song et al., 2020). This is a
standout feature where an aptamer serves the purpose of both
diagnosis and treatment.
CHALLENGES IN TUBERCULOSIS
DIAGNOSIS AND TREATMENT

Despite extensive research activities, M.tb continued to kill
millions of humans every year. Limitations of rapid and
accurate diagnosis of tuberculosis, emergence of drug-resistance
and HIV-TB co-infections are complicating TB treatment. For TB
FIGURE 3 | Modification and conjugation of aptamers for the use of diagnostic and/or therapeutic purpose. Aptamers can be modified or conjugated with different
substances to carry out various functions like drug delivery, drug conjugate, imaging, biosensor, or aptamer tagging. AptDC–Aptamer–Drug-conjugate. Routes of
drug delivery are oral, intramuscular, parenteral, intravenous, rectal, topical, otherwise specified. Specialized drug delivery modes are liposomal, nanoparticle, carrier
vesicle. Drug delivery optimization is needed to obtain the desired effect.
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diagnosis, smear microscopy is a less sensitive test. CulturingM.tb
is the most accurate method to identify the pathogenic species, but
it is time consuming and not suitable for point-of-care (POC)
diagnosis. In PCR-based diagnosis, infection is confirmed by the
presence of mycobacterial DNA or RNA sequence; however, the
thermal cyclers are not readily available in resource-limited
settings. On the other hand, rapid and less expensive POC, such
as serological assays, is banned for testing the TB. WHO endorsed
Gene-Xpert MTB/RIF, a specific, fast technique and revolutionary
TB detectionmethod based on PCR-DNA amplification, but it has
certain limitations (WHO, 2019). Gene-Xpert fails to detect TB in
children, smear-negative-TB infection. Also, for accuracy and fast
performance, Gene-Xpert M.tb requires skilled manpower and
sophisticated instrument setup. Tuberculin skin test (TST) and
Interferon-g-Release-Assay (IGRA) are immunological tests based
on the principle of antigen–antibody reaction. Interferon-g is a
pro-inflammatory cytokine, released during tuberculosis infection.
IFN-g is measured by ELISA from TB patients’ blood. These tests
fail to differentiate between active TB, latent TB, or relapsed TB.
Despite these advancements, the diagnosis of M.tb infection still
requires a rapid, accurate, and efficient diagnostic platform. It has
been estimated that 0.5 million people fell ill with drug resistant
TB, and only one in three TB patients had access to treatment
(WHO, 2019). There is a requirement of USD 10.1 billion for TB
diagnosis, treatment, and care. Successful treatment of
tuberculosis (TB) infection is one of the fierce challenges faced
by physicians, which is mainly because of the unavailability of
accurate information about M.tb species and its drug-resistant
status leading to treatment failure. As a result, multi-drug-resistant
(MDR) and extensively drug resistant (XDR) M.tb arise due to
over and improper use of antibiotics during the treatment of TB
(WHO, 2019). In the current COVID-19 crisis, it has been
estimated that the death toll due to TB may rise up to 20% over
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
the next five years (Hogan et al., 2020) and TB treatment may be
side-lined and adversely affected.
APTAMERS IN THE DIAGNOSTIC AND
THERAPEUTIC APPLICATIONS OF M.TB

Global efforts were taken to introduce aptamers for rapid
diagnosis and therapeutic applications for tuberculosis (Zhu
et al., 2012; Golichenari et al., 2018; Li et al., 2018). A gold
nano-particle conjugated-CFP10-ESAT6 DNA aptamer was
developed to detect M.tb, and it could differentiate between
pathogenic and non-pathogenic M.tb bacteria (He et al., 2016).
ESAT-6-based aptasensor ESAT6-P-MOF-rGO (metal organic
framework graphene oxide-MOFGO) could detect ESAT-6
secretion in human serum samples (Li et al., 2018). Similarly, a
sandwich ELISA can detect MPT64 aptamer (Figure 4) (Zhu
et al., 2012). A pro-inflammatory cytokine, IFN-g is secreted in
response to mycobacterial antigens. Recently, for detection of
IFN-g release, a SPR based-dual-aptamer sensor has been
designed. In this sensor, aptamer against IFN-g is coupled with
streptavidin specific aptamer. Streptavidin aptamer performs
dual function of “a reporter” and “an amplifier”. Such dual
DNA probe was able to detect low level of IFN-g in plasma
isolated from healthy individuals because they have less IFN-g
concentration (Min et al., 2008; Chang et al., 2012). Another
aptamer, MTB36 also shows preferential binding with M.tb over
M. bovis BCG suggesting its ability to discriminate between close
species (Mozioglu et al., 2016). PPK (polyphosphate kinase gene)
regulates inorganic polyphosphate (polyP) function and aids in
virulence. An aptamer G9 has been shown to inhibit PPK activity
rendering inhibition of polyp-mediated metabolic process in
FIGURE 4 | Detection of M.tb proteins using aptamer-based ELISA or ELONA (ELONA-enzyme-linked oligonucleotide assay). In an ELISA plate, the patient sample
is incubated with biotinylated aptamer specific for M.tb protein. After washing, streptavidin-HRP is added and ELISA is developed using TMB substrate. The optical
density is measured using a spectrophotometer. Patient sample could be blood, serum, sputum, or body fluid. Viscous fluid like sputum can be diluted and vortexed
before incubation with aptamer.
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M.tb (Shum et al., 2011). Culture filtrate protein-10 (CFP-10)
and early secreted antigenic target of 6 kDa (ESAT-6) proteins
are secreted during TB infection. Aptamer CSIR2.11 could detect
CFP-10-ESAT-6 complex as well as CFP-10 alone from sputum
sample of TB patients. The sensitivity and specificity of CSIR
2.11 were found to be 100 and 68.75% in sputum sample of TB
patients (Rotherham et al., 2012). A DNA aptamer, H63SL2-M6
against HspX, a mycobacterial antigen highly expressed in TB
patients, had been shown to detect HspX in sputum of TB
infected individuals using aptamer-linked immobilized sorbent
assay (Aptamer ALISA). The performance of ALISA was
superior to conventional ELISA (Lavania et al., 2018). Further,
an electrochemical sensor (ECS) device based on H63SL2-M6
aptamer was developed as POC diagnosis (Lavania et al., 2018).
HupB (Rv2986c) is a promising drug target against TB. It is an
essential histone-like protein of M.tb which protects M.tb DNA
from damage and regulates iron homeostasis (Pandey et al.,
2014). G-quadraplex forming DNA aptamers, HupB-4T and
HupB-13T, were developed to block DNA-binding activity of
HupB. HupB proteins are required for macrophage entry of
M.tb. Inhibition of HupB function by HupB-4T and HupB-13T
has been shown to arrest the bacterial entry into macrophages.
Thus HupB-4T and HupB-13T could serve as inhibitors of HupB
functions (Kalra et al., 2018). A proteomic-based SOMAscan was
developed for M.tb diagnosis, but it failed to identify noticeable
difference between TB and non-TB patients’ serum (Russell et al.,
2017). Malate synthase (MS) enzyme of the glyoxylate pathway
converts malate by using glyoxylate and acetyl-CoA. MS
expresses in cell wall and promotes adhesion of bacteria.
Another g-quadruplex DNA aptamer, MS10, binds to MS and
inhibits its enzymatic activity (Dhiman et al., 2019). ESX3
secretion system of M.tb secretes EsxG protein. RNA aptamers
against G43 and G78 bind to EsxG but not to EsxA, suggesting
that aptamers can differentiate between closely related proteins
and bind to their specific partners only (Ngubane et al., 2014).
Whole-cell-SELEX identifies the receptors present on the target
cell in their native confirmation. Hence, aptamers developed in
this way perform better than aptamers developed using
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
recombinantly purified target (Dwivedi et al., 2013; Aimaiti
et al., 2015). Aptamers generated through such method could
differentiate M.tb H37Rv from non-tuberculous mycobacteria.
An aptamer MA1 or combination of MA1/MA2 aptamers
recognizes M.tb H37Rv preferentially as compared to M.
marianum (Aimaiti et al., 2015). M.tb Ag85 complex is
secreted as protein complex of three proteins, A, B, and C and
is important for cell wall biosynthesis. Ag85 complex is
considered to be a potent biomarker for TB diagnosis.
Cerebrospinal fluid of patients suffering from tuberculous
meningitis also showed the presence of Mycobacterium antigen
85 complex (Ag85 complex) (Kashyap et al., 2005). A fluorescent
aptasensor, ATTO647N-Apt22, is developed to detect Ag85
complex (Ansari et al., 2017). Entry of aptamers are relatively
new in the field of TB drug discovery/or development. Hence,
there is only a handful of examples where aptamers have been
shown or developed for anti-mycobacterial function (Table 3).
The M.tb virulent proteins infect macrophages and weaken the
immune system. Since macrophages are preferred niche forM.tb,
aptamers preventing macrophage invasion can help in
controlling M.tb infection (Chen et al., 2012; Kalra et al., 2018).
NK2 aptamers inhibit invasion ofM.tb in macrophages, enhances
IFN-g production, and increases survival of mice infected with
M.tb (Chen et al., 2012). The 6-kDa early secreted antigenic target
(ESAT-6) and 10-kDa culture filtrate protein (CFP-10) are
secretory proteins of virulent M.tb. ssDNA aptamers (CE24 and
CE15) can detect CFP-10 and ESAT-6 proteins respectively in
serum samples from active pulmonary tuberculosis patients,
extrapulmonary TB patients, and healthy individuals (Tang
et al., 2014). Mannose-capped lipoarabinomannan (ManLam), a
cell wall component of M.tb, is important for M.tb pathogenesis
(Tang et al., 2016). ManLam inhibits antigen presentation
function of dendritic cells. Aptamer T9 can detect ManLAM
antigen in serum and sputum samples from active pulmonary
tuberculosis (aPTB) patients, extrapulmonary TB (EPTB) patients,
and healthy donors with >85% specificity and sensitivity. The
performance of T9 based enzyme-linked oligonucleotide assay
(ELONA) was comparable with the standard T-SPOT.TB test.
TABLE 3 | Aptamers developed for diagnosis and therapeutic applications in tuberculosis.

S. No. Aptamer Type Organism Target Reference

For Diagnosis
1. CE24 CE15 DNA M.tb H37Rv CE protein Tang et al., 2014
2. CSIR 2.11 DNA M.tb CE protein Rotherham et al., 2012
3. MPT64-A1 DNA M.tb MPT64 Zhu et al., 2012
4. G43 G78 RNA M.tb EsxG protein Ngubane et al., 2014
5. MA1 DNA M.tb Whole-bacterium Aimaiti et al., 2015
6. Aptamer 1 DNA M.tb Whole-bacterium Chen et al., 2007
7. Au-IDE/CFP10- ESAT6 DNA M.tb Whole-bacterium He et al., 2016
For therapeutic

8. NK2 DNA M.tb H37Rv Whole-bacterium Chen et al., 2007
9. ZXL1 DNA M.tb H37Rv ManLAM Pan et al., 2014
10. M. tb -Apt1

M. tb -Apt6
DNA M.tb Acetohydroxyacid synthase Baig et al., 2015

11. BM2 DNA BCG ManLAM Sun et al., 2016
12. T9 DNA M.tb Beijing strains ManLAM Tang et al., 2016
13. CD44-TA-SMP – M.tb CD44 receptor Leonard et al., 2017
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T9-based ELONA (Figure 4) has been touted as improved
diagnostic test with potential to detect inactive TB, smear-
negative TB, EPTB, and TB with HIV but its inefficiency to
differentiate between LTBI and active TB limits its application.
Nonetheless, T9-based ELONA is fast and less expensive than T-
SPOT.TB test (Tang et al., 2016). An aptamer ZXL1 recognizes
acyl and phosphate structures of ManLAM and binds to M.tb-
ManLAM, not to BCG-ManLAM. ZXL1 suppresses CD11+
expression in dendritic cells and inhibits M.tb H37Rv infection
in mice and rhesus monkeys. The ability to differentiate between
M.tb-ManLam versus BCG-ManLam acknowledges the potential
of ZXL1 as a future candidate for developing tuberculosis vaccine
(Pan et al., 2014). Acetoacetate is an important intermediate
molecule in essential amino acid synthesis. Acetohydroxy acid
synthase (ASHS) has no known functional analogs in humans,
which makes it a good drug candidate. ASHS converts pyruvate
molecule to acetoacetate. ssDNA aptamers named as M.tb-Apt1
and M.tb-Apt6 inhibit ASHS activity and are able to kill MDR
strain of M.tb (Baig et al., 2015). Aptamer BM2 increases the
immunogenicity of BCG against virulentM.tb, H37Rv infection in
monkeys as well as in mice model (Sun et al., 2016). BM2 aptamer
targets BCG–ManLAM–CD44 interaction and initiates M1
macrophage-mediated Th1 (T helper 1) T cell immune response
(Sun et al., 2016). Thioaptamers (TA) are modified aptamer
having thiophosphate ester bond (Somasunderam et al., 2010).
CD44 is a conserved receptor present on macrophages.M.tb binds
to CD44 and enters inside the macrophages (Leemans et al., 2003).
Conjugation of CD44-thioaptamers with SMP (discoidal silicon
mesoporous microparticles) enhanced the internalization of
aptamers and killed M.tb-infected macrophages in mice lung
(Leonard et al., 2017).
FUTURE DIRECTION FOR DEVELOPMENT
OF APTAMERS FOR TB RESEARCH

As shown by Chen et al., 2020, an aptamer which was generated
for detecting N protein of SARS-CoV2, can also be used for the
treatment as well. Such rationale can also be adopted while
developing aptamers targeting M.tb cell wall proteins, virulent
factors, secretory proteins, or combination of above factors that
could be a substitute of conventional diagnosis approaches.
Aptamers generated against whole bacterium are regarded
suitable for diagnostic purposes as they can recognize different
epitopes present on M.tb and detect them in human fluid i.e.
blood, serum, bronchoalveolar lavage (Chen et al., 2007; Zhu
et al., 2012; Rotherham et al., 2012). Aptamers can also be
designed against PE/PPE family proteins as they have shown
to induce strong antibody responses in smear negative and
extrapulmonary TB and also in individuals with latent
tuberculosis (Mukherjee et al., 2007; Khan et al., 2008; Tundup
et al., 2008; Abraham et al., 2014; Khan et al., 2016; Abraham
et al., 2018). Since approximately 10% of M.tb genome codes for
PE/PPE proteins, it is of interest to explore the possibility of
using the PE/PPE based aptamers for TB and latent TB diagnosis.
Various studies have shown that PE/PPE proteins can be used as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
potential markers for serodiagnosis of active TB as well as latent
TB infection. Aptamers for PPE proteins such PPE17 (Abraham
et al., 2016), PPE2 (Abraham et al., 2014), PPE68 (Xu et al.,
2012), PPE42 (Chakhaiyar et al., 2004; Ireton et al., 2010), PPE57
(Zhang et al., 2007), and PPE41 (Choudhary et al., 2003) may be
tested for diagnosis of TB. In addition, aptamers for PE proteins
such as PE25 (Tundup et al., 2008), PE11 (Narayana et al., 2007)
and PE35 (Mukherjee et al., 2007) could be explored for
diagnostic assessment. Anti-M.tb aptamers may also be
required to differentiate different strains of M.tb that may help
in understanding the transmission dynamics of TB in different
geographical locations/endemic areas of TB. It will be worth
inventing aptamers that can identify drug resistant M.tb isolates
for prescribing appropriate anti-TB regimen. M.tb resides inside
macrophages and incapacitates the human immune system.
Thus, aptamers can be designed to block, inhibit, or prevent
the functions of virulent factors of mycobacteria and may be
exploited as therapeutics. For example, our recent studies (Nair
et al., 2009; Nair et al., 2011), indicated an important role of the
LRR (leucine rich repeat) 11–15 domains of toll like receptor
(TLR) 2 in the induction of non-protective IL-10/Th2 response by
PPE18 protein of M.tb (Nair et al., 2009; Nair et al., 2011); thus
aptamers can be designed to block this interaction to specifically
increase the protective Th1-type immune response against M.tb.
Also our recent study indicates that the PPE2 protein of M.tb
interacts with p67phox in macrophages and inhibits reactive
oxygen species (Srivastava et al., 2019). Aptamers to block this
interaction may be useful to increase the innate host defense
duringM.tb infection. Similarly, another protein, PE11, is found to
be responsible for cell wall architecture of M.tb, contributing to
M.tb virulence (Singh et al., 2016; Rastogi et al., 2017) and can be
the target of aptamer research. Also we report that ESAT-6 protein
interacts with b2-microglobulin of host inhibiting class I-mediated
antigen presentation and CD8+ T cell function (Sreejit et al.,
2014). It is probably important to design the aptamer to
specifically block this interaction to improve CD8+ T cell
function which is shown to be poorer and/or delayed during
M.tb infection (Koul et al., 2004).
CONCLUDING REMARKS

Our current knowledge of cellular and molecular interactions
between mycobacteria and host immune responses is poor, and
the complex pathobiology of tuberculosis presents a significant
challenge in vaccine development. Recent advancement in
aptamer technology has come up with novel and imaginative
ways to develop therapeutic and diagnostic aptamers against
important molecular targets of M.tb. In the management of
tuberculosis, early and accurate diagnosis is the key. Delayed
diagnosis and poor treatment lead to the development of drug
resistance. Hence, aptamers which can detect early infection stages
or detect drug-resistant M.tb strain would be effective in the
management of TB. In DOTS (directly observed treatment, short-
course) therapy for tuberculosis management, a combination of
antibiotics is given for a long period of time. M.tb develops drug
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resistance, and thus the currently available drugs generally fail to
clear the infection. Most antibiotics are generated against enzymes
important for cell wall formation, biofilm synthesis, or DNA
replication, and protein synthesis pathway, or they target they
metabolic pathway of M.tb (Davydova et al., 2016). Aptamers do
not target enzymatic pathway directly. They are designed to
recognize their target, bind to and inhibit the functions. In this
way, aptamers are believed to overcome the problem of generation
of resistant mycobacteria. Aptamers are sensitive to nuclease-
mediated degradation. Being smaller in size, localization of
aptamers to its site-of-action is challenging. Additionally,
aptamers are rapidly cleared from the body due to high renal
filtration. There is a new class of aptamers known as SOMAmer
(Slow-Off rate-Modified-Aptamer) that are modified nucleotide
aptamers having side-chains to facilitate strong hydrophobic
interaction with their target. SOMAmer stays in circulation for
longer duration. Though aptamers offer a bundle of advantages,
they have some shortcomings which need to be overcome before
aptamers can be fully exploited true to their potential. In TB
diagnosis platform, even highly advanced technique suffers due to
extremely low concentration of M.tb antigens in serum, blood,
urine, etc. Though there have been significant improvement in the
diagnosis and treatment of tuberculosis, still we are unable to
address the basic question of preventing the emergence of
drug-resistant M.tb or minimizing the side effects of antibiotics or
development of an effective anti-TB vaccine. Aptamers are unique,
less expensive, and simple oligonucleotide molecules. They are
flexible and they can be conjugated with a variety of agents like
siRNA, drugs, and nanoparticle molecules (Jiang et al., 2015;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
Davydova et al., 2016). Advancement in aptamer technology
which will certainly lead to selectively target virulent proteins of
M.tb would pave the way for new and improved vaccine and drug
development. Aptamer technology is in its nascent phase; however
measured interventions in aptamer have the potential to replace
conventional way of TB management in future.
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