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Abstract: The spread of organic pollutants in water spoils the environment, and among the best-
known sorbents for removing organic compounds are carbonaceous materials. Sunflower seed waste
(SFSW) was employed as a green and low-cost precursor to prepare carbon nanoparticles (CNPs)
via pyrolysis, followed by a ball-milling process. The CNPs were treated with a nitric–sulfuric acid
mixture (1:1) at 100 ◦C. The scanning electron microscopy (SEM) showed a particle size range of 38 to
45 nm, and the Brunauer–Emmett–Teller (BET) surface area was 162.9 m2 g−1. The elemental analysis
was performed using energy-dispersive X-ray spectroscopy, and the functional groups on the CNPs
were examined with Fourier transform infrared spectroscopy. Additionally, an X-ray diffractometer
was employed to test the phase crystallinity of the prepared CNPs. The fabricated CNPs were used
to adsorb ciprofloxacin (CFXN) and malachite green (MLG) from water. The experimentally obtained
adsorption capacities for CFXN and MLG were 103.6 and 182.4 mg g−1, respectively. The kinetic
investigation implied that the adsorption of both pollutants fitted the pseudo-first-order model, and
the intraparticle diffusion step controlled the process. The equilibrium findings for CFXN and MLG
sorption on the CNPs followed the Langmuir and the Fredulich isotherm models, respectively. It was
concluded that both pollutants spontaneously adsorbed on the CNPs, with physisorption being the
likely mechanism. Additionally, the FTIR analysis of the adsorbed CFXN showed the disappearance
of some functional groups, suggesting a chemisorption contribution. The CNPs showed an excellent
performance in removing CFXN and MLG from groundwater and seawater samples and possessed
consistent efficiency during the recycle–reuse study. The application of CNPs to treat synthetically
contaminated natural water samples indicated the complete remediation of polluted water using the
ball-mill-fabricated CNPs.

Keywords: carbon nanoparticles; sunflower seed waste; ball milling; ciprofloxacin; malachite green

1. Introduction

Water pollution is a major environmental problem facing the world today. The World
Health Organization (WHO) and the United Nations International Children’s Emergency
Fund (UNICEF) reported the non-accessibility of ten million persons to adequate water
sources. The decay of the water environment may be caused by the accidental or illegal
discharge of polluted effluents [1–4]. Malachite green (MLG; Figure 1a) is among some of
the most dangerous organic pollutants that damage aquatic environments [5]. Although
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it is toxic and carcinogenic, MLG is still used in various industries, including food and
pharmaceuticals [5–10]. A recent study revealed that 70% of antibiotic doses were expelled
in urine and feces into wastewater [6]. Pharmaceutical pollutants (PhPs) have been detected
in sewage, water resources, and even in the tap water of some countries [7–10]. In addition
to the typical risk of PhPs in water, antibiotics might enhance microbe immunity, causing
mutations and, hence, generating new diseases [11]. Ciprofloxacin (CFXN; Figure 1b) is the
most prescribed drug among its antibiotic family [12–14].
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Numerous treatment methodologies have failed to clear water from PhPs and dyes,
including bioremediation and ozonation [15,16]. On the other hand, photocatalysis and
adsorption processes appear to have promising results in removing such pollutants [17–20].
Researchers are still in disagreement about the superiority of adsorption over photodegra-
dation, but it is undisputed that the adsorption process consumes less energy. Because
of their hazardous occurrence in water, several sorbents have been tested for removing
MLG and CFXN from polluted water [21–25]. Historically, carbonaceous materials (CMs)
are known for their high surface areas, excellent adsorption capacity, and robustness. Ad-
ditionally, their surface can be modified from nonpolar to polar to suit the characteristic
diversity of compounds [26–34]. CMs can be fabricated from renewable green agricultural
wastes, which can be superabundant, nontoxic, and inexpensive. The circular economy
and green chemistry concepts emphasize the exploitation–recycling of agricultural waste
into valuable products. The United States Department of Agriculture (USDA) stated that
approximately 46 million tons of sunflower seeds are produced globally [35]. The edible oil
industries generate sunflower seed waste (SFSW), and it would be helpful to benefit from
such a massive waste.

This study aims to eliminate SFSW by employing it as a cheap green precursor for
producing carbon nanoparticles (CNPs) via a simple route. Since the adsorption efficiency
is affected by sorbent and sorbate natures, the prepared CNPs are functionalized to suit
removing polar PhPs and organic dyes, exemplified by CFXN and MLG, respectively.

2. Experimental Section
2.1. Materials

Nitric acid, 72% (HNO3), and sulfuric acid, 98% (H2SO4), were supplied by Sigma-
Aldrich, St. Louis, MO, USA. The SFSW was collected from the local market (KSA). The
MLG was provided by LO–BACHEM, India, and the CFXN was provided by Rhanboxy,
Mumbai, India. Seawater and groundwater samples (SWSs and GWSs) were employed to
test the CNPs’ applicability in removing such pollutants from natural contaminated water
resources.
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2.2. Fabrication of CNPs

Approximately 50.0 g of SFSW was transferred to a boat crucible, placed into a tubular
furnace, and carbonized at 600 ◦C under a nitrogen stream for two hours. The CMs were
placed in a stainless-steel crucible of a vertical planetary ball mill (model: Al-VPB; Mumbai,
India) and operated at 500 RPM for 10.0 h. An amount of 10.0 g of the obtained powder was
stirred with 100 mL of HNO3: H2SO4 mixture (1:1) for one hour at 100 ◦C. The product was
dispersed in 200 mL of distilled water and sonicated for 30 min. The resultant nanoparticles
were filtered off, washed, and dried at 110 ◦C for three hours.

2.3. Characterization of the CNPs

The surficial and detailed morphologies of CNPs were investigated using scanning
electron–energy-dispersive microscopy (SEM-EDX, JSM-IT300) and a transmission electron
microscope (TEM, JEM-1400). The detailed morphology was examined via transmission
electron microscopy. In addition, the functional groups on the surface of CNPs were
analyzed with Fourier transform infrared spectroscopy (FTIR; Bruker TENSOR-FTIR).
Additionally, the surface characteristics were analyzed via an ASAP 2020 Micromeritics
surface. The sample was placed in a quartz tube, vacuumed to 10 µm Hg at 150 ◦C for 6.0 h,
and then analyzed using ultrapure nitrogen gas (N2).

The nanoparticles’ phase purity was analyzed using a powder X-ray diffractometer
(XRD) (Bruker, D8 Advance; Billerica, MA, USA). The average crystal size of the CNPs was
calculated via Scherrer’s equation (Equation (2)), and the lattice parameters (a and c) and
the lattice imperfection (ε) were estimated via Equations (3)–(5), respectively [36,37].

D =
0.9λ

βcosθ
(1)

a =
λ√

3 sinθ
(2)

c =
λ

sinθ
(3)

ε =
β

4 cosθ
(4)

where θ, λ, and β represent the Bragg’s angle, Cu Kα line (1.5406

Molecules 2022, 27, x FOR PEER REVIEW 5 of 16 
 

 

  
(e) (f) 

Figure 2. (a,b) SEM images; (c) electronic image corresponding to EDX analysis; (d) EDX spectrum; 
(e,f) TEM results of the ball-mill-fabricated CNPs. 

Figure 3a illustrates the XRD pattern for the fabricated CNPs. The diffraction peaks 
at 2θ◦ of 26.02 and 43.42 could be assigned to (002) and (100) of the cubical lattice graphite 
phase (JCPDS no. 04-0850) [39,40]. In addition, the absence of the amorphous carbon dif-
fraction peak at 2θ° of 11.7 indicated a good crystallinity for the prepared CNPs. The D, 
a, and c values for the CNP crystals were 25.05, 0.26, and 5.52 nm, respectively, while the 
crystal imperfection value was 0.37 (a.u). 

Furthermore, the surficial functional groups of the prepared CNPs were surveyed 
via the FTIR analysis (Figure 3b). The peaks at 850 and 2850 cm−1 could be assigned to a 
long chain’s out-of-plane C-H wagging and C-H stretching vibrations. The peaks at 1120, 
1760, and 3270 cm−1 could be attributed to C-O, C=O, and an intermolecular hydrogen-
bonded O-H stretching vibration. The gathering of these findings inferred a successful 
implanting of carboxylic groups on CNP surfaces. The band at 1650, 2010, and 2280 cm−1 
could be assigned to C=C, carbon skeleton accumulated C=C, and C≡C stretching vibra-
tions. Additionally, the 3270 and 3650 cm−1 bands could be set to an acid O-H stretching 
vibration with intramolecular H-bonding and the alcoholic O-H stretching vibration with-
out H-bonding, respectively [36,41]. 

The N2 adsorption–desorption technique was utilized to investigate the surface fea-
tures of the as-synthesized CNPs. The surface area (SA) was determined via the Brunauer–
Emmett–Teller (BET) method, and the obtained isotherm and pore distribution are shown 
in Figure 3c,d. The CNPs demonstrated a type (III) hysteresis loop belonging to mesopo-
rous materials [42]. The Barrett–Joyner–Halenda (BJH) method was utilized to estimate 
the pore diameter, width, and volume (PD, PW, and PV). The BET SA was 162.92 m2 g−1, 
while the PD, PW, and PV were 77.82 Ǻ, 23.11  

 
Ǻ 
 
 
, and 0.10 cm3 g−1, respectively. 

), and the peak width at
half-maximum, respectively, while D represents the computed crystal size [38].

2.4. Kinetics and Solution Parameters

A batch procedure was employed in testing the adsorption of MLG and CFXN on
the fabricated CNPs from water. Typically, 50 mg of CNPs was mixed with 120 mL of
50 mg L−1 pollutant aqueous solution. In addition, the pH influence was inspected by
adjusting the pollutant solution to a different pH in the range of 2 to 11. The sorption
process was followed by monitoring the absorbance of MLG and CFXN using a UV–Vis
spectrophotometer (Shimadzu-2600i, Japan) at 617 and 273 nm, respectively. The adsorption
capacity for each pollutant on the CNPs (qt, mg g−1) was calculated via Equation (1).

qt =
(Co − Ct) v

m
(5)

Co and Ct (mg L−1) are the pollutant concentrations at time zero and t (min); v and m
are the solution volume (mL) and adsorbent mass (g), respectively.

2.5. Isotherms and Thermodynamics

The impact of concentration and temperature was investigated by conducting sorption
processes within concentration ranges of 10 to 50 mg L−1 CFXN and 10 to 100 mg L−1 MLG
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solutions at 20 ◦C, 35 ◦C, and 50 ◦C, respectively. The obtained results were utilized for the
isotherm and thermodynamic investigations.

3. Results and Discussion
3.1. Characterization of the Fabricated CNPs

The SEM analysis was utilized to investigate the surface morphology of the as-
prepared CNPs. A 25,000 magnification showed large clumps of approximately 200 nm and
tiny particles (Figure 2a), while a 100,000 times magnification revealed that the lumps were
clustered nanoparticles with a size of 38 to 45 nm (Figure 2b). These findings indicated
a successful fabrication of CNPs from SFSW via calcination, followed by a ball-milling
process. Moreover, the EDX analysis was employed to examine the elemental composition
of the fabricated CNPs (Figure 2c,d). The analysis revealed that the CNPs were composed
mainly of carbon and oxygen, and that the acid treatment had implanted oxygen groups all
over the CNPs. The TEM results for the SFSW CNPs revealed that the 600 ◦C produced
a crystal form of carbon (Figure 2e). Additionally, Figure 2f shows a group of carbon
nanoparticles of approximately 10 to 20 nm in addition to minor large particles, which was
in line with the SEM findings.
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(e,f) TEM results of the ball-mill-fabricated CNPs.

Figure 3a illustrates the XRD pattern for the fabricated CNPs. The diffraction peaks at
2θ◦ of 26.02 and 43.42 could be assigned to (002) and (100) of the cubical lattice graphite
phase (JCPDS no. 04-0850) [39,40]. In addition, the absence of the amorphous carbon
diffraction peak at 2θ◦ of 11.7 indicated a good crystallinity for the prepared CNPs. The D,
a, and c values for the CNP crystals were 25.05, 0.26, and 5.52 nm, respectively, while the
crystal imperfection value was 0.37 (a.u).

Furthermore, the surficial functional groups of the prepared CNPs were surveyed
via the FTIR analysis (Figure 3b). The peaks at 850 and 2850 cm−1 could be assigned
to a long chain’s out-of-plane C-H wagging and C-H stretching vibrations. The peaks
at 1120, 1760, and 3270 cm−1 could be attributed to C-O, C=O, and an intermolecular
hydrogen-bonded O-H stretching vibration. The gathering of these findings inferred a
successful implanting of carboxylic groups on CNP surfaces. The band at 1650, 2010,
and 2280 cm−1 could be assigned to C=C, carbon skeleton accumulated C=C, and C≡C
stretching vibrations. Additionally, the 3270 and 3650 cm−1 bands could be set to an acid
O-H stretching vibration with intramolecular H-bonding and the alcoholic O-H stretching
vibration without H-bonding, respectively [36,41].

The N2 adsorption–desorption technique was utilized to investigate the surface fea-
tures of the as-synthesized CNPs. The surface area (SA) was determined via the Brunauer–
Emmett–Teller (BET) method, and the obtained isotherm and pore distribution are shown in
Figure 3c,d. The CNPs demonstrated a type (III) hysteresis loop belonging to mesoporous
materials [42]. The Barrett–Joyner–Halenda (BJH) method was utilized to estimate the pore
diameter, width, and volume (PD, PW, and PV). The BET SA was 162.92 m2 g−1, while the
PD, PW, and PV were 77.82
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Figure 3. The obtained CNP results via (a) powder XRD diffraction spectroscopy, (b) FTIR spec-
troscopy, (c) nitrogen adsorption-desorption isotherm, and (d) pore diameter distribution.

3.2. Adsorption Investigation

Figure 4a presents the contact time study for the adsorption of CFXN and MLG on
the CNPs. The adsorption of CFXN from water by the CNPs reached its equilibrium point
in 60 min, while MLG required 120 min. Additionally, the initial fed concentration was a
crucial factor affecting adsorption. Figure 4b,c demonstrate a direct proportionality between
the fed concentration and the obtained qt, which reached 103.6 and 182.4 mg g−1 from
the 50 mg L−1 CFXN and 100 mg L−1 MLG solutions. Increasing the initial concentration
could have generated an efficient force that facilitated the migration of pollutants. On
the contrary, the raising of the solution’s temperature was inversely proportional to the
qt of CFXN and MLG, indicating exothermic sorption (Figure 4b,c). Furthermore, the qt
proportionately with fed concentrations inferred the suitability of a 5:12 ratio of sorbent
mass to solution volume within the tested concentration ranges. These findings of fast
uptake, short equilibrium time, and relatively high experimental qt values were competitive
with recent CMs in the literature [17,43–46].

Considering the chemical structure of MLG and CFXN (Figure 1), electrostatic at-
traction plays a significant role in removing these pollutants [47,48]. At low pH, the
auxochrome group of MLG (pKa = 10.3) is protonation, resulting in a positive charge
density [49]. Additionally, the CFXN (pKa = 5.9) molecule is no less complex, as it has
both acidic and amino groups. Adding to that, the implanted oxygen groups of the func-
tionalized CNPs may explain the influence of pH on the availability and accessibility of
the functional groups on the sorbent’s surface and pollutants. Figure 4d illustrates the
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impact of altering the solution’s pH on the qt values for CFXN and MLG removal with the
prepared CNPs. Both pollutants were better removed at a pH value of 6.0, and their qt
values decreased significantly below pH 5.0 and above pH 8.0. The highly available H+

may protonate the electron-rich sites on the pollutants and/or CNPs at low pHs. On the
other hand, the −OH availability above a pH of 8.0 may compete with contaminants on the
adsorption sites of the sorbent [50].
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Figure 4. CFXN and MGD adsorption using CNPs, investigations of (a) the contact time study;
(b,c) the impact of initial pollutant concentration on the adsorption of CFXN and MGD; and (d) the
influence of the solution’s pH.

3.3. Adsorption Kinetics

The adsorption kinetics of CFXN and MLG adsorption on the ball-mill-fabricated
CNPs were investigated. The adsorption rate order was examined via the pseudo-first-
order models (PSFO) and the pseudo-second-order model (PSSO) expressed in Equations (6)
and (7). Additionally, an examination of the step controlling the adsorption was conducted
by employing the liquid-film diffusion model (LFDM) (Equation (8)) and the intraparticle
diffusion model (IPDM) (Equation (9)) [51].

ln(qe − qt) = ln qe − k1·t (6)

1
qt

=
1

k2·q2
e t

+
1
qe

(7)

qt = KIP ∗ t
1
2 + Ci (8)

ln(1− F) = −KLF ∗ t (9)
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where qe (mg g−1) represents qt at equilibrium; k1 (min–1) and k2 (g mg–1 min–1) are the rate
adsorption constants for the PSFO and PSSO models, which were calculated from the slope
and intercept values, respectively. The LFDM and IPDM constants are represented as KIP
(mg g−1 min−0.5) and KLF (min–1), respectively, and both were computed from their slope
values. Ci (mg g−1) is a boundary layer thickness factor [52,53].

Figure 5a illustrates the PSFO regression lines for CFXN and MLG adsorption on the
CNPs, while Figure 5b shows their PSSO linear plots. The R2 values of the PSFO were
0.945 and 0.970 for CFXN and MLG, while the PSSO possessed R2 values of 0.862 and 0.857,
respectively. These findings revealed that CFXN and MLG sorption on the ball-mill CNPs
followed the PSFO model [54].
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Figure 5. (a,b) present the adsorption rate order plots for PSFO and PSSO models for the adsorption
of CFXN and MLG on the fabricated CNPs from 50.0 mg L−1 at 25 ◦C; (c,d) present the rate control
mechanism investigations using LFDM and IPDM for CFXN and MLG adsorption on the fabricated
CNPs from 50.0 mg L−1 at 25 ◦C.

Figure 5c,d present the LFDM and IPDM investigations for CFXN and MLG removal
using the CNPs. The CFXN sorption exhibited KLF and KIP values of 0.050 min–1 and
2.743 mg g−1 min−1/2, respectively, and R2 values of 0.866 and 0.960, respectively. Addi-
tionally, the adsorption mechanism investigation for the MLG showed KLF and KIP values
of 0.043 min–1 and 2.720 mg g−1 min−1/2, respectively, with R2 values of 0.774 and 0.983,
respectively. These results indicated that the adsorption of both pollutants on the CNPs
fitted the IPDM with a good agreement.
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3.4. Adsorption Isotherms

The possibility of a monolayer sorption for CFXN and MLG using the CNPs was
inspected with the Langmuir isotherm (LI) model (Equation (10)). Additionally, the multi-
layer adsorption of CFXN and MLG using CNPs was examined via the Freundlich isotherm
(FI) model (Equation (11)) [55–57].

1
qe

=
1

KL qm
.

1
Ce

+
1

KL
(10)

ln qe = ln KF +
1
n

ln Ce (11)

where KL (L mg−1) and KF (L mg−1) are the LI and FI constants; qm (mg g−1) is the possibly
maximum qt; Ce (mg L−1) is the equilibrium pollutant’s concentration; n is the Freundlich
heterogeneity factor.

For the LI model (Figure 6a,b), the reciprocal of the slope resulted in the KL value,
which was applied with the intercept value to compute qm (Table 1). Additionally, the KF
value of the FI model (Figure 6c,d) was equal to the anti-LN of the obtained intercept, while
the 1/n was equal to the resulting slope value (Table 1).
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Figure 6. (a,b) present the Langmuir investigation for the adsorption of CFXN and MLG onto the
CNPs, respectively; (c,d) show the Freundlich investigations for the same systems.

The adsorption of CFXN on the CNPs showed a better fitting to the LI model, while
the MLG adsorption followed the FI model. Although the 1/n values indicated favorable
adsorption for both pollutants, the 1/n value for CFXN was double that of the MLG,
indicating that CFXN sorption had less preference for the FI model [57]. Additionally, the
1/n values for CFXN and MLG on CNPs indicated reversible adsorption, which may imply
a physisorption nature.
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Table 1. The LI and FI parameters for the adsorption of CFXN and MLG on the ball-mill-fabricated
CNPs at 25 ◦C using concentration ranges of 10 to 50 mg L−1 and 25 to 100 mg L−1 for CFXN and
MLG, respectively.

Isotherm Model LI FI

Pollutant R2 (a.u) KL (L mg−1) qm (mg g−1) R2 (a.u) Kf (L mg−1) 1/n (a.u)

CFXN 0.846 64.419 3.414 0.828 39.836 0.340

MLG 0.923 140.071 11.068 0.961 93.296 0.173

3.5. Thermodynamics

The thermodynamics of CFXN and MLG adsorptions on the fabricated CNPs were
investigated.

The adsorbed and remaining concentrations (Cad, and Ce, (mg L−1)) were employed
for computing the equilibrium constant Kc. The enthalpy (∆Ho, (kJ mol−1)) value was
calculated using the slope from the plot of Equation (12), and the entropy (∆So, (kJ mol−1))
was calculated using the intercept value (Figure 7). The Gibbs free energy (∆Go, (kJ mol−1))
was computed by applying the results from Equation (12) in Equation (13), yielding the
results shown in Table 2.

ln Kc =
∆Ho

RT
+

∆So

R
(12)

∆ Go = ∆ Ho − T ∆ So (13)
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Figure 7. The thermodynamic results for the adsorption of (a) CFXN and (b) MLG on the CNPs
within a temperature range of 25 ◦C to 45 ◦C using 10, 20, 30, and 50 mg L−1 CFXN solutions and 25,
50, 75, and 100 mg L−1 MLG solutions.

The obtained ∆Ho values for the CFXN and MLG removal using CNPs indicated an
exothermic sorption. Furthermore, ∆Go implied the spontaneity of CFXN and MLG ad-
sorption within the tested range of concentrations [58]. Additionally, the 10 and 25 mg L−1

solutions showed a significant increase in their ∆Go as the temperature increased, indicating
that the adsorption became highly temperature-sensitive at low pollutant concentrations.
Furthermore, the negative ∆So findings revealed that the adsorptions of CFXN and MLG
on the CNPs were favorable [59].
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Table 2. The thermodynamic results for the adsorption of CFXN and MLG on the CNPs within a
temperature range of 25 ◦C to 45 ◦C using 10, 20, 30 and 50 mg L−1 CFXN solutions and 25, 50, 75,
and 100 mg L−1 MLG solutions.

Fed Conc.
(mg L−1)

∆Ho

(kJmol−1)
∆So

(kJmol−1)
∆Go (kJmol−1)

298 K
∆Go (kJmol−1)

308 K
∆Go (kJmol−1)

318 K
R2

(a.u)

CFXN

10 −147.680 −0.465 −9.015 −4.362 0.291 0.854

20 −36.568 −0.081 −12.398 −11.587 −10.776 0.893

30 −22.658 −0.062 −4.252 −3.635 −3.017 0.958

50 −25.002 −0.069 −4.518 −3.831 −3.831 0.983

MLG

25 −211.728 −0.662 −14.527 −7.910 −1.292 0.999

50 −72.003 −0.222 −5.921 −3.703 −1.486 0.937

75 −40.723 −0.126 −3.079 −1.816 −0.552 0.994

100 −38.464 −0.120 −2.812 −1.616 −0.420 0.996

3.6. Investigation of Sorption Nature

In sorbent–sorbate systems, aromatic pollutants are often adsorbed through the π–π
interaction, electron donation acceptance, and/or electrostatic attraction, but chemical
bonding is also likely to occur [60]. The values of the FI factor (1/n < 1.0) revealed a re-
versible adsorption process, which implied physisorption. CFXN and MLG concentrations
of 10 and 25 mg L−1 showed that ∆Ho values were more than 80 kJ mol−1, contradicting the
pure physisorption conclusion. Hence, FTIR was utilized to examine the functional groups
of the adsorbed CFXN and MLG molecules [61]. Figure 8a demonstrates the vibrational
bands resulting from the free CFXN compared with the adsorbed CFXN bands. The free
CFXN showed a vibration band above 3000 cm−1, which could be attributed to the O-H
stretching. The lump at 3300 cm−1 may belong to the N-H stretching vibration, which did
not appear after the adsorption, implying a formation of an amide bond with the oxygen
functional groups on the CNPs. Additionally, the adsorbed CFXN showed a carbonyl
band at approximately 1640 cm−1, indicating an amide bond formation [36]. These results
indicated that chemisorption had participated in removing CFXN. Nevertheless, at high
pollutant concentrations, physisorption occurred alongside the former.
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Figure 8. FTIR spectra of (a) free CFXN molecules and as adsorbed onto CNPs; (b) free MLG
molecules and as adsorbed onto CNPs.
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Figure 8b showed the FTIR results of the free MLG and adsorbed MLG molecules
on the CNPs. The free MLG showed vibration bands between 700 and 850 cm−1 that
could be assigned to out-of-plane C-H bending. The two peaks at approximately 1200 to
1400 cm−1 may belong to the geminal dimethyl group and/or C-N stretching vibration. The
band at approximately 1590 cm−1 may be attributed to the C=C stretching vibration of the
ring connected to the positive nitrogen in the MLG molecule. The peak at approximately
1690 cm−1 could be assigned to the C=N stretching vibration and/or C=C of the tert-
substituted carbon. In addition, the C-H stretching vibrations of the methyl and aromatic
rings appeared at approximately 2940 cm−1 and 3050 cm−1, respectively [36,41]. Because
of the CNPs, the adsorbed MLG molecules exhibited vibration bands of lower intensities,
but none of the peaks disappeared, indicating the absence of chemisorption. Hence, the
possible sorbent–sorbate interactions may include an electrostatic attraction between the
partially negative oxygen groups on the CNPs and the positive nitrogen on the MLG
molecules. Additionally, hydrogen bonding occurred between the oxygen groups on the
CNPs and MLG molecules, as well as a π–π interaction between their aromatic groups [62].

3.7. Application to Natural Water Samples

The ball-mill-fabricated CNPs were examined for removing CFXN and MLG from
GWSs and SWSs. Figure 9a displays the removal efficiency of CNPs in treating contami-
nated GWSs and SWSs with 5.0 and 10.0 mg L−1 of each pollutant. The prepared CNPs
removed CFXN and MLG entirely from the 5.0 mg L−1 contaminated GWS and SWS.
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Figure 9. (a) The removal efficiency of CFXN and MLG from SW and GW samples with the prepared
CNPs; (b) the reuse performance of the prepared CNPs in removing CFXN and MLG from aqueous
solutions.

3.8. Regeneration and Reuse

The sorbent reusability is an economic factor, and it was essential for examining this
task. Since the acidic pH below 4.0 affected the adsorption capability of CNPs, a 2.0 mol L−1

hydrochloric acid solution (2M HCl) was selected as a regeneration solution. The used
CNPs were sonicated with 50 mL of 2M HCl for 15 min, filtered, and the process was
repeated with 50 mL distilled water, then 20 mL ethanol. The regenerated CNPs were
vacuum filtered, rinsed with 100 mL distilled water, activated at 150 ◦C for 60.0 min, and
employed for the next round. Figure 9b illustrates the application of the used CNPs in
removing CFXN and MLG. The CNPs showed an average removal percentage of 95.1% and
96.8% for CFXN and MLG during the four cycles and exhibited RSD values of 3.5% and
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3.4%, respectively. Due to the chemisorption nature, a decrease in the removal percentage
of the CNPs with CFXN was expected. Nevertheless, the CNPs possessed a consistently
high performance during the reusability investigations.

4. Conclusions

SFSW was carbonization at 600 ◦C, ground with ball milling, and functionalized via
an acid treatment. The prepared CNPs were characterized and tested for removing CFXN
and MLG from aqueous solutions via batch experiments. The adsorption of both pollutants
followed the PSFO kinetic model, and their adsorptions appeared to be controlled by the
intraparticle diffusion step. CFXN and MLG adsorption on the CNPs fitted the LI and
FI model, respectively. The sorptions of both pollutants on the CNPs were exothermic
and spontaneous. FTIR was used to investigate functional groups’ appearance and/or
disappearance from the adsorbed contaminants. In the case of MLG, the removal was
mediated by physisorption, while for CFXN, the physicochemical process took place.
The ball-mill-fabricated CNPs showed an excellent performance in removing CFXN and
MLG from GWSs and SWSs, and possessed consistent efficiency during the recycle–reuse
study. The complete removal of the 5 mg L−1 of both pollutants suggested this sorbent’s
applicability to remediate water from these pollutants.
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