
Computational and Structural Biotechnology Journal 17 (2019) 390–405

Contents lists available at ScienceDirect

journa l homepage: www.e lsev ie r .com/ locate /csb j
Mini Review
Current Advances in Studying Clinically Relevant Transporters of the
Solute Carrier (SLC) Family by Connecting Computational Modeling and
Data Science
Alžběta Türková, Barbara Zdrazil ⁎
Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
⁎ Corresponding author.
E-mail address: barbara.zdrazil@univie.ac.at (B. Zdrazi

https://doi.org/10.1016/j.csbj.2019.03.002
2001-0370/© 2019 The Authors. Published by Elsevier B.V
NC-ND license (http://creativecommons.org/licenses/by-n
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 23 November 2018
Received in revised form 28 February 2019
Accepted 1 March 2019
Available online 8 March 2019
Organic anion and cation transporting proteins (OATs, OATPs, and OCTs), as well as the Multidrug and Toxin
Extrusion (MATE) transporters of the Solute Carrier (SLC) family are playing a pivotal role in the discovery and
development of new drugs due to their involvement in drug disposition, drug-drug interactions, adverse drug
effects and related toxicity. Computational methods to understand and predict clinically relevant transporter
interactions can provide useful guidance at early stages in drug discovery and design, especially if they include
contemporary data science approaches. In this review, we summarize the current state-of-the-art of computa-
tional approaches for exploring ligand interactions and selectivity for these drug (uptake) transporters. The com-
putational methods discussed here by highlighting interesting examples from the current literature are ranging
from semiautomatic data mining and integration, to ligand-based methods (such as quantitative structure-
activity relationships, and combinatorial pharmacophore modeling), and finally structure-based methods
(such as comparative modeling, molecular docking, and molecular dynamics simulations). We are focusing on
promising computational techniques such as fold-recognition methods, proteochemometric modeling or tech-
niques for enhanced sampling of protein conformations used in the context of these ADMET-relevant SLC trans-
porters with a special focus on methods useful for studying ligand selectivity.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction: Clinically Relevant Transporters of the SLC Family
and Implications in Drug Discovery

Assessing a compounds' transporter pharmacology is an established
paradigm in drug discovery and development, and efforts to document
l).

. on behalf of Research Network of Co
c-nd/4.0/).
clinically relevant interactions with transporters are systematically
undertaken since at least a decade as demonstrated by the White
Paper from the International Transporter Consortium from 2010 [111].
Such transporters broadly cover members of the ATP-binding cassette
(ABC) transporter and the solute carrier (SLC) transporter superfam-
ilies. Reviews covering the broader topic of modeling approaches on
the SLC transporters are available from Colas et al. and Schlessinger
et al. [20,102,103]. In this review, we are focusing on members of the
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Table 1
Tissue expression profiles of clinically relevant SLC transporters: predominant organs/tissues of expression are written in bold.

Human
Transporter

Tissues of predominant expression Reference

OCT1 Liver (sinusoidal membrane) Motohashi, H., & Inui, K. I. [84]. AAPS J, 15(2), 581–588.
OCT2 Kidney (basolateral membrane) Motohashi, H., & Inui, K. I. [84]. AAPS J, 15(2), 581–588.
OCT3 Placenta, testis, brain, lung, intestine etc. Motohashi, H., & Inui, K. I. [84]. AAPS J, 15(2), 581–588.
OCTN1 Kidney (brush-border membrane), skeletal muscle, etc. Motohashi, H., & Inui, K. I. [84]. AAPS J, 15(2), 581–588.
OCTN2 Kidney (brush-border membrane), liver, heart, etc. Motohashi, H., & Inui, K. I. [84]. AAPS J, 15(2), 581–588.
MATE1 Kidney (brush-border membrane), liver (canalicular membrane), muscle, etc. Motohashi, H., & Inui, K. I. [84]. AAPS J, 15(2), 581–588.
MATE2-K Kidney (brush-border membrane) Motohashi, H., & Inui, K. I. [84]. AAPS J, 15(2), 581–588.
OAT1 Kidney, skeletal muscle, brain and placenta Roth et al. [97]. Br J Pharmacol, 165(5), 1260–1287.
OAT2 Liver, kidney Roth et al. [97]. Br J Pharmacol, 165(5), 1260–1287.
OAT3 Kidney, brain Roth et al. [97]. Br J Pharmacol, 165(5), 1260–1287.
OATP1A2 Brain, small intestine, kidney, testes, lung, Liver (cholangeocytes) Roth et al. [97]. Br J Pharmacol, 165(5), 1260–1287.
OATP1B1 Liver (basolateral membrane) Roth et al. [97]. Br J Pharmacol, 165(5), 1260–1287.
OATP1B3 Liver (basolateral membrane) Roth et al. [97]. Br J Pharmacol, 165(5), 1260–1287.
OATP2B1 Liver (basolateral membrane), intestine, placenta, heart, mammary gland, brain Roth et al. [97]. Br J Pharmacol, 165(5), 1260–1287.
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SLC family which were identified to have major implications in the
pharmacokinetics of drugs. Mostly these transporters are uptake trans-
porters, only MATE1 and MATE2K - the Multidrug and Toxin Extrusion
transporters (MATEs; belonging to SLC47A subfamily) - are representa-
tives of efflux pumps that transfer substances out of cells (mainly
expressed in kidney and liver cells). The other discussed transporters
herein are uptake transporters belonging to the families of Organic
Anion Transporting Polypeptides (OATPs; SLCO), Organic Anion Trans-
porters (OATs; SLC22A), Organic Cation Transporters (OCTs; SLC22A),
and Organic Carnitine Transporters (OCTNs; SLC22A).

The tissue expression of the different SLCmembers discussed in this
review is quite heterogeneous andwas already described extensively by
others (summarized in Table 1) [84,97]. However, predominant organs
of expression include liver, kidney, and to a lesser extent intestine. Phar-
macological barriers in these organs are crucial for absorption, metabo-
lism, distribution, and excretion of drugs and any impairment in the
function of one of these transporters can therefore lead to adverse ef-
fects or toxicity by altered pharmacokinetics of the drug or food ingredi-
ent administered. For instance, treatmentwith the immunosuppressant
cyclosporine can result in statin-inducedmyopathywhen administered
at the same time since statins are known to be substrates for OATP1B1.
Inhibition of OATP1B1 by cyclosporine therefore leads to increased
plasma concentration of different statins [86].

OATP1B1 and OATP1B3 are exclusively expressed in hepatocytes.
Due to their high sequence similarity (~80%) they transport common
substrates and are inhibited by common inhibitors. Nevertheless,
there are some compounds (e.g. pitavastatin for OATP1B1 [41], chole-
cystokinin octapeptide CCK-8 for OATP1B3 [48]) which are selectively
binding to only one of the two transporters with high affinity.

OATP2B1 is ubiquitously expressed, with highest expression levels
at basolateral membranes of hepatocytes [97]. Due to its more distant
relationship to OATP1B1 and OATP1B3 (~30% sequence identity to
both), also substrate and inhibitor profiles are overlapping to a lesser
extent [55,113].

Expression of OATP1A2 in liver cells has been observed in
cholangiocytes, possibly accounting for the re-uptake of xenobiotics
from bile [67]. In addition, common expression of OATP1A2 and
OATP2B1 at the luminal membrane of intestinal absorptive cells is po-
tentially implicated in drug-food interactions [28]. Specifically, it has
been found that components of fruit juices (especially naringin) cause
the inhibition of OATP1A2, which in turn affects oral bioavailability of
fexofenadine (substrate of OATP1A2) [7].

OAT1, and OAT3 are expressed at the basolateral membrane of kid-
ney cells, pointing to their concerted interplay in the uptake of sub-
strates and related drug-drug interactions (DDIs) [16,29,44]. For
example, it has been found that probenecid inhibitsmethotrexate trans-
port by OAT1 and OAT3 [88]. OCT2 is expressed at the luminal
membrane of kidney cells [37] and its organ of highest expression is
liver (rather than kidney).

OCTN1 and OCTN2 are highly expressed in kidney as well [76,124].
OCTN1 and OCTN2 are associated with several pathologies, such as
inflammatory bowel disease, primary carnitine deficiency, diabetes,
neurological disorders, and cancer [94]. Interestingly, in case of unresec-
table gastrointestinal stromal tumors treated with imatinib therapy,
polymorphisms in OCTN1 and OCTN2 are associated with a prolonged
time to progression in GIST patients receiving imatinib therapy [4]. In a
different study, OCTN1-mediated uptake of cytarabine into tumor cells
in a cohort of acute myeloid leukemia (AML) patients could be related
to reduction in the development of resistance to chemotherapy [27].

Human MATE proteins have been shown to be widely distributed
across different body tissues, including liver, skeletal muscles, testis,
and kidney. Efflux- and uptake-activity of human MATEs have been
observed to be pH-dependent [66]. Nevertheless, in renal cells MATE1
serves as an efflux pump, mediating the transport of the substances
from kidney into urine. The OCT2-MATE1 interplay in uptaking and
effluxing compounds in the kidney shows that also little related trans-
porters can be conjointly involved in clinically relevant DDIs. MATE2-
K is the human kidney-specific MATE2 active splice variant of MATE2
[84]. In addition, the ubiquitously expressed variant of MATE, MATE2-
B, has also been detected. Nevertheless, this variant probably does not
have any functional activity [76].

For being able to assess a compounds' risk to interact with any of
these ADMET-relevant transporters, having predictive in silico models
for all of them at handwould be useful at an early stage in the drug dis-
covery pipeline. As will be discussed in the following sections, such ef-
forts are complicated by limitations in data availability in the domain
of ADMET-relevant SLC transporters. Other challenges include the over-
lapping substrate or inhibitor specificities across these transporters
which are arising from the promiscuous nature of these proteins
[111], as well as from the substrate/inhibitor promiscuity.

In this review article, data science and computational modeling ap-
proaches for unravelling ligand-transporter interactions for the impor-
tant class of clinically relevant SLC transporters are discussed. In
chapter 2, a general overview on important ligand- and structure-
based modeling methods which are traditionally being used in
computer-aided drug discovery is provided. Next, challenges arising
from data sparseness on both the ligand and protein side in the field
of clinically relevant SLC transporters are discussed (chapter 3).
Chapter 4 is providing more details about different ligand-based (LB)
and structure-based (SB) modeling methods that have been used in
the context of clinically relevant SLC transporters and discusses insights
that were delivered by the different studies. The emphasis is further put
on the combination of LB and SB methods to provide a more compre-
hensive picture of ligand recognition. In chapter 5, studies and different
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methods providing insights into transporter selectivity are highlighted.
Finally, the challenge of including information on transporter flexibility
into the SB-modeling procedure is discussed (chapter 6) and some re-
cent developments in the field are highlighted (such as the use of elastic
network models for conformational sampling). In conclusion, a compu-
tational workflow for studying ligand interactions with clinically rele-
vant SCL transporters is proposed, interconnecting ligand data
integration, data curation and analysis, as well as LB and SB modeling
techniques in order to come up with binding mode hypotheses.

2. Molecular Modeling Approaches at a Glance

Computational approaches have become a standard paradigm in
area of preclinical drug discovery [78]. Molecular modeling is an inter-
disciplinary field that incorporates theoretical concepts and efficient
computational algorithms to study chemical phenomena [65]. The
main idea is to use approximative mathematical models while being
able to predict behaviour of chemical systems as closely as possible
[129]. In the field of computer-aided drug design (CADD), molecular
modeling methods are generally divided into two categories:
(1) Ligand-based (LB) and (2) Structure-based (SB) modeling. LB
modeling is also known as ‘indirect drug design’, since in the modeling
approach protein information is not taken into account. On the other
hand, SB molecular modeling techniques enable to study protein-
ligand complexes at the molecular level. SB drug design is also termed
‘direct drug design’ since in these cases 3D information of the target pro-
tein or a structuralmodel built on basis of (phylogenetically or structur-
ally) a related protein template is included into the modeling process.

In terms of LBmodeling, a systemof interest is representedmostly as
a statistical model incorporating knowledge on the associated
compounds (substrate or inhibitor data) possessing experimentally
determined activities against a particular target. Compound series can
be used to derive an abstract representation of important molecular
features being crucial for a binding event. This approach is known as
LB pharmacophore modeling and it is especially useful to overcome
difficulties in aligning and searching for structurally little related
compounds which persist similar in terms of chemical features
(so-called “scaffold-hopping” concept) [45,128]. Another widely used
approach is Quantitative Structure-Activity Relationship (QSAR) which
is based on correlating physico-chemical properties (or other represen-
tations of the chemical structure, such as molecular fingerprints of
compounds) to their biological activity [23]. QSARmodeling and related
qualitative approaches (such as binary classification models) have
currently become especially popular due to the observed increase of
the deployment of machine learning and deep learning algorithms in
CADD. Especially classification models (models being trained to distin-
guish compounds into e.g. ‘active’ and ‘inactive’ class) can subsequently
be used for virtual screening of chemical databases with the aim to
detect new (potentially active) compounds. Qualitative models can
also aid in the interpretation of ligand profiles which might trigger a
compound's activity against a particular target [113]. Beyond the
conventional SAR techniques, 3D-QSAR modeling provides a natural
extension to the classical QSAR formalism by superimposing 3D ligand
structures to retrieve 3D-based ligand features [116].

SB molecular modeling approaches are significantly hampered by
the limited number of experimentally resolved structures for mem-
brane transporters. So far (updated on January 2019), the number of
the available crystal structures for membrane proteins in Protein Data
Bank (PDB) did not exceed ~3,5% of all deposited entries. Such a small
fraction of resolvedmembrane proteins is primarily caused by problems
when overexpressing membrane proteins in bacteria [101], as well as
by the obstacles accompanying crystallization of membrane proteins
[89]. These include, for example, finding optimal conditions for crystal-
lization [87], as well as difficulties to account for a membrane-like
environment which in turn is being crucial for crystallizing the native
form of membrane proteins. However, substantial progress has been
made by e.g. improving protein engineering to increase the stability of
a protein of interest [110]. The latter issue is commonly solved by
using micelle detergents to solubilize membrane proteins for purifica-
tion purposes [106]. Except for X-ray crystallization, solid-state NMR
techniques can be used to resolve structure of membrane proteins
[63]. In this methodology, membrane nanodiscs have successfully
been applied as membrane-mimetics [98]. If the crystal, NMR, or
recently also Cryo-EM structure of a respective target is not available,
3D structural models can be built “from scratch” upon basic thermody-
namic principles [39]. These methods are known as ab initio (de novo)
structural predictions and are rather rarely used,mainly due to the chal-
lenges to efficiently sample thewhole conformational space at a feasible
time scale [51]. Inmost of the cases, 3D structuralmodels are created on
basis of sequence-homologous proteinswith known structure (“homol-
ogy modeling” [52]), or more evolutionary distant proteins with
conserved fold (“fold-recognition methods” or “protein threading”
[75]). Fitting of a target sequence onto the 3D coordinates of a
sequentially- or structurally- related protein (“template”) is further
accompanied by a global geometry optimization to satisfy structural
restraints imposed by internal coordinates, as well as local optimization
to remove steric clashes and/or reduce the noise caused by poorly
modeled side chain rotamers [62,99,119]. This procedure is commonly
applicable for the transmembrane core of membrane proteins. How-
ever, it might not be sufficient for modeling intra- and extra-cellular
domains, which are mostly consisting of large loop regions [32]. Loop
modeling is a non-trivial step in protein structure prediction, since the
loops are intrinsically disordered regions, often requiring enhanced
conformational sampling [33]. In addition, loops are usually indetermi-
nate parts in the crystallization process due to their high conformational
flexibility and thus low electron density in X-ray diffraction patterns.
Homology modeling is subsequently limited by incomplete sequence
alignment because of missing loop regions. Modeling of extremely
short segments (b3 amino acids) can be satisfied by geometrical
constraints of their bond lengths and angles. Template-based loop
construction by using a database of known structural fragments (not
necessarily with identical sequence) is a common modeling approach
for medium-size loops (~10 amino acids). In general, energy minimiza-
tion combined with MD and simulated annealing is advisable to refine
modeled loops. For longer loops (~25 amino acids), de novo coarse
grained modeling methods (employing e.g. united residue models)
have successfully been applied [49].

Furthermore, molecular dynamics (MD) simulations with enhanced
sampling techniques can additionally be integrated to the 3D model
building procedure especially to refine low-confidence regions, such
as flexible loops (as discussed above) and less structurally-conserved
parts of the protein [34]. When performing MD simulations on mem-
brane proteins, one should also account for the substantial role of phos-
pholipid membranes which spatially restrain a protein's 3D structure
[82]. The computationally less demanding approach is to treat mem-
brane environment as a mean-field continuum model which replaces
explicit protein-lipid interactions by effective interactions being a priori
included in force-field parameters of a membrane-protein system [31].
These approaches have becomeparticularly useful for the simulations of
large time scale events, such as protein folding, albeit for the cost of
lacking all-atom representation of a simulated system. The lack of
high-resolution accuracy by using implicit membrane models can be
corrected by the explicit representation of lipid bilayers in the simula-
tion box. However, running MD simulations with explicit lipid bilayers
might be unfeasible for biologically relevant time scales.

Quality assessment of 3D protein models is required to distinguish
the native protein structure from the physically non-relevant states
[40]. For this purpose, several scoring functions, including statistics-
based, knowledge-based, physics-based, or their combinations, have
been developed. To give an example, ProQM is a statistics-(learning-)
based method using Support Vector Machines (SVM) models which
are trained on the known structures to predict correct structural
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features of membrane proteins, such as membrane topology or con-
served structural motifs [95]. Another example is C-score which esti-
mates the confidence of target-template alignments based on the fold-
recognition methods [127]. TM-score function is a metric of 3D similar-
ity between two proteins when performing structural alignment [131].

The next step in SB modeling is to apply docking algorithms to iter-
atively search for preferred orientations of a ligand molecule relatively
to the protein binding site(s) [68]. Subsequently, protein-ligand com-
plexes can be ranked on basis of scoring functions (knowledge-based
[85], physics/forcefield-based [35],machine-learning [2], and/or empir-
ical [12]), estimating the likelihood of all possible binding poseswith re-
spect to the energetically (un)favorable intermolecular interactions.
Molecular docking can be performed by using different strategies, rang-
ing from rigid docking, where the protein structure is kept fixed and
only the ligand's conformational space is explored [9], to induced-fit
docking, where the protein local backbone movements are allowed to
adjust the proper ligand-protein binding pose [117].More sophisticated
and computationally demanding methods are treating the whole pro-
tein structure as flexible [123]. Docking screens are typically evaluated
on basis of score accuracy (by comparing thepredicted binding affinities
to the experimental ones, if available [8]), enrichment factor (by
checking if the docking screens are able to discriminate between
known actives and known inactives/decoys [46]), or on basis of pro-
spective validation (by measuring e.g. IC50 values [47]). Traditional
docking approaches can be complemented by more accurate free en-
ergy calculations not only to estimate absolute free energy of binding
[24], but also to study ligand selectivity profiles [3]. Approximations of
binding free energies are given by methods like MM/GBSA (Molecular
Mechanics/Generalized Born Surface Area), as originally described by
Kollman et al. [59]. However, free energy perturbation (FEP) provides
better estimates of free energy of ligand binding, and it offers the possi-
bility to directly evaluate the impact ofmutated functional groups of the
ligand from the energetic point of view [118]. On the protein side, bio-
chemical mutational studies can be informed by docking exercises and
vice versa as demonstrated for the interleukin 8-gene [22].

Following the same strategy as in case of LB pharmacophores, SB
pharmacophore models can be created upon projection of the
important pharmacophoric features of a target-ligand complex to an ab-
stract representation [107]. In the recent past, new techniques combin-
ing LB and SB approaches have become popular. For example,
proteochemometric modeling (PCM) can outperform traditional QSAR
modeling by simultaneous evaluation of the similarity of ligands and
targets [115]. The great advantage here is the possibility to extrapolate
the activities of known ligands against known targets to novel targets
without knowing their 3D structure.

3. Data Sparseness as a Major Challenge in Computer-aided Drug
Discovery & Implications to the Exploration of Uptake Transporters

Chapter2 provides on overview of main computational techniques
which are traditionally being used in the drug discovery pipeline.
When it comes to investigations on clinically relevant SLC trans-
porters, however, the direct application of above-mentioned methods
is far from being trivial. The main obstacle hampering computational
studies is caused by data sparseness on both ligand and protein levels
in the domain of uptake transporters. In addition, the promiscuous na-
ture of uptake transporters being able to bind both endogenous com-
pounds and xenobiotics [56], considerable transporter flexibility
which accompanies translocation processes (such as “rocker-switch”
mechanism as proposed for Major Facilitator Superfamily members)
[120], as well as the likely existence of multiple binding sites
[43,70,74,125], turns all modeling efforts into even more challenging
tasks.

From a ligand's perspective, modeling studies are strongly impeded
by the inconsistent and mostly insufficient number of high-quality bio-
activity data which is spread over different data sources in the open
domain. For LB studies on uptake transporters, single-point percentage
inhibition data has often become the only source for QSAR modeling
[1,14,19,55,58,60,122]. Such models trained on single-point inhibition
data can achieve high accuracies, particularly if the measurements
were retrieved following the same experimental protocols, as demon-
strated by e.g. the classification models by Karlgren et al. [55] (with ac-
curacies between 73% and 92% for the different models). However, even
in the case of almost identical assay protocols, other parameters such as
the substrate concentration might to a significant extent change the
final value of the read out (e.g. percentage inhibition value). In case of
the studies by Ahlin et al. [1] and Chen et al. [19] which both measured
reuptake inhibition for OCT1 inhibitors by using the same probe sub-
strate (4–4-dimethylaminostyryl-N-methylpyridinium, abbreviated as
ASP+), a different substrate concentration (2 μM in Chen et al. and 1
μM in Ahlin et al., respectively) as well as inhibitor concentration (20
μM in Chen et al. and 50 μM in Ahlin et al.) led to a percentage of around
14% of all overlapping compounds (measured in both papers) being dif-
ferently classified by the different studies (by using a cutoff of 50%). Ob-
viously, the study by Chen et al. was much more rigorous in assigning
the label “inhibitor”, since many conflicting annotations with Ahlin
et al. turned out to be rather false negatives (data not shown).

In most of these cases, the activity cut-off for binary classification
into actives and inactives was set to 50% [1,19,55,60,122]. In some stud-
ies, however, the authors appliedmore stringent activity criteria for set-
ting a treshold by removing weak actives from the data set, e.g. in the
study by van de Steeg et al. [114]. Here, the activity cut-off for
OATP1B1 inhibitors was defined as ≥ 60%, while OATP1B1 non-
inhibitors were defined as ≤ 40%. It concludes that all “grey zone” data
points (the weak actives) in the range (40;60) were excluded from
the dataset. On one hand, removal of weak actives can be beneficial to
reduce the noise caused by the variations in the experimental measure-
ments [114]. On the other hand, complete exclusion of weak actives
might decrease the applicability domain of such models, e.g. when
attempting to predict the activity of compounds which are structurally
closely related to those from the “grey zone”. For establishing LB
pharmacophore models for MATE1 [126] and OCT2 inhibitors [125],
classification of inhibition/substrate data into binary classes was done
viamanual literature searcheswith the aim to extract recommended ac-
tivity thresholds proposed by the authors of primary literature sources.
For deciding upon the cutoffs for percentage inhibition data in order to
generate predictive classification models for OATP1B1, OATP1B3, and
OATP2B1 inhibition from diverse data source we have chosen the
same strategy [113].

Structurally and pharmacologically distinct compounds can also be
partitioned into discrete clusters based on their molecular features, as
applied for e.g. the classification of OCT2 inhibitors/non-inhibitors
[58]. After the clustering step, different activity cut-offs (inhibitory ef-
fect ≥ 50% or ≥75%) were probed to examine which clusters contained
thehighest fraction of the inhibitors based on the applied cut-off. Specif-
ically, by applying the more stringent cut-off (≥ 75%) the inhibition pat-
terns of identified clusters became more pronounced. Distinct OCT2
clusters were subsequently used for deriving several independent SAR
analyses to explain complementary inhibitory mechanisms of OCT2
inhibitors.

Full dose-response curve data has been exploited to much lesser ex-
tent. Examples include IC50 measurements for LB studies on MATE1,
MATE2-K [5], and OCT2 [122], Km values for OATP1B1 substrate
pharmacophore models [17], as well as Ki values for pharmacophore
modeling of OCT2 stereoselective binding [79].

If the amount of bioactivity data is not sufficient for model develop-
ment, direct usage of categorical annotations, such as “substrate”,
“non-substrate”, “inhibitor”, or “non-inhibitor”, can be applied. For this
purpose, Drugbank (containing a collection of marketed or
FDA-approved drugs [121]), or Metrabase (primarily containing
substrates for OCT1, OATP1A2, OATP1B1, OATP1B3, and OATP2B1
[72]) can serve as rich, open sources for LB modeling. For example,



Table 2
Number of unique compounds/bioactivities from open domain databases. In case of Metrabase and IUPHAR, only numerical bioactivity values have been extracted from the data bases
(categorical annotations were discarded).

Transporter UNIPROT ID CHEMBL Metrabase IUPHAR Transportal Total number of unique compounds

OCT1 O15245 290/437 230/607 1/1 44/86 307
OCT2 O15244 126/221 No entries 1/1 67/120 144
OCT3 O75751 37/44 No entries 1/1 28/44 54
OCTN1 Q9H015 26/33 No entries No entries 11/20 26
OCTN2 O76082 67/96 No entries No entries 6/10 68
MATE1 Q96FL8 70/139 No entries 3/4 31/55 86
MATE2-K Q86VL8 44/55 No entries 3/4 23/46 60
OAT1 Q4U2R8 111/205 No entries 1/1 74/132 123
OAT2 Q9Y694 32/39 No entries No entries 32/39 50
OAT3 Q8TCC7 113/180 No entries No entries 68/102 131
OATP1B1 Q9Y6L6 1993/2566 307/752 1/1 61/139 2052
OATP1B3 Q9NPD5 1972/2469 249/408 3/3 45/95 2015
OATP1A2 P46721 70/100 54/96 2/2 17/24 75
OATP2B1 O94956 252/392 232/461 0/0 21/46 294

Table 3
Number of unique compounds with categorigal activity annotations from the open
domain.

Transporter UNIPROT
ID

Metrabase Drugbank Total number of
unique
compounds

OCT1 O15245 504 69 470
OCT2 O15244 No entries 56 56
OCT3 O75751 No entries 29 29
OCTN1 Q9H015 No entries 27 27
OCTN2 O76082 No entries 54 54
MATE1 Q96FL8 No entries 6 6
MATE2-K Q86VL8 No entries 1 1
OAT1 Q4U2R8 No entries 111 111
OAT2 Q9Y694 No entries 36 36
OAT3 Q8TCC7 No entries 77 77
OATP1B1 Q9Y6L6 375 75 385
OATP1B3 Q9NPD5 338 44 345
OATP1A2 P46721 111 61 107
OATP2B1 O94956 352 33 338
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substrate annotations from Metrabase were retrieved for QSAR and
PCM modeling to predict OCT1, OATP1A2, OATP1B1, OATP1B3, and
OATP2B1 substrates [104]. It has to be pointed out, that using manual
activity annotations for binary classification modeling seems to be
quite error-prone since it is not clear how data curators decided upon
assignment of activity annotations in certain cases. As demonstrated
in our current LB studies on hepatic OATPs [113], an extensive compar-
ison of Metrabase annotations for OATP1B1, OATP1B3, and OATP2B1
(non-)substrates and (non-)inhibitors with numerical bioactivity
measurements from CHEMBL revealed activity misclassifications for
Metrabase data up to 74%. On the other hand, categorical annotations
can still be utilized in developing accurate computational models
when e.g. performing selective fusion of more independent classifiers
and therefore increasing the confidence in the model's predictability
[104].

With increasing efforts of making bioactivity data publicly avail-
able to the scientific community, new challenges are arising. Nowa-
days, it is no longer only access to data but the proper usage of data
which can provide a competitive advantage in drug discovery. Finally,
filtering out high-quality data is essential as well as making use of the
possibilities to interconnect different types of data, including data
originating from diverse sources. In the light of those efforts, data an-
alytics platforms for creating automated data workflows, such as the
Konstanz Information Miner (KNIME [11]) or Pipeline Pilot [108],
have become particularly useful. Notably, integrative data mining
(i.e., data fusion from different sources) can enrich existing data sets
by not only the size in enumerated compounds, but also by obtaining
novel scaffolds which can lead to an expansion of the available chem-
ical space as demonstrated recently for hepatic OATPs [113]. More-
over, merging data from multiple independent bioactivity
measurements (Km, IC50, EC50, Ki, percentage inhibition data) for a
single compound can significantly increase the confidence of bioactiv-
ity data. When it comes to QSAR modeling, it is usually not recom-
mended to mix compound data originating from different bioactivity
end-points [53,61]. On the other hand, binary classification (e.g. sepa-
rating substrates from non-substrates) should be independent from a
certain assay or experimental protocol used [80]. Another benefit
when considering multiple bioactivity measurements is the ability to
rationally decide upon activity thresholds for binary label assignment
(e.g. active/inactive) by studying the distribution of bioactivities
within the data set [113].

As recently demonstrated [113], above mentioned pipelining tools
are quite handy for semi-automatically fetching ligand data from dif-
ferent open data sources, such as CHEMBL [10], UCSF-FDA Transportal
[83], IUPHAR [90], and Drugbank [121] and Metrabase [72]. It has to
be emphasized that ligand data originating from different sources
might be highly inconsistent with respect to their structural format
used. To overcome this issue, applying a standardization protocol, as
e.g. by Atkinson (available at https://wwwdev.ebi.ac.uk/chembl/
extra/francis/standardiser/), has proven to be useful for mapping
data from different sources.

From Table 2 and Table 3 it becomes clear that themost comprehen-
sive data set is currently available for OATP1B1 and OATP1B3, with
CHEMBL being detected as the most prominent source (1993 and
1972 unique compounds, respectively). This trend is reflected by the
high number of LB modeling studies with a special focus on OATP1B1:
QSAR/classification models [6,54,55,60,104,105,113,114], PCM
[14,104], and LB pharmacophore model [17].

In addition to this quite restricted availability of compound bioactiv-
ity data for uptake transporters which limits over all the applicability
domain of respective LB models, SB modeling efforts are strongly im-
peded by the lack of crystal structures in this domain. Only MATE1 bac-
terial templates are available (NorM from Vibrio cholera21, pdb id:
3mkt; pfMATE from Pyrococcus furiosus, pdb id: 3vvn). Both of the
available crystal structures share approximately 24% identity with
human MATE1. Except for this case, there are no available homologs
for the other clinically relevant SLC transporters. These drawbacks can
be diminished by the use of fold-recognition methods to search for
structurally related analogueswith conserved fold. The rationale behind
is that a protein's secondary structure should have been conserved to a
higher extent during evolution than its amino acid sequence [52]. An
overview of available crystal structures which were predicted as poten-
tially useful templates for SB modeling of ADMET relevant SLC trans-
porters is provided in Fig. 1. Predictions were performed by using
pGenThreader prediction server [71]. It appears interesting that all pre-
dicted templates (except for chain L from respiratory complex I) belong
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Fig. 1. Predicted structural templates for ADMET relevant SLC transporters by using pGenThreader (p b 0.001). Templates already used in structure-basedmodeling for a respective uptake
transporter are indicated by a green check mark.
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to the Major Facilitator Superfamily (MFS) [92]. All protein structures
are built up of twelve transmembrane helices. It is interesting to
note that sequence similarity among discussed transporters and the
detected template structures is generally rather low (10–25%),
which obviously slowed down the generation of comparative models
on basis of these templates compared to other protein families (num-
bers of published studies per year including comparative modeling for
clinically relevant SLC transporters is depicted in Fig. 2). As visible
from Fig. 1, different templates are reflecting different functional
states of the transporters (inward-open, occluded, outward-open).
Out of these templates, Glycerol-3-Phosphate transporter (pdb id:
1pw4) was the most abundantly used template, specifically for build-
ing computational models for OATP1B1 [69], OATP1B3 [36,73,77],
OATP2B1 [57,77], OAT1 [93,112], and OCT1 [13]. The popularity of
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Glycerol-3-Phosphate transporter as a structural template for this
class of transporters can mainly be attributed to the fact that it ap-
peared as the first available template in 2003.

4. Linking Ligand- and Structure-Based Modeling Methods for
Studying Uptake Transporters

Natural increase in available ligand bioactivity data and structural
templates also led to an increase of published computational studies
on clinically relevant SLC transporters over the years. Fig. 2 shows the
time evolution of different computational methods that have been
used in the context of uptake transporter modeling. In general, we can
observe an increase in in silico studies over the years for both LB and
SB approaches. Both approaches have been used early on and we can
observe peaks in the emergence of QSAR/classification models and
new homology models in 2011/12. In 2017, one publication reported
the establishment of new comparative models for OCT1, OCT2, OCT3,
OCTN1, and OCTN2, which is also visible as a peak from Fig. 2. Interest-
ingly, MD simulations were integrated only twice into the process of
clinically relevant SLC transporter modeling, namely for OAT1 and
MATE1 (in 2011/12). With the recent increase in available comparative
models for uptake transporters, a revival of MD-based methods can be
expected especially for performing enhanced conformational sampling
of distinct transporter states in the future (see also chapter 5). Naturally,
studies including PCMmodeling appeared later in literature, since they
incorporate information from the ligand and protein side. Thus, for such
a technique to be effective it requires aminimum amount of ligand data
and ideally knowledge on potential protein binding sites.

Also, from a static perspective, LB and SBmethods have been used to
approximately the same extend (e.g. 26 studies on QSAR/classification
modeling; 26 studies including comparative modeling). If a fair amount
of compound bioactivity data for a particular transporter is available (at
least a few hundred unique compounds), LB approaches can deliver
quicker and more comprehensive insights into important molecular
features driving compound affinity towards a particular target than SB
approaches. On the other hand, traditional SAR-based methods do not
account for the hypothetical presence of distinct binding sites. Such
drawbacks can be diminished by sub-structural pattern analyses such
as studying pharmacological profiles of enriched scaffolds in the data
set. The hereby retrieved congeneric SAR series are likely to interact
with the same binding pocket and differences in pharmacological activ-
ities are likely triggered by subtle modifications at the side chain level
[113]. Thus, such compound series are useful collections for subsequent
structure-based docking studies.

In addition, LB pharmacophore models can be useful in detecting
important pharmacophoric ligand features which can complement
SB docking studies into comparative models. An interesting
pharmacophore-based modeling approach where in vitro and in silico
(‘IVIS’) methods are combined has been adopted by Diao et al. to map
pharmacophoric features of human OCTN2 inhibitors [25,26]. This
methodology has subsequently been used also by Astorga et al. to
study the inhibitory profiles of human MATE1 [5]. Specifically, the
IVIS procedure aims to iteratively build 3D-pharmacophore models,
further used for database screening and subsequent experimental
testing of new hits. Afterwards, high-affinity detected compounds
are used to rebuild initial pharmacophore hypotheses to perform an-
other round of database screening, and so on. For human MATE1 in-
hibitors, a common-features pharmacophore has initially been
developed by merging pharmacophoric features of both high- and
low-affinity MATE1 inhibitors [25]. The aim of mixing high- and
low-affinity compounds for building a single pharmacophore model
is to detect the minimal essential properties which are crucial
for the effective interaction with MATE1. The iterative procedure has
finally led to a pharmacophore with two hydrophobic features, one
H-bond acceptor and one ionizable (cationic) feature. It is noteworthy
to mention that the generation of quantitative pharmacophores
has been strongly dependent on the probe substrates used in
the in vitro measurements. Specifically, when using 4-4-
dimethylaminostyryl-N-methyl-pyridinium instead of 1-methyl-4-
phenylpyridinium, the final pharmacophore model was composed of
three hydrophobic features, two H-bond acceptors, and three ex-
cluded volumes, spatially arranged in strikingly different configuration
from the original one. These findings suggest that human MATEs
might contain multiple substrate (and potentially inhibitor) binding
sites. Therefore, for developing a complete computational model of
MATE inhibitory mechanisms it would be required to build up multi-
ple pharmacophore models per distinct binding site. For OCTN2 inhib-
itors, the common pharmacophore model revealed three hydrophobic



Table 4
List of available ligand- and structure-based molecular modeling studies on uptake transporters discussed in this review.

Paper Transporter Method Description Results

Tanihara et al.[132] MATE1 Binary classification modeling Identification of key features for inhibitory
mechanism

Cationic charge is crucial for MATE1 inhibition.

Diao et al. [25] MATE1 Bayesian machine learning
modeling

Identification of key features for inhibitory
mechanism

Six-membered rings including nitrogen are important
for MATE1 inhibition.

Astorga et al. [5] MATE1 IVIS pharmacophore modeling Iterative identification of new MATE1
inhibitors by using pharmacophore-based
virtual screening

Two hydrophobic features, H-bond acceptor and
cationic feature have occurred in final pharmacophore
model for MATE1.

Zhang et al. [130] MATE1 Structural model building,
molecular dynamics
simulation

Topology of human MATE1 transporter,
stability of constructed structural model

Human MATE1 transporter consists of 12 TM which
have a functional role; 13th TM is not required for the
transport.

Wittwer et al. [122] MATE1 Binary classification modeling Identification of key features for inhibitory
mechanism

Cationic charge, molecular weight, and lipophilicity
are important features for MATE1 inhibition.

Xu et al. [126] MATE1 Combinatorial
pharmacophore modeling

Studying multiple inhibitory mechanisms of
MATE1 inhibitors

Four different binding sites (two competitive, one
non-competitive and one mixed inhibition binding
site) were identified for MATE1.

Xu et al. [126] MATE1 Structural model building,
molecular docking

Elucidate the evidence of multiple binding
sites from combinatorial pharmacophore
model

Four different binding sites (two competitive, one
non-competitive and one mixed inhibition binding
site) were identified for MATE1.

Astorga et al. [5] MATE2-K IVIS pharmacophore modeling Iterative identification of new MATE2-K
inhibitors by using pharmacophore-based
virtual screening

Two hydrophobic features, H-bond acceptor and
cationic feature have occurred in final pharmacophore
model.

Perry et al. [93] OAT1 Structural model building Identification of critical residues important
for OAT1 transport function

Importance of aromatic amino acid at at position 230
has been discovered.

Truong et al. [133] OAT1,
OAT3

QSAR modeling Comparison of interactions of antiviral drugs
with OAT1 versus OAT3

Number of H-bond donors (alcohols and amides) and
total polar surface area have triggered a preferred
inhibitory activity towards OAT1.

Tsigelny et al. [112] OAT1 Molecular dynamics
simulation

Investigations of dynamics events
accompanying OAT1 transport

Tilting mechanism of two hemi-domains is crucial for
the initialization of transport process.

Soars et al. [134] OAT1,
OAT3

QSAR modeling Comparison of inhibitor features between
OAT1 and OAT3

OAT1 and OAT3 inhibitors have statistically significant
inhibitory profiles.

Bednarczyk et al. [135] OCT1 LB pharmacophore modeling Identification of important pharmacophoric
features for OCT1 inhibition

Three hydrophobic and one positive ionizable feature
are important features for OCT1 inhibition.

Moaddel et al. [79] OCT1 LB pharmacophore modeling Studying stereroselective recognition of
OCT1 transporters

One positive ionizable feature, one hydrophobic, and
two H-bond acceptor features are important for OCT1
inhibition.

Ahlin et al. [1] OCT1 QSAR modeling Identification of molecular features being
important for inhibitory activity

H-bond donors, lipophilicity, cationic charge
positively correlate with OCT1 inhibition.

Badolo et al. [6] OCT1 QSAR modeling Identification of molecular features being
important for inhibitory activity

Topological polar surface area negatively correlates
with OCT1 inhibition.

Shaikh et al. [104] OCT1,
OATP1B1,
OATP1B3,
OATP2B1

QSAR/PCM modeling,
substructural analysis

Identification of important molecular
features and structural fragments for
substrate activity against reported
transporters

Developed models were used for prediction of
substrate propensity for blood-brain barrier
transporters.

Dakal et al. [22] OCT1,
OCT2,
OCT3,
OCTN1,
OCTN2

Structural model building Multiscale structural models construction for
OCT transporters

Constructed structural models for OCTs share close
structural similarity with GLUT3 transporter (pdb id:
5c65).

Chen et al. [19] OCT1 Structural model building,
molecular docking

Identification of critical residues important
for OCT1 activity; virtual screening for sake of
detecting new OCT1 inhibitors

D474 is important for ligand binding; detection of two
distinct binding sites in translocation channel.

Boxberger et al. [13] OCT1 Structural model building,
molecular docking

Identification of critical residues important
for OCT1 activity

Identification of three distinct binding sites based on
the presence of critical residues (W218, Y222, T226,
I443, I447, Q475).

Kido et al. [58] OCT2 QSAR modeling Identiffication of molecular determinants for
OCT2 inhibitors

Suggestion of multiple binding sites for OCT2
transporter.

Suhre et al. [136] OCT2 2D-QSAR modeling,
Comparative Molecular Field
Analysis (CoMFA)

Identification of molecular determinants of
OCT2 substrates and inhibitors

Hydrophobicity, steric factor, and number of rotatable
bonds were identified as important features for OCT2
inhibition.

Wittwer et al. [122] OCT2 QSAR modeling Identification of molecular determinants of
OCT2 inhibitors

Occurrence of both zwitterionic and basic functional
groups is important for OCT2 inhibition.

Xu et al. [125] OCT2 Combinatorial
pharmacophore modeling

Studying multiple inhibitory mechanism of
OCT2 inhibitors

Four distinct pharmacophore hypotheses,
corresponding to the competitive inhibition (one
hypothesis), non-competitive inhibition by occlusion
(two hypotheses), and one mixed inhibition pattern,
have been identified for OCT2 inhibitors.

Diao et al. [26] OCTN2 IVIS pharmacophore modeling Iterative identification of new OCTN2
inhibitors by using pharmacophore-based
virtual screening

Three hydrophobic and one positive ionizable feature
are important for OCTN2 inhibition.

Diao et al. [25] OCTN2 IVIS pharmacophore
modeling, Bayesian modeling

Iterative identification of new OCTN2
inhibitors by using pharmacophore-based
virtual screening

Two hydrophobic features, one H-bond donor, and
positive ionizable feature are important for OCTN2
inhibitors; aromatic and tertiary-amine groups have
also been detected via Bayesian modeling.

Mandery et al. [73] OATP1A2, Structural models Comparison of structural determinants for K361 and K399 are highly conserved residues across

(continued on next page)
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Table 4 (continued)

Paper Transporter Method Description Results

OATP1B3,
OATP2B1

construction ligand activity among OATP family OATP family; K361 is pointing towards the
translocation pore; variable loop located within a
translocation pore differs in terms of crucial residues
for respective targets (R58 and S62 in OATP1B3, Q58
and P62 in OATP1A2, and S64 in OATP2B1).

Chang [17] OATP1B1 LB pharmacophore modeling Detection of pharmacophoric features for
OATP1B1 substrates

Two H-bond acceptors and two or three hydrophobic
features are important for OATP1B1 substrates.

Badolo et al. [6] OATP1B1,
OATP1B3

QSAR modeling Identification of molecular features being
important for OATP1B1/1B3 inhibition

Lipophilicity, polarity, lower base pKa, higher number
of H-bond acceptors, and higher molecular weight
correlate with OATP1B inhibition.

Soars et al. [105] OATP1B1 QSAR modeling Identification of molecular features being
important for OATP1B1 inhibition

Low number of aromatic bonds (b7), lipophilicity, and
hydrogen-bonding potential are important for
OATP1B1 inhibition.

Karlgren et al. [54] OATP1B1 QSAR modeling Virtual screening for detecting new OATP1B1
inhibitors

Lipophilicity, larger molecular weight, larger polar
surface area

Karlgren et al. [55] OATP1B1,
OATP1B3,
OATP2B1

QSAR modeling Comparison of molecular determinants for
ligand activity among hepatic OATPs

Lipophilicity and polar surface area are general
features for OATP inhibition; OATP2B1 inhibitors are
less dependent on polarity than OATP1B1/1B3
inhibitors.

Van de Steeg et al. [114] OATP1B1 Bayesian modeling Identification of molecular features being
important for OATP1B1 inhibition

Conjugated-bond systems, (hetero)cycles with
acceptor/donor atoms inside or outside the rings,
molecular weight, molecular surface area,
lipophilicity, number of rings, number of rotatable
bonds, number of H-bond acceptors are important for
OATP1B1 inhibition.

Bruyn et al. [14] OATP1B1,
OATP1B3

PCM modeling Comparison of molecular determinants for
ligand activity for OATP1B1 and OATP1B3
transporter

Lipophilicity, absence of cationic charge, number of
ringbonds, presence of an anionic functional group,
molecular volume, and substantial number of H-bond
acceptors are important for general OATP1B
inhibition; low number of aromatic bonds correlates
with OATP1B1 inhibition, whereas higher lipophilicity
and moderate number of H-bond donors corresponds
with OATP1B3 inhibition.

Kotsampasakou et al.
[60]

OATP1B1,
OATP1B3

QSAR modeling Comparison of molecular determinants for
ligand activity for OATP1B1 and OATP1B3
transporters; virtual screening to search for
new OATP1B ligands

Number of H-bond donors and acceptors, LogP,
molecular refractivity, topological surface area,
molecular weight, number of rotatable bonds,
topological radius, topological diameter, topological
shape, global topological charge index, have been
used to develop models for OATP1B1 and OATP1B3.

Türkova et al. [113] OATP1B1,
OATP1B3,
OATP2B1

Substructural analysis, QSAR
modeling

Comparison of molecular determinants for
ligand activity among hepatic OATPs

Lipophilicity, molecular weight, number of atoms,
molecular refractivity, and flexibility are important
features for general OATP inhibition; OATP2B1
inhibitors tend to be more planar than OATP1B1/1B3
inhibitors.

Li et al. [69] OATP1B1 Structural model construction,
molecular docking

Exploring the importance of selected amino
acids from TM2 on the uptake of
Estrone-3-sulphate

D70 and F73 are involved in the interaction with
substrates; two distinct binding sites (low- and high-
affinity site) for Estrone-3-sulphate have been
identified.

Hong et al. [137] OATP1B1 Structural model construction,
molecular docking

Exploring the importance of selected amino
acids from TM11 on the uptake of prototypic
substrates

Importance of negative charge at position 596 for
OATP1B1 uptake.

Glaeser et al., [36] OATP1B3 Structural model
construction,molecular
docking

Identification of important amino acids on
OATP1B3 transport function

Importance of positive charge at position 41,
importance of R580 residue on OATP1B3 transport.

Meier-Abt et al. [77] OATP1B3,
OATP2B1

Structural model construction,
molecular docking

Comparison of important amino acids on
OATP1B3 and OATP2B1 transport function

R181 might contribute to the OATP1B substrate
specificity, while H579 is hypothesized to be crucial
for OATP2B family; conservation of H-bonds patterns,
as well as helix-breaking residues (proline and
glycine patterns), have also been detected.

Gui and Hagenbuch [38] OATP1B1,
OATP1B3

Structural model construction,
molecular docking

Comparison of important amino acids on
OATP1B1 and OATP2B1 transport function

TM10 is pronounced to drive the differences between
OATP1B1 and OATP1B3.

Khuri et al. [57] OATP2B1 Structural model construction,
molecular docking, QSAR
modeling

Identification of molecular features being
important for OATP2B1 inhibition; virtual
screening for new OATP2B1 inhibitors

OATP2B1 inhibitors are lipophilic.
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features and one positive ionizable feature [26]. This IVIS-based
pharmacophore hypothesis was partially confirmed by the upcoming
study on OCTN2, showing that two hydrophobic features, one H-
bond donor, as well as one positively ionizable feature are likely driv-
ing OCTN2 inhibitory activity [25].

As already introduced in chapter 3, SB modeling is complicated by
the lack of native family member templates. Exclusively human and
rabbit MATE1 structural models have been constructed on basis of
sequence-homologous templates retrieved by the BLAST algorithm
[126,130]. The first structural model for human MATE1 has been built
upon the sequence similarity with NorM crystal structure from Vibrio
cholerae (pdb id: 3mkt, 35.6% sequence similarity) [130]. After struc-
tural model generation, molecular dynamics (MD) simulation has
been performed to test the stability of generated human/rabbit
MATE1 structural model. In parallel, MD simulations have been per-
formed for the NorM template structure to see if the conformational dy-
namics of Norm crystal and derived homology models remains
conserved. A 50 ns long production MD confirmed overall stability.



399A. Türková, B. Zdrazil / Computational and Structural Biotechnology Journal 17 (2019) 390–405
Interestingly, several helices in the humanMATE1 homologymodel (for
example, TM6 and TM9) reoriented and assumed opposite tilt angles
when compared to the template. Obviously, a partial closing of the
translocation pore was happening for the homology model. This inter-
esting use case highlights the fact that each transporter ortholog
might possess its internal dynamics, which cannot always easily be cap-
tured by the template structure.

Other reported SB studies rely on the structural similarity with
MFS members. For details describing studies for a respective uptake
transporter, see Table 4. In the recent past, a multiscale approach for
3D structural modeling of seven human OCTs (OCT1, OCT2, OCT3,
OCTN1, OCTN2, OCT6, and FLIPT1) has been published. This study
[21]. This study [144] introduces a comprehensive modeling pipeline
for tertiary structure prediction, starting from the comparative se-
quence alignment, and fold-recognition 3D model building combined
with ab-initio modeling performed via I-TASSER [145]). In addition,
post-translation modifications of functionally relevant structural mo-
tifs (e.g. phosphorylation, ubiquitination, and/or glycosylation sites)
were predicted via bioinformatic tools (PhosphoSitePlus available at
http://www.phosphosite.org/ and NetNGlyc 1.0 server available at
http://www.cbs.dtu.dk/services/NetNGlyc/). An integrative approach
for 3D structure prediction is followed by the comprehensive evalua-
tion of the modeled structures based on different metrics, including
sequence identity between the target and template, query coverage,
and consensus Z-score of the top threading programs. Structural anal-
ysis of generated models has revealed that the 3D structural models
generated here share structural similarity with the human glucose
transporter GLUT3 (pdb id: 5c65). Visual inspection of the obtained
models further implies 2-pseudofold symmetry, as well as the hypoth-
esis about two distinct functional states (inward- and outward-open).
These observations were fully supported by the structural superposi-
tion of 3D generated models of OCTs with the GLUT3 transporter.
This use case again demonstrates that phylogenetically unrelated
transporters (since OCTs belong to SLC22A and GLUTs belong to
SLC2A subfamily) can share the same fold.

Two very promising ways of integrating ligand and protein informa-
tion are so-called combinatorial pharmacophores as well as PCM
modeling approaches. Combinatorial pharmacophore modeling was
first reported for OCT2 inhibitors in 2013 [125]. In general, this approach
represents a multi-step combinatorial scheme to generate a set of di-
verse LB pharmacophore models including the available information
about their binding modes: First, generated pharmacophore models
with identical pharmacophoric features in a close spatial arrangement
are grouped in order to reduce the large pool of potential hypotheses
and a combinatorial approach is employed to test all possible combina-
tions of different pharmacophore hypotheses. Themain idea behind the
combinatorial pharmacophores is to study how different
pharmacophoric patterns are corresponding to (potential) multiple
binding mode hypotheses of uptake transporters. For this purpose, dif-
ferent sub-categories of reference inhibitors are being used - (1) com-
petitive inhibitors (i.e., binding to orthosteric binding site),
(2) occluding inhibitors (i.e., noncompetitive inhibitors, occluding the
substrate binding site and locking the conformation transformation of
the tarnsporter), and (3) allosteric inhibitors (i.e., modulating the
transporter's function by binding to the different – allosteric – binding
site). A use case on MATE1-OCT2 selectivity profiling is presented in
chapter 5.

Proteochemometric modeling (PCM) is conceptualized as an ad-
vanced extension to the conventional QSAR-based modeling by simul-
taneous considerations of the similarity between multiple ligands and
multiple targets [115]. PCM modeling can thus be categorized as a
method at the interface between ligand- and structure-basedmodeling.
The two-dimensional structural sequence information can be integrated
into the PCMmodel either as a whole amino acid sequence, or the pre-
selection of key residues (e.g. those occurring in the binding pocket and/
or other conserved residues) can be performed. ([64,93]; [138]). Protein
sequences can then be reduced to amore abstract representation by cal-
culating the Z-scales which are corresponding to the principal compo-
nents of multi-property matrices combining different physico-
chemical properties, such as lipophilicity, volume, and polarity for re-
spective residues [64,115]. In case of uptake transporters discussed
herein, PCM modeling was used for the investigations of structural de-
terminants between OATP1B1 and OATP1B3 [14], as well as in a recent
study by Shaikh et al. for investigating transporter substrates of OCT1,
OATP1A2, OATP1B1, OATP1B3, and OATP2B1 [104].

5. Selectivity Profiling: Linking Knowledge of Related Uptake
Transporters

Since uptake transporters are often co-expressed at pharmacological
barriers and generally transport a wide variety of pharmaceutical
agents, it is of medical interest to increase the understanding of the in-
terplay of such related transporters. A prominent example are hepatic
OATPs – OATP1B1, OATP1B3, and OATP2B1 – which are responsible
for e.g. bile acids uptake (such as taurocholic acid), but also pharmaceu-
ticals, hormones etc. into hepatocytes ([139], [140]). It is only insuffi-
ciently understood to date, how ligand activity and selectivity towards
one of the three transporters is achieved. Such knowledge could not
only pave the way for functional studies on these transporters (by the
use of truly selective tool compounds), but would also increase our
knowledge on critical compound/drug properties associated with the
onset of clinically relevant drug-drug interactions.

On principle, studies on determining factors for selectivity can in-
clude knowledge from the ligand side (QSAR/classification modeling,
pharmacophore modeling), the protein side (comparative modeling,
molecular docking, virtual screening, MD simulations), or both (PCM
modeling or combinations of the latter approaches).

In case of OATP1B1, OATP1B3, and OATP2B1, comparative QSAR
modeling has been performed by Karlgren et al. already in 2012 [55]
which identified important molecular features for general OATP inhibi-
tion (vs. non-inhibition): higher lipophilicity, molecular weight and po-
larity. Just recently our group identified additional features
discriminating hepatic OATP inhibitors from non-inhibitors: higher po-
larizability, molecular refractivity (corresponding to the distribution of
charge over a molecule's surface), and flexibility (expressed as a higher
number of rotatable bonds) [146]. Development of in silico models for
individual OATP transporters by Karlgren et al. [55] has identified cer-
tain differences between theOATP1B andOATP2B subfamily. In contrast
to OATP1B1 and OATP1B3, OATP2B1 inhibitory activity has been nega-
tively correlated with nonpolar- and total- surface area, proposing
that OATP2B1 inhibitors might be less dependent on polarity than
OATP1B1 and OATP1B3 inhibitors. In addition, in our current study we
could highlight additional properties to be responsible for OATP1B1
and OATP1B3 versus OATP2B1 inhibition (the latter seem to be more
planar, whereas OATP1B members tend to possess a large number of
amide bonds) [113].

Another way to explore ligand (and potentially selectivity) profiles
is an enrichment analysis in substructures among actives of one target
of interest vs the other(s). Again, for hepatic OATPs, this methodology
led to a list of enriched scaffolds possessing a certain activity profile
(i.e.,OATP1B1 selective inhibition, OATP1B1/OATP1B3 dual inhibition,
OATP1B1/OATP1B3/OATP2B1 pan-inhibition). As an outcome, e.g. the
pravastatin-like scaffold showed a preferential inhibitory activity for
OATP1B1 (over OATP1B3 and OATP2B1) and the cyclosporine-like
scaffold accounted for OATP1B1/OATP1B3 dual inhibition. Interest-
ingly, the steroidal scaffold has been found to be enriched in the ac-
tives of all three hepatic OATPs. Here depending on the side-chain
variations, preferred activity towards one of the targets might be
achieved [113].

Pharmacophore modeling is also interesting for studying ligand se-
lectivity across different species. To give an example, human- and
rabbit-OCT2 pharmacophoremodels indicate that despite the similarity

http://www.phosphosite.org/
http://www.cbs.dtu.dk/services/NetNGlyc/
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of most of the pharmacophoric features (reflected by 83% sequence
identity of these two OCT2 variants), there is a difference in the spatial
arrangement of hydrogen bonding features [109].

Finally, even ligand profiles and selectivity among uptake trans-
porters of different families might be of interest, in particular if they
are commonly expressed at the same pharmacological barrier. A way
to tackle this is comparing pharmacophore hypotheses generated for
the two targets of interest, like in the case of OCT2 and MATE1, which
both are playing a significant role in renal disposition and toxicity
(König et al. [141). It has been shown that charge distribution was one
of the important factors, favoring the inhibitory activity of one trans-
porter with respect to the other. Specifically, OCT2 inhibitors comprise
both zwitterionic and basic functional groups, whereas MATE1 inhibi-
tors are less enriched with basic groups and do not necessarily contain
zwitterionic groups [122].

An evenmore comprehensive understanding of OCT2-MATE1 selec-
tivity profiling was delivered by a combinatorial pharmacophore-based
approach [125,126], as introduced in chapter 4. Since MATE1 and OCT2
are commonly expressed in the kidney, it is interesting to learn about
their interplay and selectivity switches to better understand
transporter-mediated drug distribution and drug elimination processes
(König et al., 2011). A combinatorial pharmacophore model approach
developed for both OCT2 [125] and MATE1 [126] can therefore reveal
which features are shared and which ones are unique for just one of
these two transporters. The latter can give hints for selectivity switches
at the ligand level. For OCT2, combinatorial pharmacophore modeling
has revealed four distinct pharmacophoric hypotheses [125]. An aro-
matic featurewas included in all four hypotheses, suggesting the essen-
tial role of pi-pi interactions in the OCT2-ligand recognition. In addition,
a cationic charge has appeared in three out of four pharmacophoric hy-
potheses, which corresponds to previous findings [122]. Xu et al. also
compared the molecular weights for the inhibitors matching different
pharmacophoric features which provided additional insights into the
constitution and/or size of distinctive binding site(s) within the trans-
porter. Following the same strategy as for OCT2, the authors studied
multiple inhibitory mechanisms of MATE1 ligands in a follow-up
paper [126]. The model reveals significant importance of aromatic
rings, as well as hydrophobicity to induce MATE1 inhibition. When
compared to the combinatorial model for OCT2 inhibition, it becomes
obvious that one of the hypotheses was the same in both transporters,
thus proposing one common binding mode hypothesis which can ac-
commodate a substantial number of dual MATE1 and OCT2 inhibitors.

In the future more sophisticatedmethods, such asmulti-label classi-
fication might come into play, depending on the availability of com-
pound data with consistent bioactivity measurements for targets
under study. Such methods were recently used for studying selectivity
profiles of ABC transporters [81].

In addition to the above discussed LB approaches for studying selec-
tivity, the molecular basis for selectivity is delivered by the protein
structure, and more specifically by subtle differences in residues
interacting with the ligand during binding and transport. To give an il-
lustrative example, attempts to understand selectivity among hepatic
OATPs at a molecular level are discussed. Transmembrane regions for
both OATP1B3 and OATP2B1 were built on basis of templates from the
MFS family, namely glycerol-3-phosphate (pdb id: 1pw4) and lactose
permease (pdb id: 1pv6) from Escherichia coli [77]. The model quality
has subsequently been validated via docking of the cardiac glycoside di-
goxin into the putative translocation channel. Based on the 3D models
and multiple sequence alignment across OATP family members, the
analyses suggest that the pore-facing residue R181 might contribute
to the substrate specificity of OATP1B transporters, as this residue is
fully conserved across the OATP1B family. In analogy, H579 is hypothe-
sized to be crucial for binding of ligands tomembers of the OATP2B fam-
ily and it is found at a spatially adjacent position to R181 [77]. Another
SB modeling effort for understanding commonalities and differences
of the more closely related hepatic transporters OATP1B1 and
OATP1B3 (~80% sequence identity) led to the construction of a series
of chimeric proteins between OATP1B3 and 1B1 [38]. The aim here
was the determination of structural domains and/or residues responsi-
ble for substrate selectivity of OATP1B3, specifically for CCK-8. Homol-
ogy modeling and molecular docking led to binding mode hypotheses
which were further validated experimentally. When replacing TM10
in OATP1B3 with TM10 of OATP1B1 a dramatically reduced degree of
CCK-8 transport was observed, indicating that TM10 is indeed crucial
for recognition and/or translocation of CCK-8. Using site-directedmuta-
genesis, key residues for substrate binding namely, Y537, S545, and
T550 in TM10 were identified [38].

Using ligand and protein information in conjunction for selectivity
profiling can be conducted by using PCMmodeling. This technique out-
performs conventional QSARmodels and can be used to virtually screen
for selective compounds that are solely active on a single member of a
subfamily of targets [115]. In the field of clinically relevant SLC trans-
porters, PCM modeling was first undertaken for investigating chemical
features favoring OATP1B1 and OATP1B3 inhibition [14]. Performing
multiple sequence alignment for OATP1B1, OATP1B3, OATP2B1, and
OATP1A2 aided in identifying most conserved regions. Further, critical
protein residues were prioritized on basis of SBmodeling studies previ-
ously done for hepatic OATPs [73,77]. This step again demonstrates the
usefulness of combining different computational approaches. PCM
models were developed for OATP1B inhibition (2-class classification
model, i.e., ‘OATP1B inhibitor’ or ‘OATP1B non-inhibitor’), and individ-
ual OATP1B1/1B3 inhibition (4-class classification model, i.e., ‘OATP1B
dual inhibitor’, ‘OATP1B dual non-inhibitor’, ‘OATP1B1 selective inhibi-
tor’, or ‘OATP1B3 selective inhibitor’). When looking at protein proper-
ties, only limited conclusions could be deduced from this study. The
limited interpretability of target information is caused by the fact that
only two proteins were included into the PCM modeling (van Westen
et al., 2012). As a future perspective, the authors suggest to apply the
PCM procedure to more OATP proteins, as there are bioactivity mea-
surements for 22 OATP isoforms available in CHEMBL. In conclusion,
the developed 2- and 4-class classificationmodels united the important
molecular features reported from previous computational studies
[6,17,55,105], but also provided new information about OATP1B1/1B3
inhibition (e.g. high number of ring bonds).

Pharmacological profiles can also be investigated for a whole group
of simultaneously expressed transporters located at the same pharma-
cological barrier. For example, Shaikh et al. combined QSAR and PCM
modeling to perform an extensive exploration of substrate interactions
for 13 clinically relevant efflux and uptake transporters, including OCT1,
OATP1B1, OATP1B3, OATP2B1, and OATP1A2 [104]. The motivation be-
hind such an extensive study is to predict transport across major phar-
macological barriers as a whole by a sequence of computational models.
Thus, consensus models by applying various machine learning tech-
niques were finally constructed and the developed models were used
to predict the substrate propensity of compounds for blood-brain bar-
rier (BBB) transport.

6. Accounting for Transporter Flexibility

Since substrate translocation via transporters requires the protein to
adapt different conformational states, protein flexibility has to be taken
into account also when performing SBmodeling [30]. So far, most of the
docking studies on uptake transporters were performed by considering
only a single transporter conformation (e.g., OAT1 [93], OCT1 [13],
OATP1B1 [69], OATP1B3 [38]). However, building a structural model
on basis of a single conformation can inherently bias subsequent
docking screens since e.g. some ligandsmight not fit into a narrowbind-
ing pocket of a particular conformation. Khuri et al. attempted to cap-
ture OATP2B1 transporter dynamics by building multiple OATP2B1
comparative models based on seven templates considering different
conformational states: inward-open, outward-open, and occluded
[57]. In general, multiple comparative models can together provide a
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more comprehensive representation of a ligand binding event [100].
However, combining drastically different conformational states (such
as outward-open with inward) is risky, since allosteric modulations
rather happen upon subtle changes in protein conformation and slight
rotameric variations of side chains [96].

An orthogonal approach to the selection of multiple template struc-
tures for sampling protein conformations is the generation of template
protein ensembles by using MD simulations. For lactose permease (pdb
code: 1pv6), a representative of the Major Facilitator Superfamily
which to a high degree relates to uptake transporters by secondary
Fig. 3. Proposed computational workflow for studying ligand interactions with ADMET-releva
curation and data analysis and subsequently be used for a new iteration of modeling.
structure, both all-atom [42,91] and coarse-grained [50] simulations
have been performed for elucidating ligand binding and even transport
events. However, direct usage ofMD simulations tomimic the transloca-
tion process of template-based comparative models is only rarely used
since themajority of available template structures cover only transmem-
brane regions. For example, available templates for OATP1B1 cover b400
amino acids out of 691 in total. RunningMD simulations with an incom-
plete target structure could lead to artifacts. Furthermore, the limited
time scale for all-atom simulations (hundreds of nanoseconds to a few
microseconds), as well as the choice of including or omitting the lipid
nt SLC transporters. Results from in vitro validation can be inputted to the stages of data
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bilayer into the simulated system, can heavily affect the correctness and
interpretability of the MD simulations. Contemporary simulation tech-
niques, suchas stochasticMonteCarlo, orMDsimulationswith enhanced
sampling (e.g. by applying replica-exchange methods) can be used for
structural refinement of extra- and intracellular domains.

To date, enhanced sampling techniques have been used only once
for building a complete structuralmodel for any of the discussed uptake
transporters. As shown in aMD simulation study onOAT1 [112],model-
ing of the complete OAT1 transporter structure was divided into two
stages: First, only the transmembrane region was modeled based on a
template with high secondary structure similarity (glycerol-3-phos-
phate transporter; pdb code: 1pw4). At the second step, the extracellu-
lar domain was iteratively sampled by simulated annealing, while the
transmembrane region was kept restrained. Results of this study indi-
cate that the structural refinement by applying enhanced sampling
methods could significantly improve existing structural models for up-
take transporters which in turn would enhance the understanding of
functional aspects of the transport mechanisms.

Only recently, reduced representation methods, such as normal
mode analysis by applying elastic networkmodels, can be used to over-
come shortcomings arising from the high computational demands of
conventional MD simulations ([142,143]). For example, elastic network
models have been used for the structurally-related fucose transporter
(pdb code: 3o7q) to study its molecular basis for allosteric modulations
[18]. Furthermore, by building comparative models in different func-
tional states (inward- and outward-open conformation), elastic net-
work models were capable to reproduce the whole translocation
pathway of this transporter.

Formultiple ensemble docking, normalmode simulations have been
shown to be particularly useful to e.g. detect a biologically relevant con-
formation of dopamine D3 receptor, which has subsequently been pro-
spectively validated by the existing dopamine D3 crystal structure [15].
One might argue that the generation of multiple conformations for a
template structure might inherently bias the construction of structural
models, since they can possess its internal dynamics which probably
cannot be completely captured by the template. However, as shown
and discussed in case of the human MATE1 homology model [130],
the overall conformational stability between the template and the de-
rived MATE1 homology models remained unchanged.

As a conclusion, the use of normal mode simulations in structure-
based modeling studies can potentially improve conformational sam-
pling when modeling uptake transporters. This in turn can lead to
more accurate docking poses with the aim to better understand
ligand-protein binding events and potentially selectivity switches.

7. Summary, Conclusions & Future Perspectives

ADMET-relatedSLC transporters are proteins of emerging interest in
the framework of preclinical drug design. As demonstrated herein - by
collecting available ligand and protein information from the open do-
main – data sparseness resulted in quite limited understanding of
these transporter to date. Other factors complicating effective explora-
tion of this class of proteins is their promiscuousnature,with potentially
multiple binding sites, as well as overlapping substrate- and inhibitor
profiles.

As demonstrated by discussed examples of molecular modeling and
data analysis herein, new emerging technologies are on the rise also for
these targets being particularly hard to unlock. Especially, data integra-
tion techniques and data analysis can lead to useful hypothesis about in-
teresting SAR series at the beginning of an in silico study. Further,
combining LB and SB methods seems to be an effective strategy, espe-
cially when it comes to selectivity profiling (like in the case of PCM
modeling), or the exploration of knowledge about multiple binding
sites (like in the case of combinatorial pharmacophores). In general, in-
clusion of in vitro experiments is a must especially for SB methods, e.g.
to test the established binding mode hypotheses. In return, those
in vitro measurements will lead to an increase in data points for a par-
ticular target, which can further be explored by statistical methods
(such as machine learning approaches). For SB approaches, it would
be interesting to include more systematically conformational sampling
of protein conformations and multiple template structures into the
comparative modeling step. It will be interesting to then compare re-
sults to those from docking into a single static template.

We are proposing a general workflow for in silico modeling of clini-
cally relevant SLC transporters (see Fig. 3) whichmakes use of all avail-
able molecular modeling approaches and combines them with timely
data science approaches (as far as the available data allows the different
methods).

With the aim to develop safermedicine, it is of extraordinary impor-
tance to increase our understanding of themolecular basis of respective
transporter-ligand interactions on an individual level (transporter by
transporter), but also from a global point of view (how they act in con-
cert). During evolution, transporters were optimized to helpmetaboliz-
ing chemical matter that we were exposed to. Obviously, they found a
way to transport a wide variety of chemically distinct compounds. Un-
derstanding the interplay of clinically relevant transporters in
transporting chemical matter, as well as the mechanisms underlying
transporter selectivity, can help to unravel potential drug-drug or
drug-food interactions which will finally lead to safer drugs in the
future.
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