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A B S T R A C T

Objective: To diagnose and lateralise temporal lobe epilepsy (TLE) by building a classification system that uses
directed functional connectivity patterns estimated during EEG periods without visible pathological activity.
Methods: Resting-state high-density EEG recording data from 20 left TLE patients, 20 right TLE patients and 35
healthy controls was used. Epochs without interictal spikes were selected. The cortical source activity was ob-
tained for 82 regions of interest and whole-brain directed functional connectivity was estimated in the theta,
alpha and beta frequency bands. These connectivity values were then used to build a classification system based
on two two-class Random Forests classifiers: TLE vs healthy controls and left vs right TLE. Feature selection and
classifier training were done in a leave-one-out procedure to compute the mean classification accuracy.
Results: The diagnosis and lateralization classifiers achieved a high accuracy (90.7% and 90.0% respectively),
sensitivity (95.0% and 90.0% respectively) and specificity (85.7% and 90.0% respectively). The most important
features for diagnosis were the outflows from left and right medial temporal lobe, and for lateralization the right
anterior cingulate cortex. The interaction between features was important to achieve correct classification.
Significance: This is the first study to automatically diagnose and lateralise TLE based on EEG. The high accuracy
achieved demonstrates the potential of directed functional connectivity estimated from EEG periods without
visible pathological activity for helping in the diagnosis and lateralization of TLE.

1. Introduction

Mesial temporal lobe epilepsy (TLE) is the most common type of
pharmaco-resistant epilepsy in adults. In order to estimate the locali-
sation of the epileptogenic zone, Electroencephalography (EEG) is re-
corded to identify pathological activity such as seizures or Interictal
Epileptiform Discharges (IEDs). However, in some patients, these are
infrequent or completely absent in the EEG recording.

Epilepsy is increasingly recognized as a network disease (Laufs,
2012) and measures of functional relationships between activities of
different brain regions could help better understand epileptic networks.
Directed functional connectivity estimates the directionality of the

functional connections between different brain regions. Several studies
have shown that directed functional connectivity measures based on
intracranial EEG can help to identify the irritative zone and the seizure
onset zone (van Mierlo et al., 2013; Wilke et al., 2009; van Mierlo et al.,
2014). Furthermore, directed functional connectivity applied to brain
sources estimated from high-density scalp EEG revealed interictal net-
work patterns concordant with cognitive deficits in TLE (Coito et al.,
2015) and significant connectivity differences in TLE compared to
healthy controls in the absence of interictal spikes (Coito et al., 2016).

Machine learning algorithms have been used for automatic detec-
tion and localization of the epileptogenic zone in TLE using a multitude
of imaging modalities (Focke et al., 2012; Kamiya et al., 2016; Cantor-
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Rivera et al., 2015; Chiang et al., 2015; Yang et al., 2015; Kerr et al.,
2013). However, to the best of our knowledge, no study has attempted
to automatically diagnose and lateralise TLE using scalp EEG.

Here, we used EEG-based directed functional connectivity values to
build a diagnostic and lateralization classification system for TLE in the
absence of visible epileptic activity. Moreover, we compared our results
with previous classification studies using other imaging modalities.

2. Materials and methods

2.1. Subjects

Twenty LTLE patients, 20 RTLE patients and 35 healthy subjects
were included. Patients were retrospectively selected from the high-
density EEG database of the University Hospital of Geneva, University
Hospital of Bern and Paracelsus Medical University in Salzburg ac-
cording to the following inclusion criteria: drug-resistant TLE, uni-
lateral anteromedial localization of the epileptogenic zone confirmed
by good surgical outcome (Engel's class I or II, after at least 12 months
post-operative follow-up), intracranial EEG or concordant presurgical
evaluation methods and the existence of at least a 10–15 min resting-
state eyes-closed high-density EEG recording (96–256 channels). All
patients had interictal activity on long-term EEG concordant with the
diagnosis of unilateral TLE. Most of them had extensive presurgical
evaluation including ictal video-EEG, PET, SPECT and electric source
imaging. The patients' dataset used in this study was the same as re-
ported in our previous work (Coito et al., 2016). The clinical details can
be found in the Supplementary material of the present manuscript.

2.2. Standard protocol approvals, registrations, and patient consents

All patients were evaluated in the epilepsy units of Geneva
University Hospital, Switzerland, Bern University Hospital,
Switzerland, and Paracelsus Medical University in Salzburg, Austria.
The three local ethics committees approved this study. Written in-
formed consent was obtained from all participants in the study.

2.3. EEG, electrical source imaging and directed functional connectivity

Subjects underwent a resting-state eyes-closed recording during
presurgical evaluation. The sampling frequency of the recorded EEG
ranged between 250 and 1000 Hz. All signals were filtered offline be-
tween 1 and 100 Hz and then downsampled to 250 Hz. Sixty epochs of
1 s, free of artefacts and IEDs, during wakefulness were selected per
subject. The activity of brain sources during the selected EEG epochs
was obtained using Electrical Source Imaging (ESI): an individual head
model and a linear distributed inverse solution with biophysical con-
straints were used (Grave de Peralta Menendez et al., 2004). The grey
matter was parcelled in 82 Regions Of Interest (ROI) and the solution
point closest to the centroid of each ROI was considered as re-
presentative of the source activity in this ROI. This procedure resulted
in 82 time-series representing the activity of each individual ROI during
the 60 selected epochs.

For each subject and epoch, directed functional connectivity be-
tween the 82 source ROIs was estimated using the weighted Partial
Directed Coherence (wPDC) (Baccala & Sameshima, 2001; Astolfi et al.,
2006; Plomp et al., 2014), and the mean wPDC across epochs was
taken.

For each subject, we obtained a 3D connectivity matrix (82 re-
gions × 82 regions × frequency), which represented the outflow from
one region to another for each frequency. For further analysis, we re-
duced the connectivity matrix to 3 frequency bands: theta (4–8 Hz),
alpha (8–12 Hz) and beta (12–30 Hz), by calculating the mean con-
nectivity value in each band.

The detailed procedures for EEG recording, electrical source ima-
ging and directed functional connectivity have been described in (Coito

et al., 2016) and are also included in the Supplementary material of this
manuscript.

2.4. Classification

2.4.1. Feature selection
The calculation of the connectivity between every pair of regions in

the three frequency bands resulted in 20.172 features for each in-
dividual. An optimal subset of these features was selected to avoid
creating false decision rules when training the classifier on the example
data. As an example, consider the case where a certain connection is
slightly stronger for RTLE compared to LTLE patients in the majority of
our patients, but not for the whole population of TLE patients. A clas-
sifier taking this contingency as a general rule for lateralization can
perform poorly on new subjects. This issue of overfitting to example
data becomes more likely with decreasing number of subjects and in-
creasing number of feature values per subject (Mwangi et al., 2014;
Guyon & Elisseeff, 2003). To avoid overfitting, we allowed a maximum
of one feature per ten subjects, resulting in a maximum of 7 features for
diagnosis and 4 features for lateralization.

First, the 82 regions were reduced to a set of 14 regions that showed
differences between groups in our previous study (Coito et al., 2016)
and are known to be involved in TLE: left and right Hippocampus
(Hipp), Amygdala (Amyg), Parahippocampus (PHipp), Anterior Cin-
gulate Cortex (ACC), Posterior Cingulate Cortex (PCC), Olfactory cortex
(Olf) and Medial Temporal Pole (TPMid). This left us with 588 features
that were used to build the first RF classifier. The importance of each
feature f in this classifier was calculated as the decrease in classification
performance when the values of f are randomly permuted. As random
permutation breaks the link between the feature f and the class labels,
this permutation importance reflects how much classification power is
lost when this feature is taken out of the design of the system. Following
the feature selection method by Genuer et al. (2010), features with a
non-significant importance were considered irrelevant and thus re-
moved from the set.

Further reduction was obtained by removing redundant informa-
tion. For that purpose Genuer et al. (2010) selects the minimal subset of
features that contains the maximum amount of discriminant informa-
tion. The method considers the interaction between features during this
selection, which is important as the relevance of an outflow may de-
pend on which other outflows were considered as features. For inter-
pretation of the feature selection result, we calculated the actual in-
teraction effect of a feature f1 on another feature f2 as the change in
permutation importance of f2 when f1 is removed from the design
(again by permuting its values). A negative interaction (a decrease in
importance) indicates that the discriminative information in f2 is only
relevant when f1 is included in the design. Higher order interactions
(e.g. between three features) can also have an impact. However, with
increasing order, more data is required to obtain a reasonably accurate
measure of interaction. The first order interaction is given here to il-
lustrate the impact of feature interaction in general.

2.4.2. Random Forests
Random Forest (RF) (Breiman, 2001) is a machine learning tech-

nique in which an ensemble of elementary classifiers is trained and its
outputs aggregated to classify a new input sample. In RF, the ensemble
is composed of many classification and regression trees (Loh, 2011),
each trained on a different bootstrap subset of the available samples.
When a new input is to be classified, each tree in the ensemble makes
the classification and the sample is assigned to the class that was chosen
by the majority of the trees.

The scikit-learn library (http://scikit-learn.org/stable/) was used to
implement a Balanced RF classifier. This classifier differs from standard
RF in the way that subsets containing an equal number of subjects from
both classes are used to train the decision trees. Every forest contained
1000 trees. The size of the random set of features from which splits

T. Verhoeven et al. NeuroImage: Clinical 17 (2018) 10–15

11

http://scikit-learn.org/stable


were chosen was log2(M), where M is the total amount of features per
subject. All performance metrics reported in this work were calculated
in a Leave-One-Out Cross Validation (LOOCV). In this procedure, each
subject is left out of the dataset once, while the others are used for
feature selection and classifier training. The classifier system was then
tested on the left out subject. In this way, the evaluation illustrates the
average performance on a new subject, unseen by the system.

The system built in this work had three output classes: healthy
subjects, LTLE and RTLE. Building a three-class classifier with RF is
possible but far more complex than building multiple two-class classi-
fiers and combining their results. Moreover, the natural clinical process
requires a system in which the subject is first diagnosed with TLE and
then, if applicable, the TLE is lateralised. Therefore, we built two se-
parate classifiers, one for diagnosis (TLE vs. healthy subjects) and one
for lateralization (LTLE vs. RTLE). Feature selection was done for each
classifier individually. The two classifiers were sequentially applied in
the final system.

3. Results

3.1. Classification

The diagnosis classifier achieved an accuracy of 90.7%, sensitivity
of 95%, specificity of 85.7% and area under the curve (AUC) of 0.89
(Table 1). For lateralization, the AUC was 0.911 and all other perfor-
mance measures 90% (Table 1).

Putting the two classifiers in sequence, Table 2 shows the confusion
matrix of this three-class classifier system in LOOCV. It shows how the
subjects from a certain class were assigned to the three classes by our
system. The overall accuracy of the system is 85.3%.

3.2. Feature selection

The selected set of features slightly differed between LOOCV itera-
tions due to the intrinsic randomness of the procedure and the RF
technique. Table 3 shows the most frequently occurring subset of fea-
tures, ranked according to their average importance value. For each
feature, the p-value of a nonparametric Mann-Whitney-Wilcoxon test is
given, testing the null hypothesis that values are equally distributed in
the two competing classes. The feature with highest importance for
diagnosis was the outflow from the right to the left hippocampus. For
lateralization, the outflow from the right ACC to the right hippocampus
had the highest importance.

Fig. 1 shows the interaction between the selected features. For di-
agnosis, the interaction between the outflow from the right to the left
hippocampus and the outflow from the right hippocampus to the right
amygdala were the most important. For lateralization, the interaction
between the outflow from the right to the left hippocampus and the
outflow from the right medial temporal pole to the amygdala were most
important. Both for diagnosis and lateralization of the epilepsy con-
nections in the theta and alpha band were most important.

4. Discussion

Using EEG-based directed functional connectivity and a RF classifier

for automatic diagnosis and lateralization of TLE, we found that 1) both
classifiers for diagnosis and lateralization of TLE achieved high accu-
racy (90%), 2) the outflows from the left and right hippocampus, and
from the right ACC were the most important features for diagnosis and
lateralization, respectively and 3) the interaction between features is
important for a correct classification.

4.1. EEG-based connectivity measures for diagnosis and lateralization of
TLE

This is the first study showing that functional connectivity using
EEG without scalp pathological activity can be used for automatic di-
agnosis and lateralization of TLE. This could support TLE diagnosis in
patients who do not show IEDs during routine scalp EEG recording.
Furthermore, it could constitute a powerful lateralizing clinical aid in
patients who are candidates for epilepsy surgery, especially in difficult
cases where the currently used presurgical evaluation methods are not
concordant.

We have built the classifier on directed functional connectivity
measures and the comparison with other EEG network measures is
beyond the scope of this study. Further comparative studies are war-
ranted to assess the performance of classifiers based on other EEG
metrics, such as undirected connectivity.

Likewise, future work will determine whether such classification
system is efficient in patients with equivocal lateralisation or apparent
bilateral TLE, who benefit from subsequent validation with invasive
EEG.

Previous studies have used structural MRI, Diffusion Tensor Imaging
(DTI), functional MRI (fMRI) or PET for automatic diagnosis and la-
teralization of TLE. In Table 4, we summarize the techniques, selected
features and main findings of these studies. In TLE patients with Hip-
pocampus Sclerosis (HS), Support Vector Machines (SVM) were applied
to T1-weighted images and DTI (Focke et al., 2012). They achieved an
accuracy of 100% for lateralization and an accuracy of 93% with a
three-way SVM classifier (LTLE vs. RTLE vs. Controls). Excluding the
contribution of the hippocampus yielded a lateralization accuracy of
92%, comparable to our results, but a lower diagnostic accuracy of
76%. It is noteworthy that this study solely included TLE patients with
HS. However, HS is present only in 65% of surgical TLE population
(Babb et al., 1984). In addition, patients with unilateral HS are, in
general, less ambiguous cases. In our study, patients with other types of
lesion or even patients with no detectable lesions were included, ex-
tending the use of our classifier to a more general population of TLE in
which diagnosis can be more difficult. Unfortunately, due to the low
number of patients without lesions in this study, a comparison between
the classification accuracy in patients with epileptogenic lesions vs.
patients without lesions could not be performed.

In a FDG-PET study, interictal metabolic changes as input of the
classifier (multilayer perceptron), led to an accuracy of 76% to si-
multaneously diagnose and lateralise TLE (Kerr et al., 2013). A SVM
applied to graph theory measures obtained from DTI images, achieved
an accuracy of 86.4% and an AUC of 0.91 for lateralization, but no
results were reported for diagnosis (Kamiya et al., 2016). Using features
from the T1-weighted MR images (Cantor-Rivera et al., 2015), a diag-
nostic accuracy of 88.9% was achieved with a linear SVM but no la-
teralization result was reported. Using resting-state fMRI and functional

Table 1
Performance of the diagnosis and lateralization classifiers.

Performance measure Diagnosis Lateralization

Accuracy (%) 90.7 90.0
Sensitivity (%) 95.0 90.0
Specificity (%) 85.7 90.0
Positive predictive val. (%) 88.4 90.0
Negative predictive val. (%) 93.8 90.0
AUC 0.890 0.911

Table 2
Confusion matrix for the three-classifier system.

Actual Predicted

LTLE RTLE Controls

LTLE 16 2 2
RTLE 2 18 0
Controls 0 5 30
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connectivity graph measures (Chiang et al., 2015), a lateralization
classifier achieving 95.8% was built on a rather small set of subjects (14
LTLE and 10 RTLE patients). In another study, fMRI-based functional
connectivity values and network metrics were used to lateralise TLE on
a small cohort of patients (7 LTLE and 5 RLTE) (Yang et al., 2015). A
linear SVM for lateralization gave an accuracy of 83.3%.

In this work, we obtained comparable or higher accuracies, sensi-
tivities and specificities than those reported in these previous studies
which used other imaging tools. Moreover, our results were obtained
using 1 min of artefact-free EEG, extracted from a 10- to 15 min re-
cording, which is less time-consuming than other imaging modalities.
Due to the low cost and wide availability of EEG compared with other
modalities, EEG-based measures could be widely implemented for di-
agnosis and lateralization. However, high-density EEG is not available
in all epilepsy centers around the world, and therefore, future work
should investigate whether this analysis would also yield a high accu-
racy when low-density EEG signals are used instead. In addition, our
analysis was performed using eyes-closed resting-state recordings.
Future work that includes eyes-opened resting state EEG recordings
should elucidate whether our analysis would perform equally well
during this condition.

In the study, we used a directed functional connectivity measure,
wPDC, because 1) it allows us to depict the directionality of the con-
nection, 2) it is a spectral measure, allowing to identify frequency
specific features, 3) it depicts only direct interactions between brain
regions, 4) it is a multivariate method, meaning that it considers all
signals in the process simultaneously to compute the coefficients of the
model, and 5) it has been shown to outperform PDC and enhance the
physiological plausibility of the results (Plomp et al., 2014). However,
the comparison between classification performance using wPDC and
other connectivity measures would be interesting.

4.2. Main features for diagnosing and lateralising TLE

For the feature selection, although we preselected 14 regions based

on our previous study (Coito et al., 2016), the selection of connections
between these regions was done automatically, in a data-driven way
and independently from prior clinical knowledge. This allowed us to
identify new potential biomarkers for diagnosis and lateralization of
TLE. We remark that the pre-selection of regions also has the dis-
advantage of missing potentially important regions for diagnosis and
lateralization. The feature selection and classification system can be
designed with randomly selected regions in order to search for potential
biomarkers. This is however beyond the scope of the current study.

We showed that the outflow from the hippocampus and ACC were
the best predictive features to automatically diagnose and lateralise
TLE. This is concordant with our previous work on the connectivity
pattern differences between LTLE, RTLE and healthy controls (Coito
et al., 2016).

Indeed, the importance of the hippocampus and ACC in TLE has
been widely recognized. The hippocampus has a pivotal role in the
generation of interictal and ictal activity in the majority of TLE cases.
Concordantly, many studies have reported reduced functional con-
nectivity between both hippocampi, hippocampus and amygdala, or
hippocampus and other regions of the Default-Mode Network, namely
the ACC and the PCC (Coito et al., 2016; Pereira et al., 2010; Pittau
et al., 2012; Zhang et al., 2010; Laufs et al., 2007; Liao et al., 2010).
From a methodological perspective, there is converging evidence from
intracranial and scalp EEG recordings that medial temporal lobe ac-
tivity can be recorded with scalp EEG (Koessler et al., 2015; Nahum
et al., 2011). A simultaneous scalp and intracranial study showed that
purely medial temporal spikes could be detected on scalp recording
(Koessler et al., 2015). Cognitive evoked potentials localised by icEEG
in the hippocampus could also be localised in the medial temporal lobe
using scalp evoked potential and electric source imaging (Nahum et al.,
2011).

ACC functional connectivity has also been shown to be decreased in
TLE patients compared to healthy controls (Coito et al., 2016; Stretton
et al., 2015) and could be related to frequent mood disorders in TLE,
since the ACC is a key node in the emotional processing network (Bush

Table 3
Feature selection result - selected features for diagnosis and lateralization, sorted from the most to the least important for classification.

Diagnosis Lateralization

Feature Importance (·10−2) p-Value Feature Importance (·10−2) p-Value

θ Hipp-R → Hipp-L 5.29 0.276 ⍺ ACC-R→ Hipp-R 9.28 0.068
⍺ Hipp-L → ACC-R 5.23 0.004 θ Hipp-R→ Hipp-L 7.58 0.394
β PCC-L → Amyg-R 5.07 0.005 θ TPMid-R → Amyg-R 7.08 0.091
⍺ Hipp-L → TPMid-R 2.52 0.006
θ Hipp-R → Amyg-R 2.37 0.326
β ACC-R → TPMid-L 1.33 0.012

Fig. 1. Feature interaction effect - Size of the inter-
action effect between features for diagnosis (A) and
lateralization (B). The color on the intersection of row
fr and column fc indicates the interaction effect of
feature fr on fc measured as the drop in feature im-
portance of fc when fr is left out of the design. Blue
means a negative interaction, the discriminative in-
formation in fc is less relevant when fr is excluded from
the design. Red means a positive interaction, the dis-
criminative information in fc becomes more relevant
when fr is excluded from the design. (For interpreta-
tion of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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et al., 2000).
The classification allows us to identify features that are important to

differentiate left vs right TLE patients and TLE vs controls. We found
that especially connectivity in the theta and alpha band were important
to diagnose and lateralize the epilepsy. The importance of the theta
band is in correspondence with other studies. Douw et al. (2010)
showed that theta band connectivity was altered in epilepsy patients
and in brain tumor patients compared to controls. Future studies will
have to show if the importance of the alpha leads to new biomarkers for
diagnosis and lateralization of TLE.

4.3. Importance of feature interaction

Previous work used statistical tests to find features that had sig-
nificantly different values in subjects with LTLE, RTLE and healthy
subjects (Coito et al., 2016). However, these statistical analyses con-
sider features individually, while the relevance of a connectivity value
for classification depends also on which other connectivity values are
considered as features.

The outflow from the right hippocampus to the left hippocampus
and right amygdala were not significantly different for TLE compared
with healthy controls, while they were among the most important
features for classification. As shown in Fig. 1, these two connectivity
values strongly interact with other features in the selection.

Although no significant differences in region-to-region directed
functional connectivity were found between LTLE and RTLE, as also
reported previously (Coito et al., 2016), the combination of these non-
significant features seems to be sufficient for a good classification.
Therefore, we show that classification algorithms that take into account
the interaction between features can outperform significance tests be-
tween groups, which also allow us to find new biomarkers for diagnosis
and lateralization of TLE.

5. Conclusion

The automatic diagnosis of TLE based on EEG periods without IEDs
has several important advantages: (Laufs, 2012) resting-state EEG can
be recorded in less than 1 h, overcoming long term monitoring and its
related costs, (van Mierlo et al., 2013) no IEDs or ictal activity are re-
quired, enabling the use of this method in patients with low seizure
and/or IEDs frequency, (Wilke et al., 2009) the features that result in
the best classification provide insight into the differences between the
groups (controls, LTLE and RTLE) and thus the mechanism of action of
TLE.

The high accuracy achieved in this work for the automatic diagnosis
of TLE based on functional connectivity measures using EEG periods

without pathological activity shows that this approach could constitute
a valuable bedside aid for clinicians. Our classification results were
comparable to or better than earlier reported results using other ima-
ging modalities. We showed that the outflows from the hippocampus
and ACC are crucial features for the classifiers, in line with previous
work showing the importance of these regions in TLE. The interaction
between connectivity values are important for classification accuracy,
even when connectivity values considered region by region might not
be significantly different between groups. Further studies are warranted
to determine whether our approach can help to lateralise epilepsy when
bilateral epileptic activity is recorded.
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