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ABSTRACT: The function of proteins involved in
electron transfer is dependent on cofactors attaining the
necessary reduction potentials. We establish a mode of
cluster redox tuning through steric pressure on a synthetic
model related to Photosystem II. Resembling the cuboidal
[CaMn3O4] subsite of the biological oxygen evolving
complex (OEC), [Mn4O4] and [YMn3O4] complexes
featuring ligands of different basicity and chelating
properties were characterized by cyclic voltammetry. In
the absence of ligand-induced distortions, increasing the
basicity of the ligands results in a decrease of cluster
reduction potential. Contraction of Y-oxo/Y−Mn dis-
tances by 0.1/0.15 Å enforced by a chelating ligand results
in an increase of cluster reduction potential even in the
presence of strongly basic donors. Related protein-
induced changes in Ca-oxo/Ca−Mn distances may have
similar effects in tuning the redox potential of the OEC
through entatic states and may explain the cation size
dependence on the progression of the S-state cycle.

Through processes such as photosynthesis and respiration,
electron transfer (ET) is fundamental to life.1 In addition

to controlling the rate of ET, tuning the redox potential of ET
mediators can regulate biological reactions.2−5 Factors that
tune the redox potentials of metallocofactors include: (1)
oxidation state and geometry of the metal center(s),6,7 (2)
ligands in the primary coordination sphere,8,9 (3) secondary
coordination sphere interactions such as hydrogen bonding
and polarity of the medium,10−14 and (4) binding of regulatory
molecules.15 Featuring a [CaMn4O5] core, the oxygen evolving
complex (OEC) of Photosystem II catalyzes the 4 e−/4 H+

oxidation of H2O to O2.
16−18 The mechanism of O−O bond

formation and the role of the redox-inactive Ca2+ ion have
been the subject of numerous biochemical, spectroscopic,
computational, and synthetic studies, but the role of Ca2+

remains unclear.19−33 Removal of Ca2+ has a minimal effect on
the [Mn4O5] core structure.

23 Substitution of Ca2+ with other
metal ions has distinct outcomes. Incorporation of alkali metals
reveals a cation size dependence in the S1 → S2 one e−

oxidation step: Li+ and Na+ supplemented samples show the
multiline EPR signal characteristic of the S2 state, while K+,
Rb+, and Cs+ supplemented samples do not show formation of
the S2 state, suggesting that the redox properties of the OEC
are affected by the size of the redox-inactive metal.34 Notably,
turnover is inhibited by substitution of Ca2+ with other metal

ions with the exception of Sr2+,35 providing opportunities for
mechanistic insight through systematic structure−function
studies on model complexes.
Studies on synthetic heterometallic complexes featuring

acetate-bridged [MMn3O4], [MMn3O(OH)], and [MFe3O-
(OH)] cores with redox-inactive metal ions M = Ca2+, Sr2+,
Zn2+, Y3+, Ln3+, and Sc3+ have shown that cluster reduction
potentials correlate linearly with the pKa of the metal aqua ion:
the least acidic Ca2+- and Sr2+-containing clusters in the series
have the lowest reduction potentials.31,36−41 For the series of
[Ln3+Mn3O4] complexes, redox potential is also found to
correlate linearly with the ionic radii of the lanthanides with
the larger, less acidic lanthanide-containing clusters having
lower reduction potentials.38 Theoretical studies on the
cuboidal [MMn3O4] model complexes have validated the
correlation between redox potential and the Lewis acidity of
the redox-inactive metal ion; however, calculations also suggest
that such correlation does not hold for the OEC, which is
proposed to respond only to the charge of the redox-inactive
metal ion.42 Dinuclear examples have been reported in which
redox inactive metal ions not only influence the redox potential
of the transition metal, but also modulate the reactivity of oxo,
peroxo, and other metal bound moieties.43−50 In several cluster
and bimetallic systems, correlations are observed between
reduction potentials or rates of reaction and Lewis acidity of
redox inactive metals.31,36,38,39,51−55 Other systems show
dependence between redox chemistry and the charge of the
cation, not its Lewis acidity;42,46 notably, such systems have
constrained binding environments such as the protein cavity
for the OEC or pendant crown ethers. Finally, correlations
involving the Lewis acidity or the charge of the redox-inactive
metal both fail to address the cation size dependence
experimentally observed in the OEC: larger, less acidic alkali
metals inhibit the S1 → S2 oxidation.

34

Herein, we report the synthesis, crystal structure, electro-
chemical characterization, and comparison of [Mn4O4] and
[YMn3O4] complexes featuring bridging ligands of different
basicity and chelating properties. We demonstrate that
geometric pressure imposed by a chelating ligand results in
contraction of metal-oxo distances, leading to an increase in
cluster reduction potential despite the presence of more
electron-rich ligands. We propose that related changes in Ca-
oxo/Ca−Mn distances driven by the protein active site cavity
may have a similar effect in tuning the redox potential of the
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OEC. A similar effect may explain the cation size dependence
in the S1 → S2 oxidation, whereby the cavity surrounding the
OEC may enforce nonequilibrium metal-oxo distances that
impact the reduction potential of the OEC.
To investigate the effect of ligand basicity in modulating

cluster reduction potential, [Mn4O4] complexes featuring
carboxylate and amidate bridging ligands were synthesized
(Scheme 1). Treatment of the previously reported
LMn4O4(OAc)3 complex 1-Mn with a tethered diamidate
ligand results in the formation of LMn4O4(diam)(OAc) (3-
Mn).56 Subsequent treatment of 3-Mn with p-CF3-benzoic
acid results in the formation of LMn4O4(diam)(OBzCF3) (2-
Mn).56 Complexes 1-Mn ∼ 3-Mn are nearly isostructural with
respect to the Mn-oxo distances; the [Mn2

IIIMn2
IV]/

[MnIIIMn3
IV] couple is observed at +250, −15, and −150

mV vs Fc/Fc+, respectively.37,56 Toward further decreasing the
potential of this redox couple, a triamidate-supported [Mn4O4]
cluster was targeted (Scheme 1). Deprotonation of H3triam
with KH followed by treatment with 1-Mn results in the
formation of 4-Mn. The crystal structure of 4-Mn is consistent
with the LMn4O4(triam) formulation (Figure 2a). The

reversible [Mn2
IIIMn2

IV]/[MnIIIMn3
IV] couple is observed at

−465 mV vs Fc/Fc+, representing a shift of 600 mV relative to
1-Mn (Figure S13). Treatment of 4-Mn with Ag(OTf) affords
the one electron oxidized species [LMn4O4(triam)][OTf] (4-
Mn-ox). In a related series of [Co4O4] cuboidal systems,
cluster reduction potentials were found to be inversely
proportional to the weighted sum of ligand pKa’s (effective
basicity) in H2O.

57 A similar correlation can be obtained for 1-
Mn ∼ 4-Mn using the pKa of HOAc (12.6), p-CF3−
C6H4CO2H (9.6), and N-methylacetamide (25.9) in DMSO
with a slope of −70 mV/pKa (Figure 1, Table S3), establishing
a linear trend between ligand basicity and cluster potential in
[Mn4O4] complexes.58−61

To investigate the effect of ligand basicity in modulating the
reduction potential of clusters featuring redox-inactive metals,
[YMn3O4] complexes supported by different bridging ligands
were targeted (Scheme 1). For [LYMn3O4(OAc)3]

+ (1-Y), the
[YMn3

IV]/[YMnIIIMn2
IV] couple is observed at −430 mV vs

Fc/Fc+.39 Treatment of 1-Y with Cp*2Fe results in the
formation of the one electron reduced complex
[LYMn3O4(OAc)3] (1-Y-red).62 Treatment of 1-Y with

Scheme 1. Synthesis of [Mn4O4] and [YMn3O4] Complexes Studied in This Work
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1 equiv of a chelating bis-oxime proligand (H2N4O2) results in
the formation of 2-Y. The crystal structure of 2-Y is consistent
with the [LYMn3O4(N4O2)(OAc)(DMF)][OTf] formulation
(Figure 2b).63 Despite the pKa difference of 13 units between
acetic acid and acetoxime (pKa = 25.2)64 moieties, the reaction
is thought to be driven by a kinetic chelate effect. For 2-Y, the
reversible [YMn3

IV]/[YMnIIIMn2
IV] couple is observed at

−860 mV vs Fc/Fc+ (Figure S15). The bis-oximate ligand
decreases the reduction potential of 2-Y by 430 mV relative to
that of 1-Y, consistent with the increased basicity of the
oximate donors compared to acetates. The difference in redox
potential between 1-Y and 2-Y is similar to that between 1-Mn
and 3-Mn, suggesting that a similar trend based on effective
ligand basicity may be operative in [YMn3O4] complexes.
On the basis of the effective basicity trend, a triamidate-

supported [YMn3O4] complex was targeted to further decrease
the potential of the [YMn3

IV]/[YMnIIIMn2
IV] couple. Due to

the larger size of Y compared to Mn, triam3− was not suitable
as a supporting ligand. However, treatment of 1-Y with a tren-
based triacetamide proligand (H3Ntriam) and 3 equiv of

NaOtBu results in the formation of the amidate-supported, one
electron reduced complex 3-Y-red (Scheme 1). The ESI-MS
peak at m/z = 1443 is consistent with the mass of
[LYMn3O4(Ntriam)]+ (Figure S10). For 3-Y-red, the
reversible [YMn3

IV]/[YMnIIIMn2
IV] couple is observed at

−290 mV vs Fc/Fc+ (Figure S17). Accordingly, treatment of
3-Y-red with (Fc)(OTf) leads to the formation of the one
electron oxidized complex 3-Y. The crystal structure of 3-Y is
consistent with the [LYMn3O4(Ntriam)][OTf] formulation
(Figure 2c). Despite the similarity in pKa for acetoxime and
acetamide moieties and the increased effective ligand basicity
in 3-Y, the tris-amidate ligand increases the reduction potential
of 3-Y by 140 mV relative to that of 1-Y, inconsistent with the
increased basicity of the amidate donors compared to acetates.
To obtain a rationale for the shifts in redox potential

observed in 1-Y ∼ 3-Y, metal-oxo and metal−metal distances
were compared among the series of oxidized and reduced
complexes (Table 1). Comparing the reported crystal

structures of 1-Y-red and 1-Y, a slight contraction of Y-oxo
and Y−Mn distances is observed in 1-Y-red.39,62 This
contraction can be rationalized in terms of the increased
basicity of the bridging oxos in the reduced cluster, resulting in
the observed Y-oxo/Y−Mn contraction. Comparing the
structures of 1-Y and 2-Y, the average Y-oxo and Y−Mn
distances differ only by about 0.01 and 0.03 Å, respectively.
Therefore, binding of the bis-oximate ligand does not
significantly change the geometry of the [YMn3O4] core, and
the decrease in reduction potential of 2-Y relative to that of 1-

Figure 1. Linear correlation between redox potential and effective
ligand basicity in [Mn4O4] complexes 1-Mn ∼ 4-Mn. Similar trend
based on ligand basicity observed for [YMn3O4] complexes 1-Y and
2-Y. Deviation from the trend in 3-Y attributed to a geometric effect
described in this study.

Figure 2. Truncated crystal structures of (a) 4-Mn, (b) 2-Y, and (c) 3-Y. Bolded bonds highlight metal-oxo bonds. Mn (green), O (red), N (blue),
Y (purple).

Table 1. Y-oxo and Y−Mn Distances (Å) in Complexes 1-Y-
red, 1-Y, 2-Y, and 3-Ya

1-Y-red 1-Y 2-Y 3-Y

Y(1)−O(1) 2.297(3) 2.432(2) 2.308(2) 2.289(4)
Y(1)−O(2) 2.344(3) 2.335(2) 2.396(2) 2.278(4)
Y(1)−O(3) 2.306(3) 2.389(2) 2.422(3) 2.289(4)
Y−O average 2.316(3) 2.385(2) 2.375(2) 2.285(4)
Y(1)−Mn(1) 3.212(1) 3.239(1) 3.181(1) 3.106(1)
Y(1)−Mn(2) 3.144(1) 3.298(1) 3.193(1) 3.119(1)
Y(1)−Mn(3) 3.192(1) 3.213(1) 3.295(1) 3.100(1)
Y−Mn average 3.183 3.250(1) 3.223(1) 3.108(1)

aAverage distances underlined for emphasis.
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Y can be attributed to the increased effective basicity of the
ligand framework.
Comparing the structures of 1-Y and 3-Y, a more significant

contraction in the average Y-oxo and Y−Mn distances is
observed in 3-Y by about 0.1 and 0.15 Å, respectively. This
contraction in 3-Y can be attributed to the geometric pressure
exerted by the chelating tripodal tris-amidate ligand frame-
work, pulling the Y center closer to the Mn3 core than the
thermodynamic distances observed in 1-Y and 2-Y. Despite the
increase in ligand basicity going from acetates to amidates, the
shorter Y-oxo interactions enforced by the chelating ligand
framework increase the reduction potential of 3-Y, potentially
by decreasing the electron density available for the Mn centers
as a consequence of the shorter, stronger Y-oxo interactions.
The Y center in 3-Y is effectively more Lewis acidic because of
its closer proximity to the redox sites (Mn3O4) enforced by the
ligand. In the series of [Mn4O4] complexes 1-Mn ∼ 4-Mn,
noticeable changes in the [Mn4O4] core enforced by the
chelating ligand have not been observed (Table S2).56 By
taking into account only the basicity of the triamidate ligand
(Ntriam3−), the reduction potential of 3-Y would be expected
to be close to −1000 mV vs Fc/Fc+, implying that small
geometrical changes (0.1/0.15 Å) in the Y-oxo/Y−Mn
distances may shift the cluster redox potential by ∼700 mV.
Finally, compared with 1-Y-red and 1-Y which display
nonchelating ligands on Y, the structure of 3-Y has Y-oxo/
Y−Mn distances more similar to the reduced cluster, 1-Y-red,
suggesting that the [Ntriam]3− ligand enforces a geometry
closer to the preferred thermodynamic structure of the reduced
[YMn3O4] core. Therefore, the geometric pressure imposed by
the ligand favors the reduced form, as highlighted by the more
positive potential, despite the significantly more electron-rich
ligand set.
In summary, [Mn4O4] and [YMn3O4] complexes featuring

bridging ligands of different basicity and chelating properties
were synthesized and characterized by X-ray crystallography
and cyclic voltammetry. In agreement with previous studies of
[Co4O4] clusters, increasing the effective basicity of the ligand
framework of [Mn4O4] results in a decrease of cluster
reduction potential.57 Ligand-induced distortion of cluster
geometry is demonstrated as a mode of tuning cluster
reduction potential. A significant contraction of Y-oxo/Y−
Mn distances by 0.1/0.15 Å enforced by the chelating ligand
results in a positive shift of the cluster reduction potential even
in the presence of electron donating tris-amidate donors. We
propose that within the rigid cavity surrounding the OEC,23,65

structural changes that affect Ca-oxo/Ca−Mn distances may
have a similar effect in tuning the redox potential of the OEC.
Furthermore, our model studies suggest that the cation size
dependence in the S1 → S2 one e

− oxidation in the OEC is the
result of redox tuning through a similar geometric effect: the
rigid cavity surrounding the OEC may enforce shorter,
nonequilibrium metal-oxo distances for cations with ionic
radii larger than that of Ca2+, resulting in an increase in the
reduction potential of the OEC and inhibiting the S1 → S2
transition. While other factors such as the pKa of the water
bound to the redox-inactive metal may contribute to the slower
turnover frequency of the Sr-substituted OEC, a similar size
effect on redox chemistry may also be in place.66,67 Related
geometric constraints in synthetic systems may result in
nonlinear changes of reduction potentials and reactivity.
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