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Abstract 

Intensive Care Unit-Acquired Weakness (ICU-AW) is a generalized and symmetric 
neuromuscular dysfunction associated with critical illness and its treatments. Its incidence is 
approximately 80% in intensive care unit patients, and it manifests as critical illness 
polyneuropathy, critical illness myopathy, and muscle atrophy. Intensive care unit patients can 
lose an elevated percentage of their muscle mass in the first days after admission, producing 
short- and long-term sequelae that affect patients’ quality of life, physical health, and mental 
health. In 2019, the world was faced with coronavirus disease 2019 (COVID-19), caused by the 
acute respiratory syndrome coronavirus 2. COVID-19 produces severe respiratory disorders, 
such as acute respiratory distress syndrome, which increases the risk of developing ICU-AW. 
COVID-19 patients treated in intensive care units have shown early diffuse and symmetrical 
muscle weakness, polyneuropathy, and myalgia, coinciding with the clinical presentation of 
ICU-AW. Besides, these patients require prolonged intensive care unit stays, invasive 
mechanical ventilation, and intensive care unit pharmacological therapy, which are risk factors 
for ICU-AW. Thus, the purposes of this review are to discuss the features of ICU-AW and its 
effects on skeletal muscle. Further, we will describe the mechanisms involved in the probable 
development of ICU-AW in severe COVID-19 patients. 
Key Words: ICU-acquired weakness (ICU-AW); coronavirus disease 2019; skeletal muscle 
atrophy; critical illness. 
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 Patients in a critical state frequently require admission 
to the intensive care unit (ICU), generally, for extended 
periods.1 During the ICU stay, mechanical ventilation 
(MV) is usually an invasive treatment required to save 
the patient’s life.2 These patients can develop ICU-
acquired weakness (ICU-AW), a neuromuscular 
dysfunction, generalised and symmetric disorder, 
without an identified etiology other than the critical 
illness and its treatments.1,3,4 ICU-AW has a high impact 
on the length of ICU stay and the time of the patient’s 
recovery. The adverse consequences of ICU-AW also 
affect patients’ reinsertion to daily living activities and 

represent a high economic cost for the patients and the 
health care services.5 In 2019, a global pandemic began 
due to the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2), which led to millions of 
people falling ill with coronavirus disease 2019 (COVID-
19), many of them in critical condition.6 There are 
similarities between the clinical conditions of patients 
with COVID-19 and those patients who develop ICU-
AW (prolonged MV, ICU interventions, myalgias, 
muscle loss, and inflammation),6-8 suggesting that severe 
COVID-19 patients could have a high chance of 
developing ICU-AW during their ICU stay. Thus, the 
purposes of this review are to discuss the characteristic 



Intensive care unit-acquired weakness in COVID-2019 
Eur J Transl Myol 32 (3): 10511, 2022 doi: 10.4081/ejtm.2022.10511 

- 2 - 

 

of ICU-AW and its effects on skeletal muscle to describe 
the probable development of ICU-AW in severe COVID-
19 patients. 

ICU-acquired weakness 
Muscle weakness is a frequent problem in ICU patients, 
and it can be induced due to primary or secondary causes. 
Primary causes (< 0.5% of all ICU admissions) include 
neuromuscular pathologies that need intensive care, such 
as myasthenia gravis, multiple sclerosis, amyotrophic 
lateral sclerosis, and Guillain–Barré Syndrome, among 
other neurological disorders. Secondary causes 
correspond to treatment for other life-threatening 
conditions in the ICU.4,9 
ICU-AW affects the proximal rather than distal area of 
the limbs’ muscles and the respiratory muscles.1 Muscle 
tone become diminished, and tendon reflexes may be 
reduced or normal. ICU-AW does not strain the face and 
eyes muscles.1,10-13 
The incidence of ICU-AW is approximately 80% in ICU 
patients. It is associated with a longer duration of MV and 
hospitalisation along with a significant functional 
impairment for survivors.2 The prevalence of ICU-AW 
oscillates between 25 and 75%. Still, it could vary 
depending on the studied patient population, risk factors, 
timing of assessment (hospitalisation days and severity 
of the patients), and the methods used for diagnosis.12,14,15 

Risk factors for ICU-acquired weakness 
The risk factors for ICU-AW are classified as modifiable 
and non-modifiable (Figure 1). 
The modifiable risk factors include hyperglycaemia and 
drugs used to treat critically ill patients.4,16-18 The ICU-
AW patient’s hyperglycaemia is an independent risk 
factor for ICU-AW, which could be developed by 
parenteral nutrition or depending on the patients’ high 
severity state.10,16,17 Regarding drugs for treating ICU 
patients, a high risk of ICU-AW has been associated with 
vasoactive medication duration and doses (β-agonists 
mainly).19 The use of corticosteroids has shown 
contradictory results: when focusing exclusively on 
patients with sepsis, it has been associated with the risk 
of ICU-AW, but in patients with hyperglycaemia, a 
protective effect has been suggested.16,17 Although it is 
not yet clear, the use of neuromuscular blocking agents, 
such as cisatracurium has shown adverse effects in 
muscle weakness. These agents have been considered an 
independent risk factor for ICU-AW.16,20 Certain 
antibiotics, such as aminoglycosides and vancomycin, 
develop muscle weakness.21-23 Lastly, continuous 
sedation has a more pronounced effect on muscle atrophy 
and weakness than patients in a conscious state but 
immobilised in the absence of sedation.24 
The non-modifiable risk factors for developing ICU-AW 
are the severity of critical illness and mortality 
prediction. The severity of disease score and mortality 
prediction scores are often determined by the scale Acute 
Physiology and Chronic Health Evaluation (APACHE) II 

score, which estimates ICU mortality, and Sequential 
Organ Failure Assessment (SOFA) score, which 
evaluates the overall function and dysfunction of each 
organ system based on the degree of dysfunction of six 
organ systems. Higher scores on these scales indicate 
greater severity of clinical evolution, including a greater 
risk of death.  
Other non-modifiable risk factors include sepsis, 
inflammation (systemic inflammatory response 
syndrome, SIRS), multiple organ failure, longer duration 
of MV, and stay in the ICU.16,19,25,26 Prolonged MV is an 
independent risk factor for ICU-AW.16 MV increases the 
risk of ICU-AW and diaphragmatic weakness 
dysfunction, increasing the risk of failed ventilation and 
weaning, thus extending the MV and making up a vicious 
circle.14,16 Other risk factors are high levels of pro-
inflammatory cytokines, an elevated lactate level, being 
a woman and/or older person, a premorbid state, and 
frailty conditions that may predispose to the severity of 
the weakness.16,26 

Clinical manifestations of ICU-acquired weakness 
ICU-AW corresponds to nerve and muscle dysfunction 
due to generalized systemic inflammation and the risk 
factors mentioned above.27 ICU-AW commonly 
manifests in three different ways: polyneuropathy, 
myopathy, and muscle atrophy (Figure 1).25 These three 
conditions can contribute to varying proportions of this 
pathological condition and manifest alone or in 
combination.5,12,28 
Critical illness polyneuropathy (CIP) is defined as a distal 
sensory-motor polyneuropathy that affects limb and 
respiratory muscles and autonomic nerves in symmetric 
form.12,29 There is a loss of axons in CIP and reduced 
nerve excitability with preserved myelin sheets. 1,12 The 
aetiology could include loss of the blood-nerve barrier, 
inexcitability of the endoneurial membrane, and direct 
toxic effects from ICU therapies, including 
hyperglycaemia or lipids derived from parenteral 
nutrition, which would induce muscle denervation and 
atrophy.12,29 
Critical illness myopathy (CIM) is a primary acute 
myopathy with loss of myosin filaments, loss of muscle 
membrane excitability, and possible necrosis.1,12 CIM is 
characterised by limb and respiratory muscle weakness 
with retained sensory function, which is not related to 
denervation.2,12 The proposed CIM aetiology includes 
chemokine-induced autophagy of muscle fibre, muscle 
membrane inexcitability, acquisition of channelopathies, 
or direct toxic effects of ICU care, including 
corticosteroids or neuromuscular blockade.29 
Muscle atrophy is a typical feature of ICU-AW. 
Pronounced muscle wasting in ICU patients could be 
explained by mechanical unloading due to 
immobilisation/denervation and the catabolic state of 
critical illness, with reduced anabolism.5,14 Activated 
proteolytic systems have been observed in type II fibres, 
together with myosinolysis (proteolytic degradation of 
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myosin), consistent with primary myopathy and 
neurogenic muscle atrophy.2,25 These pathological 
disorders translate clinically into loss of strength and 
muscle mass, weakness, and significant functional 
disorders in activities of daily living, which are 
independent predictors of mortality in critically ill 

patients. 2 Patients with ICU-AW have significantly 
decreased handgrip strength and reported worse physical 
performance. 29 Despite improvements in overall strength 
in the timeline, physical function-related quality of life 
remained significantly below the expected age-adjusted 
indicators at all time points.29 

 
 

Fig 1. Features of ICU-acquired weakness. ICU-AW commonly manifests in three different manners: Critical Illness 
Polyneuropathy (CIP), Critical Illness Myopathy (CIM), and muscle atrophy. The modifiable risk factors 
include hyperglycaemia (an independent risk factor for ICU-AW); common drugs for the treatment of 
intensive care unit (ICU) patients (such as vasoactive medications); neuromuscular blocking agents (such as 
citraturia); antibiotics (such as aminoglycosides and vancomycin); continuous sedation; and corticosteroids 
(with contradictory results). The non-modifiable risk factors include prolonged mechanical ventilation (MV) 
(an independent risk factor for ICU-AW) and stay in ICU; multiple organ failure; the presence of sepsis; the 
presence of Systemic Inflammatory Response Syndrome (SIRS); premorbid state: to be a woman and/or older; 
and frailty conditions. The diagnosis of ICU-AW will depend on whether the patient is conscious or not. In 
awake/cooperate patients, the evaluation tests are handgrip dynamometry and six grades MRC-SS (the gold 
standard for the diagnosis of ICU-AW). Also, some tests or scores provide information about the patients’ 
functional abilities: functional status score for the ICU and Chelsea Critical Care Physical Assessment tool; 
6-minute walking distance (6-MWD) (assesses functional walk capacity post ICU); and maximum inspiratory 
and expiratory pressure (in respiratory muscles). In unconscious/uncooperative patients, the evaluation 
consists of electroneurography test (to evaluate nerve conduction velocities and amplitude of nerve action 
potentials) and, electromyography (to evaluate activity at rest, motor unit potentials and maximal effort); 
imaging techniques (computed tomography (CT), ultrasonography, magnetic resonance imaging, dual-
energy X-ray absorptiometry, neutron activation analysis, bioelectrical impedance); and nerve and muscle 
biopsies (used mainly in research). 

 ICU-AW: ICU-acquired weakness; ICU: intensive care unit; SIRS: systemic inflammatory response 
syndrome; MV: mechanical ventilation; CIP: Critical Illness Polyneuropathy; CIM: Critical Illness 
Myopathy; MRC-SS: Medical Research Council sum score; 6-MWD: 6-minute walking distance; CT: 
computed tomography: MIP: maximum inspiratory pressure; MEP: maximum expiratory pressure 
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ICU-acquired weakness diagnosis 
ICU-AW diagnosis requires both clinical assessments of 
muscle strength (peripheral and/or respiratory muscles) 
and complete electrophysiological evaluation of 
peripheral nerves and muscles (Figure 1).4,12 

Diagnosis in awake/cooperative patients 

The gold standard for ICU-AW diagnosis is handgrip 
dynamometry and the Medical Research Council sum 
score (MRC-SS).12 Handgrip dynamometry evaluates the 
dominant hand’s isometric muscle strength.12,18 In ICU-
AW, the cut-off scores are less than 11 kg (interquartile 
range [IQR] 10–40) in males and less than 7 kg (IQR 0–
7.3) in females.18,24,30 The handgrip is a non-invasive test 
with quick and easy bedside testing. Besides, it has high 
inter-rater reliability and increased sensitivity and 
specificity. Its disadvantages are that patients must be 
awake, cooperative, and must comprehend the assessor’s 
instructions. In general, these conditions are difficult for 
ICU patients because they could be in a coma, have pain, 
or use sedative drugs; therefore, it is uncertain whether 
the outcome is representative of global muscle strength 
or not.4,12,24,31 
The six-grade MRC-SS is a strength test that allows 
assessment of muscle strength in 12 muscle groups 
(shoulder abduction, elbow flexion, wrist extension, hip 
flexion, knee extension, and foot dorsiflexion).4,12,31 
Individual scores are combined into a total score, which 
allows for an estimated overall motor function. Its 
advantages are that it is a bedside non-invasive test with 
high reliability and validity. However, it requires the 
patient to be alert, cooperative, and motivated, which is 
not always possible; it may be affected by the positioning 
of the patient and availability of limbs for assessment 
(immobilisation, for example); and it has a low 
sensitivity to changes in muscle function. 4,12,31 There is 
also a modified score MRC-SS of 4-grade, but it still 
requires further validation.4,24 
Other less commonly used tests are functional status 
score for the ICU, scored physical function in intensive 
care test, and Chelsea critical care physical assessment 
tool, which provide information about the patients’ 
functional abilities. The 6-minute walking distance (6-
MWD) assesses functional walking capacity, but it is 
mainly used to evaluate how patients perform at 
discharge and at post-ICU follow-up.24,32-34 
In respiratory muscles, the determination of maximum 
inspiratory and expiratory pressure represents the 
strength of the general respiratory muscles. Still, they 
require the patient to be awake and cooperative. The 
measurement of transdiaphragmatic pressure or 
endotracheal tube pressure in response to phrenic nerve 
stimulation could be a good option, but it is an invasive 
technique that requires magnetic stimulation and 
qualified staff. Imaging techniques, such as chest X-rays 
or ultrasonography, can be used, but they have low 
sensitivity and specificity.4,35-38 

Diagnosis in unconscious/uncooperative patients 
The strategies applied to unconscious/uncooperative 
patients, such as electrophysiological and imaging 
techniques, have been incorporated to the diagnosis of 
ICU-AW. Electrophysiological studies are primarily 
aimed at differentiating between CIM and CIP in 
unconscious patients. However, they can also be used 
when the patient is cooperative and voluntary muscle 
activation is possible. Among the most used tests are 
electroneurography which evaluates nerve conduction 
velocities and amplitude of nerve action potentials, as 
sensory nerve action potentials and compound muscle 
action potentials; and electromyography (which includes 
activity at rest, motor unit potentials and maximal effort). 
These tests provide a measure of muscle function 
regardless of whether the patient is awake and 
cooperative, which allows assessment of the contractile 
properties of skeletal muscles without the need for 
voluntary muscle activation.1,12,13,39,40  
The imaging techniques can assess muscle mass and 
body composition with different precision grades and 
costs. Among these, the skeletal muscle area at the third 
lumbar vertebra level measured through computed 
tomography (CT) on admission is more exact. It allows a 
better diagnosis of patients in the ICU state. Its 
disadvantages are that it is expensive, requires 
specialised staff and software, and exposes patients to a 
high radiation level.4,41 Other techniques include 
ultrasonography, magnetic resonance imaging, dual-
energy X-ray absorptiometry, neutron activation 
analysis, and bioelectrical impedance.42-44 Nerve and 
muscle biopsies could provide essential and precise 
information of muscle states but are invasive, expensive, 
and specialised techniques, so they are used mainly in 
research.39,42,45 

Skeletal muscle atrophy in ICU-acquired weakness 
Skeletal muscle atrophy is characterised by decreased 
structural proteins essential for muscle function (such as 
myosin heavy chain and myosin light chain).46,47 Some 
reports show that ICU patients can lose as much as 20% 
of their muscle mass in the first 10 days after ICU 
admission, depending on the disease severity.5,48 This 
mass loss is caused by an increase in a catabolic state in 
the muscle in these first days. Beyond this specific 
muscle damage, ICU-AW patients show significant 
impairments in body structure and function. These 
alterations produce a critical limitation of physical 
activity, even offering complete immobilisation.10,29,49,50 
In ICU-AW, several causes can produce muscle wasting. 
Some studies have proposed disturbed metabolism, 
sepsis, and/or malnutrition as inductors of muscle 
wasting.48,51 It has also been attributed to immobilisation 
and chronic disease.52,53 There is evidence that part of 
ICU patients’ treatment, such as drug administration, 
muscle relaxants, corticosteroids, and even intravenous 
sedation, can exacerbate the effect produced by 
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immobilisation. Thus, the same therapy for ICU patients 
can decrease the muscle mass.52,53 
At the physiopathological level (Figure 2), one of the 
muscle wasting features in the critical illness is the loss 
of myosin and myosin-related proteins due to the 
imbalance between muscle protein synthesis and 
degradation.52,54 Studies performed in animal models of 
ICU-AW and critically ill patients present increased 
ubiquitin-proteasome system (UPS) activity as the 
dominant regulator of muscle proteolysis.39 UPS 
activation is induced by oxidative stress, energy stress, 
pro-inflammatory cytokines (tumour necrosis factor-
alpha [TNF-α], interleukin 1 [IL-1], and interleukin 6 
[IL-6]), mechanical silencing (defined as loss of external 
muscle strain (weight-bearing), and internal muscle 

strain (contraction), and sepsis conditions that could 
increase the gene expression of crucial UPS 
players.39,52,55,56 
Moreover, dysregulated autophagy has been found in 
muscles from critically ill patients, contributing to the 
degradation of muscle fibre and inducing muscle loss.45,57 
Furthermore, in critical illness conditions with prolonged 
bed stay resulting in minimal mechanical load stimuli, 
protein synthesis is decreased, reinforcing muscle loss for 
reducing mTOR1 pathway activity.39,52 Calpain, an 
enzyme that participates in sarcomere disassembly, could 
lead to Z-band disintegration and myofibrillar protein 
breakdown in critical illness. However, the antecedents 
that support this possibility are minimal.39 

 
Fig 2. Physiopathology mechanisms associated to high chance of developing ICU-acquired weakness and its severe 

consequences in COVID-19 patients. Dysregulated control of skeletal muscle mass and other factors induce 
muscle weakness and skeletal muscle atrophy in ICU-AW. There is increased ubiquitin-proteasome system 
(UPS) activity, dysregulated autophagy, decreased protein synthesis, and increased calpain activity. Other 
factors that induce muscle weakness and skeletal muscle atrophy in ICU-AW patients are impaired excitation-
contraction coupling, hypoperfusion, mitochondrial dysfunction, and inflammation. In COVID-19, the 
possible pathophysiological mechanisms for developing ICU-AW in patients treated in ICU include the 
cytokine storm, deregulation of the renin-angiotensin system (RAS), and inflammatory myopathy. 

 ICU-AW: ICU-acquired weakness; COVID-19: coronavirus disease 2019; UPS: ubiquitin-proteasome 
system; mTOR: mammalian target of rapamycin; ICU: intensive care unit; TNF-α: tumour necrosis factor-
alpha; IL-1: Interleukin 1; IFN: Type I interferon; IL-6: Interleukin 6; RAS: Renin-angiotensin system; SARS-
CoV-2: severe acute respiratory syndrome coronavirus 2; ACE2: angiotensin-converting enzyme 2; MV: 
mechanical ventilation. 
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Muscular mitochondrial dysfunction has been observed 
in critical patients. They show a vicious cycle of 
macromolecules and organelle damage due to 
mitochondrial damage compromises energy provision 
and increases the production of free radicals and reactive 
oxygen species, which can induce proteolysis.39,52 
Regulation of mitochondrial size and morphology may 
play a critical role in muscle atrophy and is determined 
by an imbalance between mitochondrial fission and 
fusion.58,59 
Furthermore, impaired excitation-contraction coupling 
due to altered intracellular calcium homeostasis for 
sodium channel inactivation has been reported in muscle 
of ICU-AW patients.39 This alteration could fail to 
coordinate repetitive firing within the motor neurons that 
can precede electrical failure in axons and nerve-muscle 
coupling or neuromuscular junction (NMJ) degradation, 
as observed in aging.60,61 
Under ICU-AW conditions, hypoperfusion, probably 
caused by oedema formation because of vasodilation and 
increased permeability, may favour axonal degeneration, 
neuronal injury, and a chronic membrane depolarisation 
of terminal motor axons in skeletal muscle.13,39 
Inflammation is an essential factor that induces muscle 
atrophy in several patients. The systemic inflammatory-
mediated pathology is considered the most significant 
risk factor for ICU-AW.62 Inflammation has a higher 
impact on ICU-AW development than inactivity when 
evaluating patients with critical diseases.63 A recent 
meta-analysis concluded that lower muscle strength and 
skeletal muscle mass are significantly associated with 
higher levels of circulating inflammatory markers.64 In 
ICU patients, muscle biopsies have shown signs of 
inflammation, pronounced infiltration with adipose 
tissue, and fibrosis, which could also lead to muscle mass 
loss.39,45 
Due to the early appearance of muscle atrophy and the 
impact of muscle dysfunction in the ICU outcome, the 
development of persistent post-ICU complaints, and low 
quality of life, research about ICU-AW has increased. 
The researchers have focused on studying the 
mechanisms and factors that influence muscle 
dysfunction in a patient chronically ill, which promotes 
the development of possible therapies or treatments for 
ICU patients to avoid and/or improve this muscular 
condition. 

Therapeutic strategies in ICU-acquired weakness 
patients 
Substantial loss in muscle mass develops in the first stage 
of ICU; however, its impact on muscle function is 
extended to the period after the patients are discharged.48 
These antecedents indicate that implementing some 
strategies to avoid impaired muscle structure and 
function in the early ICU stage is essential to prevent 
impaired status after ICU stay. As immobilisation is the 
most common feature in ICU patients, several studies 
have focused on finding treatments considering 

immobilisation as the leading cause of skeletal muscle 
wasting in these patients. The development of treatment 
for ICU-AW is based on three strategies: 
pharmacological, nutritional, and mechanical loads 
(physical therapy and/or electrostimulation). 

Pharmacology treatment of ICU-acquired weakness:  
There are several drugs for ICU-AW treatment: anabolic 
steroid oxandrolone and growth hormone (to increase 
muscle mass), propranolol (to decrease muscle loss), 
immunoglobulin (to control inflammation), and 
glutamine therapy (to improve nutritional status). 
However, the evidence is not yet sufficient to recommend 
their use. Insulin therapy could be a promising treatment 
because it has shown significant preventive effects upon 
CIP/CIM, but it is not yet possible to recommend it as a 
common strategy due to the substantial risk of 
hypoglycaemia.4,65,66 
Nutrition treatment: Concerning the contribution of 
nutrition to the clinical outcome of ICU-AW patients, 
randomised controlled clinical trials have not shown an 
apparent effect.48 The recommendations in the initial 
phase in ICU stay (1–4 days) are to deliver calories and 
proteins progressively, and from day five onward, to 
deliver a high-caloric supplementation.67 
Few studies have assessed the impact of nutritional 
strategies on muscle mass or function in ICU-AW 
patients, and their results are inconclusive.48,67-70 Protein 
supplementations in the early phases of dysfunction have 
been used to treat muscle mass loss, but the results are 
contradictory. Some authors indicate that protein 
administration does not improve the catabolic state 
during the early phase of critical illness, and protein 
synthesis does not change to increased protein 
delivery.5,71,72 Other authors indicate that exogenous 
nutrients supplemented as part of the dietary protein 
during critical illness reach the skeletal muscle and can 
induce the synthesis of muscle protein and, at the same 
time, can inhibit proteolysis 73 

It has been demonstrated that immobilisation can 
induce an inflammatory condition in the muscle, altering 
muscle energy and nutrient metabolism. Considering this 
analysis, some researchers have focused on studying the 
effects of enhanced protein provision, specific substrate 
delivery, and physical exercise in the prevention of 
muscle mass loss in ICU patients.48 This reaffirms that 
the loss of muscle mass in ICU patients in the first phase 
should be considered a multifactorial condition. Thus, the 
prevention of muscle wasting in ICU patients should be 
focused on the control of all the associated risk factors,74 
such as immobility or nutrient deficits that are key for 
avoiding protein loss and metabolic alterations.75-77 
Mechanical loads 
Physical therapy: It is well established that physical 
therapies can improve health in different ways, including 
neurological, metabolic, and morphological 
adaptation.78-81 Training, exercise, and movement are 
essential stimuli for the induction of protein synthesis, 
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mainly via direct activation of the mTOR pathway and, 
consequently, increasing muscle mass under normal 
conditions.82 Physical therapy is considered an essential 
field in critical care,83 because it may improve muscle 
function by targeting different aspects: anti-
inflammatory effects, potentially reducing local cytokine 
expression, and increasing the expression of anti-
apoptotic factors. 84 Patients with muscle wasting are 
commonly referred to physical therapy when they are 
discharged from the ICU, but physical rehabilitation must 
begin early in the ICU stay.85  
Anekwe et al. developed an analysis to evaluate the 
effects of rehabilitation in two subgroups of ICU patients, 
screened and randomised, with 49% and 36% lower odds 
of developing muscle wasting, respectively.85 The sub-
analysis based on the time of onset of rehabilitation 
suggests that in the first 72 hours after ICU admission, 
the rehabilitation programme is protective against ICU-
AW development compared to beginning rehabilitation 
later (more than 72 hours). However, these beneficial 
effects may be explained by the preventive protocol 
working better or by the patients being able to participate 
more actively in its rehabilitation in the early stage of the 
disease. In this line, Hickmann et al. previously 
demonstrated that mobilisation attenuated the muscle 
atrophy induced by disuse in the early or catabolic phase 
of critically ill patients, maintaining the muscle fibre 
cross-sectional area.86 
Electrical stimulation: Evidence suggests that beneficial 
effects in ICU patients are observed with neuromuscular 
electrical stimulation (NMES) treatments. The NMES 
could reduce skeletal muscle atrophy in ICU patients.87 
However, controversial results are observed on whether 
NMES could reduce ICU-AW risk compared to usual 
care in ICU.88 NMES have been shown to improve other 
conditions, such as time on a mechanical ventilator, 
hospital length stay, and acute mortality associated with 
ICU-AW, but it does not enhance global muscle 
strength.50,88-90 The main reasons NMES intervention are 
not recommended yet are the low quality of the 
experimental evidence due to the limited number of 
participants, differences in the NMES parameters, such 
as frequency, intensity, and duration, and limiting the 
pooling and interpretation of data.88  

Potential therapies 

One of the vasoactive peptides with a beneficial effect on 
structure and function in skeletal muscle is angiotensin-
(1–7) [Ang-(1–7)] which belongs to the non-classical 
axis of the renin-angiotensin-system. Ang-(1–7) has anti-
atrophic activity in skeletal muscle, posing a potential 
treatment for ICU-AW. Ang-(1–7) produces its effects 
through the G-protein-coupled transmembrane receptor 
Mas.91 The actions of Ang-(1–7) include the inhibition of 
cell proliferation, vasodilation, and antihypertensive 
effects.92-94 In skeletal muscle, Ang-(1–7) reportedly acts 
in the prevention of fibrosis and autonomic dysfunction 
associated with Duchenne muscular dystrophy, as well as 

the decrease in angiotensin II (Ang II)-induced insulin 
resistance and transforming growth factor (TGF)-β 
signaling.95-97 Ang-(1–7) also has anti-atrophic effects in 
skeletal muscle, counteracting the muscle wasting 
induced by Ang II, immobilisation, and sepsis through a 
mechanism dependent on the Mas receptor and protein 
kinase B (PKB/Akt) activity. Furthermore, at the 
catabolic level, studies in mice have shown that systemic 
administration of Ang-(1–7) prevents the myosin heavy 
chain (MHC) decrease and increases atrogin-1 and 
MuRF-1 in skeletal muscle. Lastly, Ang-(1–7) can 
prevent the reduction in the diameter of muscle fibres and 
avoid the transition in their type.98-101 
Thus, Ang-(1–7) could be an exciting candidate for 
possible future therapies to curb muscle mass loss in 
patients with ICU-AW. 

ICU-acquired weakness and COVID-19 
Since 2019, the world has faced a complex health 
situation due to the COVID-19 pandemic. COVID-19 is 
an infectious disease caused by SARS-CoV-2. The 
World Health Organization (WHO), in April 2022, 
reported 497057239 infected people and 6179104 deaths 
from the virus in the world.102  
The clinical manifestation of this viral infection includes 
asymptomatic or symptomatic patients. The common 
symptoms are cough, sore throat, headache, fever, gastric 
discomfort, fatigue, dyspnoea, and muscle and joint pain. 
103 In symptomatic patients, the condition’s severity is 
highly variable and can be managed on an outpatient 
basis, requiring hospitalisation or admission to intensive 
care units (ICU). Severe COVID-19 patients usually need 
access to the ICU and, in many cases, the use of 
mechanical ventilation (MV) and other invasive 
treatments to save their lives. In this context, the risk of 
developing ICU-AW is high.6  
There is still little information regarding COVID-19 
patients developing ICU-AW. However, there are several 
similarities between patients with severe COVID-19 and 
CIM patients, such as prolonged MV, classical ICU 
interventions, myalgias, significant muscle loss, and 
hyper-inflammation.7,8 
Considering that COVID-19 produces severe respiratory 
disorders, such as pneumonia (75%) and acute 
respiratory distress syndrome (ARDS) (15%), these 
patients have a high probability of developing ICU-
AW.104 Hence, SARS-CoV-2 could cause neuromuscular 
symptoms like another coronavirus previously reported 
such as severe acute respiratory syndrome coronavirus 
(SARS-CoV) and Middle East respiratory syndrome 
coronavirus (MERS-CoV). In these viruses, patients 
reportedly develop several neuromuscular alterations, 
such as myalgia, rhabdomyolysis, and 
polyneuropathy.105-107 About 75% of COVID-19 patients 
admitted to the ICU require MV,108-110 and the median 
length of stay in the ICU and hospital is 14 and 17 days, 
respectively.111 
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High probability of developing ICU-acquired weakness 
in COVID-19 patients 
Still, not many clinical studies describe the development 
of ICU-AW in COVID-19 patients treated in ICU. 
However, the current information shows that a high 
percentage of these patients developed early diffuse and 
symmetrical muscle weakness (CIM)112-115 or 
polyneuropathy (CIP)116 with absent deep tendon 
reflexes,117 and myalgia,114 coinciding with the clinical 
manifestations of ICU-AW. These patients present 
several risk factors of ICU-AW, such as required 
intensive care, invasive mechanical ventilation, 
pharmacological therapy for ICU (corticosteroids, 
sedatives drugs, neuromuscular blocking agents), 
hyperglycaemia, and prolonged ICU stays.118 
The ICU-AW diagnosis in patients with COVID-19 has 
been developed through clinical tests that show lower 
scores in mobility scales, decreased handgrip strength, 
and Barthel index. 112,118 Electrodiagnostic findings have 
shown normal sensory conduction, low amplitude, and 
increased distal latency of compound muscle action 
potentials (CMAP), and electromyography (EMG) 
showed signs of critical illness myopathy (CIM), 
112,114,116,117 which would confirm the presence of ICU-
AW in patients with more severe COVID-19. 
Thus, when COVID-19 patients require prolonged ICU 
stays, it is highly probable that they develop ICU-AW. 
However, the impact on functional status and long-term 
consequences of ICU-AW in these survivors remain 
unclear. Despite a lack of evidence, the median and 
extended time consequences can have severe adverse 
effects on daily life activities. The rehabilitation 
programmes could effectively reverse muscle weakness 
caused by ICU-AW in COVID-19 patients. 

Mechanisms for the development of ICU-acquired 
weakness in COVID-19 patients treated in ICU 
At the pathophysiological level (Figure 2), in COVID-19 
exhibits a “cytokine storm,” with increases in cytokine 
and chemokine levels119 and triggers coagulopathy and 
thrombosis.120 The principal cytokines identified in 
COVID-19 patients are TNF-α, IL-1, type I interferon 
(IFN), and IL-6,121 the same cytokines that are increased 
in critically ill patients.39 A high correlation between the 
level of IL-6 in the blood and mortality and severity has 
been described in patients with COVID-19.122,123 It is 
known that there may be an imbalance in muscle 
metabolic homeostasis that exacerbates the loss of 
muscle mass due to a systemic increase in IL-6.124,125 
Furthermore, in a Syrian hamsters model injected with 
SARS-CoV-2, the animals developed typical COVID-19 
and weight loss signs associated with increases in 
interferon δ and TNF-α.126 The IFN dysregulated release 
in COVID-19 could produce a maladaptive immune 
response with hyperactivity of innate immunity and 
immunosuppression.127 This COVID-19 cytokine storm 
could aggravate the patient’s condition and promote the 
development of ICU-AW. 

In COVID-19 patients, deregulation of the renin-
angiotensin system (RAS) can also play a role in ICU-
AW development.128 RAS can modulate skeletal muscle 
mass through two pathways: classical and non-classical. 
Angiotensin (Ang) I is converted to Ang II by 
angiotensin-converting enzyme (ACE) in the classical 
axis. If Ang II is bound to angiotensin type 1 (AT1R), the 
adverse effects are inflammation, vasoconstriction, 
atherogenesis, fibrosis, and skeletal muscle atrophy.129 In 
the non-classical axis, angiotensin-converting enzyme 2 
(ACE2) converts Ang II into Ang (1-7). Positive skeletal 
muscle consequences include anti-inflammatory, anti-
atrophic, and antifibrotic effects.130,131 The SARS-CoV-2 
receptor is ACE2. When the virus binds to its receptor, it 
downregulates the ACE2 protein,132 which could lead to 
deregulation of RAS with increased activity of the 
classical axis and decreased activity of the non-classical 
axis,128 affecting the muscle mass balance. In coronavirus 
disease, post-mortem muscle samples of SARS-CoV 
patients showed muscle atrophy and necrosis;132 thus, it 
cannot be ruled out that SARS-Cov-2 might have similar 
effects on skeletal muscle.  
However, COVID-19 patients may develop an 
inflammatory myopathy called immune-mediated 
necrotising myopathy (IMNM) or necrotising 
autoimmune myopathy. The myopathy in severe 
COVID-19 patients may be explained by immune 
mechanisms (due to massive cytokine release than the 
direct invasion of the virus into muscle tissue), immune 
myositis infection with the virus, electrolyte 
disturbances, drugs, hypo-excitability of the membrane, 
necrosis, or hypoxia.114,133 Inflammatory myopathy is 
characterised by proximal muscle weakness 
accompanied by elevated serum muscle enzyme levels, 
such as creatine kinase (CK), scattered necrosis of 
myofibers, few infiltrated lymphocytes, size variation of 
muscle fibres, and central nuclei.134 This condition must 
necessarily be diagnosed by muscle biopsy,134,135 but CK 
could be a good and more accessible alternative. CK has 
generally been considered an indicator of muscle damage 
and inflammatory response.136 Patients with severe 
COVID-19 reportedly have higher CK serum levels and 
muscle injury than ICU patients.105 However, it is crucial 
to consider that CK is nonspecific and can be elevated by 
prolonged bed rest and medications instead of a direct 
muscle injury from COVID-19.137 

Treatment of ICU-acquired weakness in COVID-19 
patients 
The current treatments applied to COVID-19 patients in 
the ICU are: “conservative intravenous fluids, empirical 
intravenous antibiotics for suspected bacterial 
coinfection, consideration for early, invasive 
endotracheal intubation and ventilation to maintain 
adequate oxygenation and carbon dioxide elimination, 
lung-protective ventilation strategies, such as limiting 
tidal volumes and inspiratory pressures, periods of prone 
positioning while mechanically ventilated to decrease the 
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risk of mechanical lung injury and consideration of 
extracorporeal membrane oxygenation”.138 
After discharge from ICU, these patients could present 
similar long-term sequelae of ARDS, such as multiorgan 
impairment, pulmonary dysfunctions, dyspnoea, fatigue, 
reduced exercise capacity, exertional hypoxemia, 
reduced muscle strength, shoulder dysfunction, 
dysphagia, anxiety symptoms, and cognitive and mental 
health dysfunction.139,140 These sequels could affect 
functionality in daily activities and require rehabilitation. 
In addition, another aspect to consider and that could 
have important negative effects on the subsequent 
functional recovery of ICU and COVID-19 patients is the 
lack of mobilization during hospitalization. In this 
regard, a study by Liu et al. (2022)141 conducted with data 
from 135 ICUs, with a total of 1,229 patients in 33 
countries around the world, showed that more than 90% 
of patients with MV (positive or negative for COVID-19) 
during the pandemic, remained completely immobile 
most of the time. These results are worrying considering 
the enormous number of sequelae that these patients can 
have and, without a doubt, it is essential to change the 
therapeutic approach to one where mobility is a 
fundamental element of the rehabilitation.141 
Regarding post-ICU rehabilitation in COVID-19 
patients, given the limited information, more research is 
needed.139,142 Patients with physical function sequelae of 
ICU-AW and COVID-19 need physical therapy to 
reverse the disability associated with cardiopulmonary 
dysfunction and muscle atrophy. The physical treatment 
includes earlier mobilisation, exercise training, 
neuromuscular electrical stimulation, and respiratory 
rehabilitation, which can consist of respiratory care and 
respiratory training.143-145 
Therefore, developing rehabilitation programmes for 
post-COVID-19 patients treated in the ICU for medium- 
and long-term treatments are essential. Although it is a 
topic that is beginning to be studied and understood, 
considering the relevance for patient recovery and the 
associated health costs, it is relevant to explore the 
possible factors that influence the risk of ICU-AW in 
COVID-19 patients. 

Conclusions and perspectives 
In the future, it is necessary to investigate the 
pathophysiological process that favours possible 
myopathy and the development of ICU-AW in patients 
with COVID-19.133 In this regard, biopsy, despite being 
an invasive procedure, could be essential,114 as well as 
nerve conduction and EMG studies.116 A detailed 
neurological and muscular evaluation is also essential 
because many ICU-AW patients with COVID-19 may 
have early deficits.146 
If the long-term physical consequences of COVID-19 on 
skeletal muscle are added to the effects of ICU-AW,147-

156 recovery is complex, along with the high health care 
costs that this entails.117 It is crucial to start a nutritional 
intervention and preventive physical and respiratory 

therapy to delay the accelerated loss of skeletal muscle 
mass and maintain respiratory function during the ICU 
stay. After ICU discharge, it is essential to include 
multidisciplinary therapy that considers muscle function 
treatment from nutritional, pharmacological, and 
physical rehabilitation aspects. The target could be the 
progressive recovery of mass and general muscle 
strength and the function of the respiratory muscles and, 
with it, the generalised recovery of physical function. All 
these interventions that are used post-ICU-AW patients 
must be adapted to the needs of patients with COVID-19 
exhibiting long-term persistent symptoms, such as 
fatigue, dyspnoea, pain, and cough.139,145 
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