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Abstract
Multiple sclerosis (MS) is an autoimmunity-related chronic demyelination disease of the central nervous system (CNS), caus-
ing young disability. Currently, highly specific immunotherapies for MS are still lacking. Programmed cell death 1 (PD-1) 
is an immunosuppressive co-stimulatory molecule, which is expressed on activated T lymphocytes, B lymphocytes, natural 
killer cells, and other immune cells. PD-L1, the ligand of PD-1, is expressed on T lymphocytes, B lymphocytes, dendritic 
cells, and macrophages. PD-1/PD-L1 delivers negative regulatory signals to immune cells, maintaining immune tolerance 
and inhibiting autoimmunity. This review comprehensively summarizes current insights into the role of PD-1/PD-L1 sign-
aling in MS and its animal model experimental autoimmune encephalomyelitis (EAE). The potentiality of PD-1/PD-L1 as 
biomarkers or therapeutic targets for MS will also be discussed.
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Introduction

Multiple sclerosis (MS) is a demyelinating disease of the 
central nervous system (CNS), attacking myelinated axons 
and leading to progressive physical disability. Genetic pre-
disposition, epigenetic factors, lifestyle, and environmental 
factors all contribute to the risk of MS [1]. Previous studies 
indicated the immune dysfunction playing a primary role 

in the pathogenesis of MS [2–4]. Various types of immune 
cells including T cells, B cells, natural killer (NK) cells, 
dendritic cells (DCs), and macrophages/microglia are 
involved in the disease course [5]. Therefore, the modula-
tion of immune response has drawn great attention recently. 
Several disease-modifying therapies (DMTs) have been dis-
covered and approved to treat MS by targeting the immune 
system [6]. Non-specific therapeutic approaches may cause 
serious adverse events, such as leukemia and leukopenia 
[7]. Although the clinical development of DMTs has made 
encouraging success, there is still a remaining unmet need 
of highly specific treatment for MS [8].

Over the past years, a growing body of studies have sug-
gested the crucial role of programmed cell death 1 (PD-1) 
and its ligand PD-L1 in maintaining immune tolerance and 
preventing autoimmunity. The involvement of PD-1/PD-L1 
in MS has aroused increasing attention. In this review we 
first outline the cell-based immunomodulation of PD-1/
PD-L1 signaling pathway. We then discuss current insight 
into the role of PD-1/PD-L1 in MS and its animal model 
experimental autoimmune encephalomyelitis (EAE) and 
summarize the regulation of PD-1/PD-L1 expression. In 
addition, the potentiality of PD-1/PD-L1 as biomarkers or 
therapeutic targets for MS and future directions of research 
will be introduced.
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PD‑1 Receptor and Its Ligands

PD-1 (encoded by Pdcd1 gene), also known as CD279, is 
an immunosuppressive co-receptor belonging to the CD28 
family, mainly expressed on T lymphocytes, B lympho-
cytes and other immune cells [9]. The extracellular region 
of PD-1 is a single immunoglobulin variable-like domain 
and its cytoplasmic region contains an immunoreceptor 
tyrosine-based inhibitory motif (ITIM) and an immuno-
receptor tyrosine-based switch motif (ITSM) [10]. Upon 
T-cell receptor (TCR) stimulation, the tyrosine residues of 
ITIM and ITSM are phosphorylated, recruiting src homol-
ogy 2-domain-containing tyrosine phosphatase 1 (SHP1) 
and SHP2. Subsequently, downstream signals like CD3ζ, 
Zeta-chain-associated protein kinase 70 (ZAP-70) and pro-
tein kinase C-θ (PKC-θ) are dephosphorylated, resulting 
in the inhibition of TCR-mediated responses [11]. As for 
B cells, PD-1 mediates the dephosphorylation of Igβ, Syk, 
phospholipase C-γ2 (PLC-γ2) and extracellular signal-reg-
ulated kinase (ERK). These effects are dependent on the 
recruitment of SHP2 to the ITSM tyrosine [12].

PD-L1 (CD274, B7-H1) and PD-L2 (CD273, B7-DC) 
are the ligands of PD-1, belonging to the B7 family [13]. 
The two ligands share 40% identical amino acids [14]. The 
binding of PD-L2/PD-1 exhibits 2–six fold higher affinity 
than PD-L1/PD-1 interactions [15]. Although the binding 
affinity of PD-L2/PD-1 is high, relatively low expression 
of PD-L2 causes the interactions of PD-L1/PD-1 more 
competitive than PD-L2/PD-1. These diverse properties 
of PD-L1 and PD-L2 may contribute to the discrepancy of 
their involvement in PD-1 signal. PD-L1 is expressed on 
T cells and antigen-presenting cells (APCs) including B 
cells, DCs, monocytes and macrophages. PD-L1 can also 
be expressed on parenchymal tissues including vascular 
endothelial cells and pancreatic islet cells [16]. In contrast, 
PD-L2 is expressed on a few types of non-lymphoid cells, 
DCs and monocytes [17]. Different expression patterns of 
two ligands suggest a more important role of PD-L1 for 
tissue tolerance. The two ligands exhibited different func-
tional features since PD-L1 is slightly more effective than 
PD-L2 on inhibiting the activation of T cells [18]. In sup-
port of this, a recent study demonstrated that the immuno-
suppressive role of PD-L2 in anti-tumor immunity is less 
significant than that of PD-L1 [19]. The role of PD-L1 and 
PD-L2 in modulating invariant natural killer T (iNKT)-
cell-mediated airway hyperreactivity (AHR) in allergic 
asthma is unexpectedly opposite, which may be caused 
by distinct cytokine production [20]. In the graft versus 
host disease (GvHD)-like model, PD-1 was involved in 
the proliferation of alloreactive T cells via PD-1/PD-L2 
pathway [21]. In some types of autoimmune models, PD-1/
PD-L1, but not PD-1/PD-L2 interactions, has a crucial 

role in regulating T-cell functions, affecting the severity of 
the diseases [22–24]. However, some studies demonstrated 
that both PD-L1 and PD-L2 have the capacity for limiting 
autoimmunity [25, 26]. PD-L2 was able to exert its func-
tion through a receptor other than PD-1 [27]. We are just 
beginning to understand functional differences between 
PD-L1 and PD-L2. Owing to the growing insights into 
the role of PD-1/PD-L1 interactions in immune tolerance 
and translational therapies for autoimmunity, we put an 
emphasis on the immune modulation of PD-1/PD-L1 in 
this review.

Application of PD‑1/PD‑L1 
as an Immunotherapy for Cancer 
and Autoimmune Diseases

The expression of PD-L1 can be significantly upregulated on 
many malignant cell types, which is capable of constraining 
anti-tumor T-cell responses [28, 29]. Taken together with 
the discovery that PD-1 signaling induces T-cell dysfunc-
tion, PD-1/PD-L1 axis has been considered a promising 
strategy for breaking the tumor escape [30]. Both preclini-
cal and clinical studies proved that blockade of PD-1 or 
PD-L1 inhibits tumor growth or delay progression in a broad 
spectrum of tumor types including solid and hematologic 
malignancies [31–35]. The Food and Drug Administration 
(FDA) approved anti-PD-1 antibody nivolumab as the first 
PD-1-targeting immune checkpoint blockade therapy for 
melanoma in 2014 [36]. In 2016, atezolizumab became the 
first FDA-approval PD-L1 inhibitor for treating urothelial 
carcinoma [36]. Currently, more than 5 PD-1/PD-L1 block-
ade therapies have been approved for the treatment of tumors 
[30]. Due to the complexity of immunomodulatory network 
and the heterogeneity of neoplasms and hosts, combinato-
rial regimens with PD-1/PD-L1 pathway blockade are just 
unfolding. PD-L1 expression has been demonstrated to be 
correlated to clinical response after PD-1-based therapy 
[37, 38]. Making use of potential predictive biomarkers is 
instructive to guide the rational application of the immune 
checkpoint blockade.

PD-1/PD-L1 not only occupies an important position in 
cancer immunotherapy, but also attracts much attention in 
the field of autoimmunity. Two decades ago, the deficiency 
of PD-1 was observed to cause lupus-like IgG3 deposition 
glomerulonephritis and destructive arthritis in mice [39]. 
Plenty of studies confirmed the engagement of PD-1 in the 
pathogenesis of autoimmune diseases [40–42]. The immune 
regulation of PD-1 is strain-specific [9]. For example, gene 
polymorphisms in Pdcd1 are associated with the suscepti-
bility of autoimmune diseases including rheumatoid arthri-
tis (RA), type 1 diabetes mellitus (T1DM), systemic lupus 
erythematosus (SLE), ankylosing spondylitis (AS) and MS 
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[43–47]. Similarly, PD-L1 deletion can promote autoim-
munity [23, 48]. Certain autoimmune diseases may occur 
in cancer patients who are treated with anti-PD-1 or anti-
PD-L1 antibodies [49, 50]. All these facts hint therapeutic 
potential to upregulate the PD-1/PD-L1 pathway for autoim-
mune diseases. Transgenic nonobese diabetic (NOD) mice 
over-expressing PD-L1 on islet cells significantly decreased 
the incidence of both spontaneous and lymphocyte transfer-
mediated diabetes [51]. However, another study inferred an 
opposite conclusion that transgenic PD-L1 expression on 
the pancreatic islets promoted T cell-dependent spontaneous 
autoimmune diabetes and transplant rejection [52]. Her et al. 
detected the plasma concentrations of soluble PD-L1 in SLE, 
RA patients and healthy controls. Their results demonstrated 
that there were no significant differences among groups [53]. 
While the synovium and synovial fluid of RA was abun-
dant in PD-1+ T cells and PD-L1+ macrophages [54], the 
expression of PD-1 on T cells had a positive correlation 
with the disease activity [55]. We propose that elevated 
expression of PD-1 may serve as a negative feedback on 
the breakdown of peripheral immune tolerance. Encourag-
ingly, PD-1 activation induced by PD-L1-Fc fusion protein 
in vitro suppressed T-cell proliferation and decreased the 
production of interferon gamma (IFN-γ) from T cells in RA 
patients. Soluble PD-L1Ig treatment ameliorated the severity 
of collagen-induced arthritis (CIA) mice [54]. Stimulated 
PD-1 with PD-L1Ig fusion protein in experimental autoim-
mune glomerulonephritis (EAG) showed a marked reduction 
in corresponding parameters including albuminuria, serum 
creatinine, serum urea, segmental necrosis and tubular dam-
age [56]. PD-L1Ig treatment resulted in low autoantibody 
production, delayed disease progression and prolonged 
survival in SLE murine model [57]. Experimental autoim-
mune neuritis (EAN) is an animal model of Guillain-Barré 
syndrome (GBS) with reactive T cells and macrophages 
accumulating in the peripheral nervous system. Intraperi-
toneal administration of PD-L1 attenuated disease severity 
by inhibiting inflammatory infiltration, demyelination and 
deficits of peripheral nerves in both preventative and thera-
peutic groups of EAN rats [58]. In summary, PD-1/PD-L1 
may serve as a therapeutic target for autoimmune diseases.

Association Between PD‑1/PD‑L1 
and Immune Cells in MS/EAE

MS can be classified into relapsing–remitting MS (RRMS), 
primary progressive MS (PPMS), and secondary progres-
sive MS (SPMS) [59]. The pathological hallmark of MS is 
focal demyelinating lesions in the CNS, including break-
down of the blood–brain barrier (BBB), immune cell infil-
tration, demyelination, oligodendrocyte loss, gliosis, axonal 
or neuronal degeneration [60]. Despite complex underlying 

mechanisms of MS remain incompletely understood, it is 
generally accepted that MS is triggered by autoimmune 
response toward CNS self-antigens. Immune dysregulation 
is thought to be crucial for the occurrence and development 
of MS. Inflammation is evident during different disease 
stages of MS, involving both innate and adaptive immune-
mediated mechanisms. During acute phase DCs, mac-
rophages, T cells and B cells from the periphery infiltrate 
across the BBB. They produce proinflammatory cytokines, 
chemokines and molecules to impair the myelin sheath. By 
contrast, during chronic phase diffuse inflammatory cells 
are infiltrated and CNS-resident microglia are chronically 
activated, resulting in constantly axonal injury, neuron loss, 
and pronounced atrophy of the gray and white matter [61]. 
Ultimately, neuroinflammation can be decreased and con-
fined to the CNS compartments during disease progression. 
Therefore, peripheral immune cells and CNS-resident innate 
immune cells are key contributors of MS pathology at early 
and progressive stages, respectively. The former is the main 
target of current DMTs (summarized in Table 1).

Taken together, T cells, B cells, NK cells, DCs, and 
microglia/macrophages are actively involved in the patho-
genesis of MS. Detailed roles of each immune cell in MS 
pathogenesis are complicated, which may depend on the dis-
ease stage and microenvironment. Precise functional regula-
tion of these immune cells is thus of uttermost importance in 
potential therapeutic development for MS. A growing num-
ber of evidence has shown that PD-1/PD-L1 signaling exerts 
complex regulatory impacts on immune responses. Here we 
discuss the moderating role and potential mechanisms of 
PD-1/PD-L1 signaling in various immune cells during MS/
EAE.

T Lymphocytes

T lymphocytes are critical in adaptive immune responses, 
modifying the balance between protective immunity and 
tolerance. The autoimmunity of EAE is mainly mediated by 
effector T cells, suggesting a key role of antigen-specific T 
cells in MS/EAE. Specifically, Th1, Th17 cells and  CD8+ 
T cells are pathogenic in MS/EAE, while regulatory T cells 
(Tregs) and Th2 cells suppress autoimmune responses [61]. 
In MS/EAE, central and peripheral tolerance of T cells 
can be broken through defective functions of Tregs and/
or impaired immunosuppressive modulation of effector T 
cells. The autoreactive T cells that target CNS antigens can 
be activated in the periphery and then differentiated into 
 CD4+ Th1, Th17 cells, and  CD8+ T cells. These effector 
T cells are infiltrated and re-activated in the CNS, causing 
neuroinflammation.

PD-1 and PD-L1 are involved in central tolerance mecha-
nisms of T cells. The goal of central tolerance is to delete 
self-reactive clones during negative selection of T cell 
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development, thus avoiding autoimmunity. PD-1/PD-L1 
interactions contribute to T cell development (Fig. 1). The 
expression of PD-1 can be noted in  CD4−CD8− double-nega-
tive (DN) thymocytes, and PD-L1 is widely expressed in the 
thymic cortex. PD-1 deficiency promoted thymocyte transi-
tion from DN to  CD4+CD8+ double positive (DP) thymo-
cytes and decreased the efficiency of positive selection [62]. 
PD-1 may regulate the TCR repertoire of mature T lympho-
cytes by controlling TCR signaling thresholds. In addition, 
transgenic mice that constitutively overexpressed PD-1 on 
 CD4+CD8+ thymocytes displayed defects in positive selec-
tion and thymocyte maturation, which can be resolved upon 
the elimination of PD-L1 [63]. PD-L1-deficient mice had 
great numbers of DP and  CD4+ thymocytes, indicating that 
PD-L1 is also involved in regular thymic selection. Further 
mechanistic experiments showed that TCR/PD-1 cocross-
linking inhibited B-cell lymphoma-2 (Bcl-2) upregulation 
and extracellular signal-regulated kinase (ERK) phospho-
rylation, both of which are downstream of TCR signaling 
playing a role in thymocyte development. Moreover, Pdcd1 
contributes to the modulation of negative selection at the DP 
stage and has been identified as a candidate gene of defec-
tive central tolerance in NOD mice [64, 65]. So far, how 
PD-1 and PD-L1 regulate thymic selection and modulate 
TCR signaling thresholds are poorly defined.

T cell activation requires both antigen-specific signals 
from peptide-MHC complexes and antigen-independent 
signals from co-signaling molecules. Two sets of co-sign-
aling molecules are cell-surface molecules that transduce 

signals into T cells to modulate TCR signaling positively 
(co-stimulatory molecules, such as CD28) or negatively 
(co-inhibitory molecules) [66]. As described before, PD-1 
primarily transmit a co-inhibitory signal through the tyros-
ine phosphatase SHP1 and SHP2 to enfeeble T-cell activa-
tion when engaged with PD-L1 [11]. In other words, PD-1/
PD-L1 paralyzes T cells in a hyporesponsive state called 
“anergy,” which is responsible for peripheral tolerance and 
immune homeostasis (Fig. 2). In the condition of chronic 
viral infection, T cell exhaustion is maintained in order to 
avoid severe disease, while the administration of PD-1/
PD-L1 antibodies enhances T cell motility and restores T 
cell ability to lyse target cells and secrete proinflammatory 
cytokines such as IFN-γ, causing fatal diseases [67, 68]. 
In autoimmune diseases, the upregulation of PD-1 signal-
ing on T cells promoted the resolution of inflammation and 
ameliorated disease severity by inducing the anergic state of 
T cells and controlling T cell responses [54, 69]. PD-1-me-
diated decreased phosphorylation of TCR signaling mol-
ecules including ZAP-70, PKC-θ, CD3ζ, Vav1, PLCγ1 and 
further downstream molecules including c-Jun N-terminal 
kinase (JNK), retrovirus-associated DNA sequences (RAS), 
extracellular signal-regulated kinase kinase (MEK) and ERK 
[11, 68, 70, 71]. Apart from TCR signaling, co-stimulatory 
molecules CD28 and inducible T-cell co-stimulator protein 
(ICOS) are also reported to be the target signalings of PD-1/
PD-L1 [72] Tyrosine phosphorylation of CD28 recruits and 
activates phosphatidylinositol 3-kinase (PI3K), resulting in 
serine-threonine kinase AKT phosphorylation. PI3K-AKT 

Fig. 1  PD-1/PD-L1 regulates T cell development. PD-1 and PD-L1 
are involved in T cell development in the thymus. PD-1 is expressed 
on  CD4−CD8− double-negative thymocytes and PD-L1 is widely 
expressed in the thymic cortex. PD-1 modulates TCR development 
and thymocyte transition to the  CD4+CD8+ double positive cells. 
PD-1 signaling regulates the TCR repertoire by controlling TCR 
signaling thresholds during positive selection. Loss of PD-L1 signal-
ing at this stage results in a high number of double positive T cells. 

TCR/PD-1 cocross-linking inhibits Bcl-2 upregulation and ERK 
phosphorylation. Both of them are downstream of TCR signaling and 
are essential for thymocyte development. PD-1/PD-L1 also plays a 
role in negative selection, contributing to the induction of central tol-
erance. Abbreviations: PD-1, programmed cell death 1; PD-L1, pro-
grammed cell death 1 ligand 1; TCR, T-cell receptor; Bcl-2, B-cell 
lymphoma-2; ERK, extracellular signal–regulated kinase
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activation facilitates enhanced glucose uptake, glycolysis 
and cellular metabolism of T cells, which can be restrained 
through PD-1 engagement [10]. It is implied that the inhi-
bition of the PI3K-AKT pathway through PD-1 involves 
phosphatase and tensin homolog (PTEN) dephosphoryla-
tion, mediated by casein kinase 2 (CK2) downregulation 
[73]. A recent study demostrated that CD28 is a primary 
target of PD-1-mediated inhibition, which has yielded sig-
nificant insight into the signaling pathways affected by PD-1 
activation [74]. The fluorescence resonance energy transfer 
(FRET)-based assay indicated that SHP2, but not SHP1, 
is the major effector of PD-1. SHP2 recruitment requires 
Lck-mediated dual phosphorylation of PD-1. Notably, PD-
1-SHP2 displays preferential dephosphorylation of CD28, 
rather than TCR. Nevertheless, data in vitro revealed that 

enhanced CD28 signal can overcome PD-1-induced inhibi-
tion by augmenting interleukin-2 (IL-2) production in the 
presence of anti-CD3/CD86, which implies relatively low 
susceptibility of CD28 signal to PD-1-mediated negative 
regulation [72, 75]. The contradictions of these findings 
may be attributed to complicated dependence of diverse T 
cell states on TCR and CD28 signals. Interestingly, SHP2 
is dispensable for PD-1 signaling and the induction of 
T-cell exhaustion in vivo [76]. Therefore, there is a degree 
of redundancy in downstream signalings of PD-1. Specific 
effects of PD-1 on related intracellular signaling pathways 
in diverse T cell states (naïve, effector, memory, anergic or 
exhausted T cells) need further investigation.

In 2002, Laura L and colleagues firstly discovered that 
PD-L1/PD-1 interactions suppress CD3-mediated T cell 
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proliferation by restricting the cells from entering into cel-
lular division cycle, which related to an impaired produc-
tion of autocrine growth factor IL-2 [77]. CD28 signal is 
involved in the modulation, as the induction of IL-2 upon 
CD28 engagement has been well documented. Another 
study pointed out that IL-2, IL-7 and IL-15 can overcome 
PD-1-mediated inhibition of T cell proliferative responses 
through transcriptional regulation of transcription 5 
(STAT5) [72]. PD-1 blocks cell cycle progression through 
the G1 phase by inhibiting S-phase kinase-associated pro-
tein 2 (SKP2) and Smad3 activation, which is mediated by 
PI3K-AKT, RAS and MEK-ERK pathways, and leading 
to the downregulation of glycolytic enzyme activity and 
reduction of T cell expansion [71]. Decreased expression 
of PD-1 on peripheral blood T cells can enhance T cell 
proliferation, produce proinflammatory cytokines (IFN-γ, 

IL-2 and IL-12) and reduce anti-inflammatory cytokine 
secretion in human coronary artery disease [78].

Accumulating evidence suggests that PD-1/PD-L1 
interactions play a role in the differentiation of activated 
T cells. PD-L1Ig treatment altered T cell differentiation by 
decreasing the percentages of Th1 and Th17 cells as well as 
increasing Th2 cells and Tregs in spleens of EAN rats [58]. 
Meanwhile, phosphorylated PI3K, AKT, and mTOR were 
suppressed, indicating a pivotal role of PI3K-AKT-mTOR 
axis in regulating T cell differentiation affected by PD-L1. 
Furthermore, the overexpression of PD-L1 induces Th1 cells 
converting into Tregs, shielding immune-deficient murine 
hosts from GvHD after transplantation [79]. This pheno-
type transformation of Th1 cells is associated with SHP1/2 
recruitment and STAT1 inactivation, dependent on the PD-1/
PD-L1 signaling [79].

Tregs are involved in peripheral tolerance modulation by 
inhibiting pathogenic effector T cell-mediated tissue damage 
[80]. Tregs are expressed the transcription factor forkhead 
box protein P3 (Foxp3), which divided into two subpopula-
tions: naturally occurring (nTreg) and induced Treg (iTreg). 
PD-L1 is constitutively expressed by Tregs. Due to a key 
role of PD-1/PD-L1 and Tregs in the maintenance of periph-
eral tolerance, a large amount of studies have focused on 
the regulation of PD-1/PD-L1 on Treg differentiation and 
functions. When naïve  CD4+ T cells were co-cultured with 
PD-L1−/− APCs in the presence of anti-CD3 and transform-
ing growth factor beta (TGF-β), decreased  Foxp3+ Tregs 
were observed [81]. Besides, PD-L1Ig enhanced the main-
tainment of Foxp3 expression on iTregs and promoted sup-
pressive efficiency of iTregs. In mechanistic experiments, the 
levels of AKT, mTOR and S6 ribosomal protein phosphoryl-
ation were significantly diminished when naïve T cells were 
cultured in the presence of PD-L1, since PD-L1 upregulated 
the expression of PTEN which antagonizes the PI3K-AKT 
pathway [81]. Another study reported the intrinsic function 
of PD-1 in maintaining Foxp3 stability by downregulating 
endo-lysosomal protease asparaginyl endopeptidase (AEP) 
in iTregs during experimental autoimmune colitis and 
GvHD [82]. Experimental autoimmune uveitis (EAU) is a 
mouse model of human autoimmune uveitis. Muhammad 
et al. recently demonstrated that a protective role of Treg in 
preventing the mice from EAU was PD-1-dependent [83]. 
Investigation of pregnancy in animal models also suggested 
an important role of PD-1/PD-L1 and Tregs interactions in 
fetomaternal tolerance. PD-L1 blockade led to decreased 
allogeneic fetal survival rates, associated with increased 
Th17 cells and a reduction of Tregs [84]. Importantly, mice 
with partial Foxp3 insufficiency developed early-onset lym-
pho-proliferation and lethal autoimmune pancreatitis when 
PD-1 is deficient, which can be rescued by the transfer of 
PD-1-Foxp3+ Tregs [85]. Based on these studies, we con-
clude that PD-1/PD-L1 signaling preferentially pushes T 

Fig. 2  PD-1 signaling enfeebles T cell functions. When engaged 
with PD-L1, PD-1 transmits a co-inhibitory signal to hinder T cell 
activation through the phosphorylation of ITIM and ITSM, thereby 
recruiting the tyrosine phosphatase SHP1 and SHP2. PD-1 then 
mediates decreased phosphorylation of TCR signaling transducers 
including ZAP-70, PKC-θ, CD3ζ, Vav1, PLCγ1, and further down-
stream molecules JNK, RAS, MEK, and ERK. In addition to TCR 
signaling, PD-1 can also hamper co-stimulatory molecules CD28 
and ICOS. Tyrosine phosphorylation of CD28 recruits and activates 
PI3K, resulting in AKT phosphorylation. PI3K-AKT activation facili-
tates enhanced glucose uptake, glycolysis and cellular metabolism 
of T cells, which can be restrained through PD-1 engagement. The 
inhibition of the PI3K-AKT pathway through PD-1 involves PTEN 
dephosphorylation, mediated by CK2 downregulation. PD-1 blocks 
cell cycle progression through the G1 phase by inhibiting SKP2 
expression and Smad3 activation, which is mediated by PI3K-AKT, 
RAS and MEK-ERK pathways, leading to the downregulation of gly-
colytic enzyme activity and decreased T cell expansion. PD-1 sign-
aling alters T cell differentiation by decreasing Th1 cells and Th17 
cells as well as increasing Th2 cells and Tregs, which induced by the 
PI3K-AKT-mTOR pathway. During T cell activation, CD28 stimu-
lation retains T cell survival by upregulating the expression of anti-
apoptotic gene Bcl-xL. PD-1 ligation hampers Bcl-xL expression by 
limiting PI3K activation. PD-L1 can enhance the death of effector 
 CD8+ T cells through the upregulation of pro-apoptotic molecule 
Bim, causing the depletion of memory  CD8+ T cells. Meanwhile, 
PD-1 signaling alters cytokine production of T cells by attenuat-
ing proinflammatory cytokine (IFN-γ, IL-2 and IL-12) production 
and increasing anti-inflammatory cytokine IL-10 secretion. Abbre-
viations: PD-1, programmed cell death 1; PD-L1, programmed cell 
death 1 ligand 1; APC, antigen-presenting cell; TCR, T-cell receptor; 
ICOS, inducible T-cell co-stimulator protein; ICOSL, inducible T-cell 
co-stimulator ligand; ITIM, immunoreceptor tyrosine-based inhibi-
tory motif; ITSM, immunoreceptor tyrosine-based switch motif; SHP, 
src homology 2-domain-containing tyrosine phosphatase; ZAP-70, 
Zeta-chain-associated protein kinase 70; PKC-θ, protein kinase C-θ; 
PLCγ1, phospholipase C gamma 1; JNK, c-Jun N-terminal kinase; 
RAS, retrovirus-associated DNA sequences; MEK, extracellular sig-
nal–regulated kinase kinase; ERK, extracellular signal–regulated 
kinase; PI3K, phosphatidylinositol 3-kinase; mTOR, mammalian 
target of rapamycin; PTEN, phosphatase and tensin homolog; CK2, 
casein kinase 2; SKP2, S-phase kinase-associated protein 2; Bcl-xL, 
B-cell lymphoma-extra large; Bim, Bcl-2 interacting mediator of cell 
death

◂
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cells toward an inhibitory Treg fate, while the regulation of 
PD-1/PD-L1 and Tregs is not completely overlapped regard-
ing peripheral immune tolerance. PD-1-deficient Tregs were 
sufficient to rescue the autoimmune phenotype, indicating 
that PD-1 signaling reduces immunosuppressive function 
of Tregs [85]. Furthermore, PD-1 may also exert negative 
effects on Treg-mediated immunosuppression in tumor and 
chronic infection [86, 87]. Different immune status and local 
microenvironment may partially explain the discrepant find-
ings regarding the effect of PD-1/PD-L1 on Treg functions.

In 1992, Honjo and colleagues identified the expression 
of PD-1 was strongly induced upon programmed cell death 
and thereby played a role in apoptosis [88]. They discovered 
that overexpression of PD-1 cDNA failed to induce apop-
tosis of T cells, suggesting that PD-1 may not trigger the 
apoptotic signaling directly [89]. Subsequent studies indi-
cated that the engagement of PD-1/PD-L1 can indirectly 
hinder T cell survival by impacting the expression of apop-
totic-related genes [10, 90]. During T cell activation, CD28 
costimulation and TCR signaling retain T cell-survival by 
upregulating the expression of B-cell lymphoma-extra large 
(Bcl-xL), an anti-apoptotic gene. PD-1 ligation hampered 
Bcl-xL expression via limiting the PI3K activation, causing 
impaired T cell survival [10]. Specifically, PD-1 impacts 
the survival of anti-viral T cells in chronic infection. The 
expression of PD-1 on  CD8+ T cells (also known as cyto-
toxic T lymphocytes, CTLs) augmented their sensitivity to 
both spontaneous and CD95/Fas-induced apoptosis [91]. 
Similarly, PD-L1 enhanced the death of effector  CD8+ T 
cells through the upregulation of pro-apoptotic molecule 
Bcl-2 interacting mediator of cell death (Bim), promoting 
the depletion of memory  CD8+ T cells accordingly [90]. 
However, Pulko et al. found that PD-L1 deficiency increased 
the apoptosis and the susceptibility of effector  CD8+ T cells 
to Ca-dependent and Fas ligand-induced killing by other 
CTLs, and downregulated Bcl-xL expression [92]. With the 
contradictory results, more efforts are needed to gain a better 
understanding of this issue.

B Lymphocytes

Immunoglobulin G oligoclonal bands (OCBs) were evident 
in cerebrospinal fluid (CSF) of most patients with MS and 
anti-CD20 therapies are increasingly used as DMTs in MS. 
B cells are believed to display a pathogenic role in MS.

PD-1 is expressed on many subpopulations of B cells. 
Germinal center (GC) B cells and plasma cells express 
PD-L1 [93–95]. Similar to T cells, a negative effect of PD-1 
signaling on B cell function is strongly suggested. PD-
1-knockout mice developed high levels of auto-antibodies 
[96]. PD-L1−/− B cells stimulated a high proliferation of 
 CD4+ T cells in vitro [48]. With the expression of PD-L1, 
Tregs inhibited autoreactive B cells and induced peripheral 

B cell tolerance directly through PD-1 in vivo [97]. Cellular 
mechanisms include recruiting SHP2 to its phosphotyrosine 
and dephosphorylating key signal transducers of BCR sign-
aling [12]. Elevated expression of PD-L1 on regulatory B 
(Breg) cells suppressed follicular helper T (Tfh)-cell expan-
sion and differentiation via alterations in downstream signal-
ing pathways following PD-1 ligation [98]. The reduction of 
Tfh cells limited B-cell fate by limiting both memory B cell 
development and terminal differentiation to plasma cells, 
which dramatically inhibited antibody production and sub-
sequent humoral responses. Consistent with this, blockade 
of PD-L1 can enhance humoral immunity by upregulating 
the generation of Tfh cells [99], and blockade of PD-1 can 
enhance antigen-specific immunoglobulin production [100]. 
However, PD-1 has also been reported to be essential for GC 
responses, including GC B cell survival, the formation and 
affinity of long-live plasma cells, optimal GC localization 
and activity of Tfh cells [101, 102]. It is worth mention-
ing that the expression of PD-L1 is increased, while PD-1 
expression is decreased in GC B cells and PD-1 is upregu-
lated in Tfh cells [95, 101]. One reasonable explanation is 
that GC B cells downregulate PD-1 to reduce the interac-
tions between B cells and Tfh cells by PD-L1-PD-1 ligation. 
In addition, PD-1/PD-L1 interactions between Tfh cells and 
B cells dampen TCR signaling and reduce the ligand sen-
sitivity of Tfh cells, thereby enforcing a stringent selection 
threshold for competing B cells to promote affinity matura-
tion [102] (Fig. 3).

Natural Killer Cells

NK cells act as sentinels for detecting aberrant cells. Unlike 
T and B cells, NK cells mediate immune defense without 
prior antigen sensitization. They discriminate target cells 
such as infected or malignant cells through a molecular 
detection system including a variety of cell surface activat-
ing and inhibitory receptors. When activated, NK cells target 
cell killing through release of perforin- and granzyme-con-
taining cytotoxic granules, which is accompanied by secre-
tion of proinflammatory and immunoregulatory cytokines 
[103]. NK cells are significant players in MS/EAE. NK cell 
depletion before immunization diminished the onset and 
severity of EAE, along with decreased lymphocytes and 
DCs infiltration into the CNS (104). However, two main 
subsets of human NK cells have different effects on MS. NK 
cell subsets are increased in the CSF of MS patients, and 
the regulatory/effector  (CD56brightCD16−/CD56dimCD16+) 
NK ratio is also increased remarkably [105]. Many cur-
rent DMTs can increase the  CD56bright regulatory NK cell 
population in peripheral blood, which has the capability 
to suppress autologous  CD4+ T cell proliferation through 
direct cytotoxicity [106, 107]. PD-1 is highly expressed on a 
small percentage of human peripheral blood NK cells in one 
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quarter of healthy individuals, and a potential correlation 
is established between human cytomegalovirus (HCMV) 
seropositivity and the presence of PD-1+ NK cells. Latent 
chronic diseases such as viral infection may contribute to 
the induction and expression of PD-1 on NK cells (108). 
PD-1+ NK cells display a reduced proliferative capability 
in response to cytokines, low degranulation, impaired anti-
tumor activity and increased apoptosis that can be partially 
restored by PD-1/PD-L1 blockade [108, 109]. Similar to T 
cells, PD-1 exerted its inhibitory effect on NK cells through 
interfering with AKT phosphorylation [109]. PD-L1 on NK 
cells can interact with PD-1 on DCs and inhibit the acti-
vation of DCs, exerting negative impacts on anti-tumor 
immunity [110]. During acute and chronic viral infection, 
liver-resident NK cells suppress the anti-viral responses of 
hepatic T cells via PD-1/PD-L1 interactions [111]. Besides, 
NK cells which highly expressed PD-L1 play an immuno-
suppressive role in autoimmunity. PD-L1 expression on NK 
cells was upregulated when stimulated by IL-18. Adoptive 
transfer of these cells into streptozotocin-treated mice led to 
a delayed diabetes development and partial disease preven-
tion with the mechanism involving apoptosis induction of 

activated antigen-specific  CD8+ T cells [112]. However, a 
study of enteric microbial infection in mice suggested that 
increased PD-1 expression can boost the function of NK 
cells and promote protective immunity by increasing the 
expression and production of granzyme B and perforin of 
mucosal NK cells (113) (Fig. 4).

Dendritic Cells

DCs play both immunogenic and immunoregulatory roles 
in MS/EAE. Upon pathological stimulation, mature DCs 
activate naïve T cells in the periphery and promote them 
to differentiate into effector cells, resulting in the release 
of proinflammatory cytokines. Activated T cells can be 
re-activated upon encounter with CNS-resident DCs 
which present myelin-derived epitopes [111]. Tolerogenic 
DCs are a steady state of immature, maturation-resistant 
DCs that express low levels of co-stimulatory molecules 
(CD80, CD86, and CD40), high levels of co-inhibitory 
molecules (PD-L1 and CD95L) and have an ability to 
induce Tregs instead of Th1/Th17 responses [112]. Tolero-
genic DCs induce stable antigen-specific immunological 

Fig. 3  PD-1/PD-L1 signaling in B cells. PD-1 is expressed on many 
subpopulations of B cells. GC B cells and plasma cells also express 
PD-L1. PD-L1−/− B cells stimulated a high proliferation of  CD4+ T 
cell in vitro. With the expression of PD-L1, Tregs inhibited autoreac-
tive B cells and induced peripheral B cell tolerance directly through 
PD-1 in vivo. Elevated expression of PD-L1 on Breg cells suppressed 
the expansion and differentiation of Tfh cells via alterations in down-
stream signaling pathways following PD-1 ligation. The reduction of 

Tfh cells limited B-cell fate by limiting both memory B cell develop-
ment and terminal differentiation to plasma cells, which dramatically 
inhibited antibody production and subsequent humoral responses. 
Blockade of PD-L1 can enhance humoral immunity by upregulat-
ing the generation of Tfh cells, and blockade of PD-1 can enhance 
antigen-specific immunoglobulin production. Abbreviations: PD-1, 
programmed cell death 1; PD-L1, programmed cell death 1 ligand 1; 
GC, germinal center; Breg cells, regulatory B cells
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hyporesponsiveness in myelin-reactive T cells from 
RRMS patients [114]. Administration of tolerogenic DCs 
decreased the incidence and severity of EAE through the 
induction of Tregs, the reduction of Th1 and Th17 cells, 
and the production of IL-10 (115, 116).

Overexpressed PD-L1 in DCs may impair  CD4+ T 
cell-activation and IL-2 production in vitro [117]. Also, 
tolerogenic DCs enhance the expression of PD-1 in T cells 
both in vivo and in vitro [118, 119]. Interestingly, soluble 
PD-1 can induce a tolerogenic DC phenotype via reversing 
signaling by PD-L1 into DCs [117]. Due to the powerful 
role in immune tolerance induction, tolerogenic DCs that 
highly express PD-L1 have been considered a therapeu-
tic target for GvHD and autoimmune diseases [118, 120]. 
Besides, PD-1 expression on DCs can negatively modulate 
DC functions and impede immune responses by interfering 
the production of DC-derived IL-12 and tumor necrosis 
factor alpha (TNF-α) [121]. It is inferred that PD-L1-ex-
pressing cells may have the potential to suppress T cell 
responses by directly engaging PD-1 on DCs and inhibit-
ing the function of DCs. DC-DC interplay through PD-L1/
PD-1 may also play a role in immune modulation (Fig. 5).

Macrophages/Microglia

Microglia are tissue macrophages in the CNS, playing a crit-
ical role for neural development, synaptic pruning and CNS 
homeostasis [122]. In MS/EAE, microglia are viewed as a 
“double edged sword.” On one hand, activated microglia/
macrophages aggravate neuroinflammation through antigen 
presentation and proinflammatory cytokine secretion [123]. 
Microglia/macrophages can directly damage neurons by 
releasing inflammatory factors (reactive oxygen and nitrogen 
species) to trigger mitochondrial injury and axonal dam-
age [124]. On the other hand, microglia/macrophages drive 
oligodendrocyte differentiation and initiate remyelination. 
Microglia can also clear myelin debris and apoptotic cells 
as well as promote neurogenesis by producing neurotrophic 
factors such as brain-derived neurotrophic factor (BDNF) 
and insulin-like growth factor 1 (IGF-1) [125].

PD-1-expressing macrophages exhibited an anti-inflam-
matory-like surface profile in both mice and human tumor 
settings [126]. PD-1 expression is negatively correlated to 
phagocytic ability of macrophages and blockade of PD-1/
PD-L1 enhanced anti-tumor responses, prolonged survival 

Fig. 4  PD-1/PD-L1 signaling in NK cells. PD-1+ NK cells dis-
play a reduced proliferative capability in response to cytokines, low 
degranulation, impaired anti-tumor activity and increased apoptosis 
that can be partially restored by PD-1/PD-L1 blockade. PD-1 exerts 
its inhibitory effects on NK cells through interfering with AKT phos-
phorylation. PD-L1 on NK cells can interact with PD-1 on DCs and 
then inhibit DCs activation, exerting negative impacts on anti-tumor 

immunity. During acute and chronic viral infection, liver-resident NK 
cells suppress the anti-viral responses of hepatic T cells via PD-1/
PD-L1 interactions. Besides, NK cells which highly expressed PD-L1 
play an immunosuppressive role in autoimmunity. Abbreviations: 
PD-1, programmed cell death 1; PD-L1, programmed cell death 1 
ligand 1; NK cells: natural killer cells; DCs, dendritic cells
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through inhibiting proinflammatory to anti-inflammatory 
macrophages polarization [126, 127]. PD-L1 antibody treat-
ment promoted cell proliferation of cultured bone marrow-
derived macrophages, which is related to the activation of 
the AKT-mTOR pathway. Transcriptomic profiles of mac-
rophages have been switched into inflammatory phenotypes 
following PD-L1 antibody treatment [128] (Fig. 6).

During neuroinflammation, microglia upregulate the 
expression of both PD-1 and PD-L1, serving as a critical 
immune cell type that attenuates inflammatory responses 
and promotes neuronal repair. Upregulated expression 
of PD-1 in activated microglia can reduce proinflamma-
tory cytokine production, inducing microglial polarization 
toward into the immunoregulatory type [129]. In mice model 
of spinal cord injury, PD-1 deficiency induced microglial 
polarization toward into the proinflammatory phenotype 
via STAT1 and nuclear factor kappa beta (NF-κB) signaling 
[130]. It was recently discovered that the elevated expression 
of PD-L1 promoted anti-inflammatory microglial polariza-
tion after spinal cord injury, then improving motor func-
tion recovery and alleviating neuropathic pain via inhibiting 
the phosphorylation of p38 and ERK1/2 [131]. With the 
upregulation of PD-1 on infiltrating effector T cells in the 

CNS, microglia are highly expressed PD-L1 and suppress 
T-cell responses via the PD-1/PD-L1 interactions, limit-
ing detrimental immune-mediated damage [132]. Since the 
expression of PD-1 and PD-L1 can be upregulated on micro-
glia simultaneously, the possibility of microglia interacting 
with themselves through the PD-1/PD-L1 pathway is worth 
exploring in the future (Fig. 7).

Taken together, the expression of PD-1 and PD-L1 on 
microglia/macrophages occurs as a response in the presence 
of different inflammatory milieu, altering cellular pheno-
types through downstream signal transduction, then modu-
lating innate and adaptive immune responses.

Current Understanding of PD‑1/PD‑L1 in MS/
EAE

Given that PD-1/PD-L1 emerges as a significant player in 
immune tolerance, the role of PD-1/PD-L1 signaling in MS/
EAE has received increasing attention. This section sum-
marizes the role of PD-1/PD-L1 in the conditions of MS/
EAE (Fig. 8).

Fig. 5  PD-1/PD-L1 signaling in DCs. Overexpressed PD-L1 in DCs 
may impair  CD4+ T cell activation and IL-2 production in  vitro. 
Tolerogenic DCs that highly express PD-L1 enhance the expression 
of PD-1 in T cells both in vivo and in vitro. Soluble PD-1 can induce 
a tolerogenic DC phenotype via reversing signaling by PD-L1 into 
DCs. Due to the powerful role in immune tolerance induction, tolero-
genic DC has been considered a therapeutic target for autoimmune 

diseases. Besides, PD-1 expression on DCs can negatively modulate 
DC functions and impede immune responses by interfering the pro-
duction of DC-derived IL-12 and TNF-α. Abbreviations: PD-1, pro-
grammed cell death 1; PD-L1, programmed cell death 1 ligand 1; 
DCs, dendritic cells; IL, interleukin; TNF-α, tumor necrosis factor 
alpha
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Fig. 6  PD-1/PD-L1 signaling in 
macrophages. PD-1-expressing 
macrophages exhibit an anti-
inflammatory-like surface 
profile in tumor settings. PD-1 
expression is negatively cor-
related to phagocytic ability of 
macrophages and blockade of 
PD-1/PD-L1 enhanced anti-
tumor responses, prolonged 
survival through inhibiting 
proinflammatory to anti-inflam-
matory macrophages polariza-
tion. PD-L1 antibody treatment 
promotes cell proliferation of 
cultured bone marrow-derived 
macrophages, which is related 
to the activation of the AKT-
mTOR pathway. Transcriptomic 
profiles of macrophages have 
been switched into inflammatory 
phenotypes following PD-L1 
antibody treatment. Abbrevia-
tions: PD-1, programmed cell 
death 1; PD-L1, programmed 
cell death 1 ligand 1

Fig. 7  PD-1/PD-L1 signaling in microglia. During neuroinflamma-
tion, microglia upregulate the expression of both PD-1 and PD-L1. 
Upregulated expression of PD-1 in activated microglia can reduce 
proinflammatory cytokine production, inducing microglial polariza-
tion toward into the immunoregulatory type. In mice model of spinal 
cord injury, PD-1 deficiency induces microglial polarization toward 
into the proinflammatory phenotype via STAT1 and NF-κB signal-
ing. The elevated expression of PD-L1 promotes anti-inflammatory 

microglial polarization via inhibiting the phosphorylation of p38 
and ERK1/2. With the upregulation of PD-1 on infiltrating effector T 
cells in the CNS, microglia are highly expressed PD-L1 and suppress 
T-cell responses via the PD-1/PD-L1 interactions, limiting detrimen-
tal immune-mediated damage. Abbreviations: PD-1, programmed cell 
death 1; PD-L1, programmed cell death 1 ligand 1; NF-κB, nuclear 
factor kappa beta; ERK, extracellular signal–regulated kinase
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Compared to healthy individuals, the expression of pd-1 
and pd-l1 in peripheral blood mononuclear cells (PBMCs) 
was significantly reduced in RRMS patients, suggesting the 
breakdown of immunological tolerance in MS [133, 134]. 
However, PD-L1 expression in MS plaques has been shown 
to be increased when compared to non-pathological human 
CNS tissues [135]]. Upon myelin basic protein (MBP) 
stimulation, PD-1-expressing T cells and PD-L1-expressing 
APCs in peripheral blood of remitting MS patients were 
significantly increased compared with acute MS patients, 
indicating a positive correlation between PD-1/PD-L1 
expression and MS remission [136]. A potential explana-
tion for these paradoxical results may be the heterogeneity 
of patients’ baseline characteristics and disease course in 
these studies. Importantly, PD-1 polymorphism is suggested 
to be a genetic modifier of MS progression [47]. An intronic 

7146G/A polymorphism of Pdcd1 gene is associated with 
a progressive disease course in German MS patients by 
impairing PD-1-mediated suppression of IFN-γ secretion 
[47]. A latest prospective, longitudinal study measured the 
serum PD-L1 during pregnancy and postpartum in MS and 
the results showed that there was a trend of increased PD-L1 
during the first trimester of pregnancy in patients without 
disease relapse, but did not achieve statistical significance 
[137]. In EAE, PD-1/PD-L1 can be expressed on infiltrat-
ing mononuclear cells within the meninges and PD-L1 is 
expressed on the endothelium, astrocytes and microglia 
[138, 139]. The expression of PD-1 and PD-L1 was signifi-
cantly increased with disease progression [139]. Blockade 
of PD-1 using neutralizing mAb resulted in disease exacer-
bation, associated with increased myelin oligodendrocyte 
glycoprotein (MOG)-reactive T-cell responses, anti-MOG 

Fig. 8  Cell-based PD-1/PD-L1 immunoregulation in MS/EAE. 
There is a correlation between PD-1/PD-L1 expression and ini-
tiation along with disease progression. Compared to healthy indi-
viduals, the expression of PD-1/PD-L1 on PBMCs was significant 
reduced in RRMS patients. While PD-L1 expression on MS plaques 
was increased, PD-1-expressing T cells and PD-L1-expressing APCs 
in peripheral blood of remitting MS patients were significantly 
increased compared with acute MS patients. Importantly, an intronic 
7146G/A polymorphism within the Pdcd1 gene is associated with a 
progressive disease course in MS. In EAE, the expression of PD-1/
PD-L1 was increased with worsening symptoms. Blockade or defi-
ciency of PD-1/PD-L1 resulted in EAE exacerbation. Early treatment 
with PD-L1Ig fusion protein resulted in a long-lasting disease amelio-
ration. Furthermore, upregulation of PD-1/PD-L1 is involved in the 
immunoregulation of many treatments for MS/EAE, including IFN-β, 
siponimod, fingolimod, IFN-α, IL-12, estrogen and 1,25(OH)2D3. T 

cells (Th1, Th17, CTLs), B cells, DCs, and macrophages/microglia 
play pathogenic role in MS/EAE. They produce proinflammatory 
cytokines, chemokines and molecules in the CNS, causing myelin 
injury, axonal damage and neuron loss. Upregulation of PD-1/PD-L1 
inhibits over-reactive immune responses through inducing immu-
noinhibitory or tolerogenic immune cells, restricting neuroinflamma-
tion in MS/EAE. Furthermore, PD-1 and PD-L1 have been identified 
to be involved in the therapeutic responses for MS/EAE. Abbre-
viations: PD-1, programmed cell death 1; PD-L1, programmed cell 
death 1 ligand 1; MS, multiple sclerosis; EAE, experimental autoim-
mune encephalomyelitis; PBMC, peripheral blood mononuclear cell; 
RRMS, relapsing–remitting multiple sclerosis; APC, antigen-present-
ing cell; IFN, interferon; IL, interleukin; 1,25(OH)2D3, 1,25-dihy-
droxyvitamin D3; CTL, cytotoxic T lymphocytes; DC, dendritic cell; 
CNS, central nervous system
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antibody production and CNS lymphocyte infiltration [139]. 
In keeping with this, EAE mice with the deficiency of PD-1 
and PD-L1 developed severe disease [22]. In active MOG-
induced EAE, early treatment with PD-L1Ig fusion protein 
resulted in a long-lasting disease amelioration [140]. Collec-
tively, these discoveries highlight a protective role of PD-1/
PD-L1 in EAE.

The number of memory Tregs are reduced expressing sig-
nificantly high level of PD-1 in peripheral blood of RRMS 
patients [141]. Liu and colleagues identified a novel Treg 
subpopulation  (CD4+FoxA1+CD47+CD69+PD-L1hiFoxP3−) 
in EAE and adoptive transfer of these Tregs suppressed 
EAE depending on the PD-L1 expression [142]. Further-
more, PD-L1 deficiency enhanced Th1 and Th17 responses 
in EAE, and the numbers of  CD4+ and  CD8+ T cells in 
the CNS were significantly elevated [135]. Proinflamma-
tory microRNA (miR)-155 is critical for T cell effector 
functions with miR-155-deficient mice being highly resist-
ant to EAE due to the Th1 and Th17 differentiation defect. 
A recent study found that PD-1 deletion promotes EAE in 
miR-155-knockout mice by increasing Th1 and Th17 cell 
infiltration [42]. Adoptive transfer of Bregs, which highly 
express PD-L1, can suppress the incidence and severity of 
MOG-induced EAE by decreasing IFN-γ and IL-17 produc-
tion [98]. Estrogen is believed to engage in immunomodu-
lation and contributes to disease protection in MS/EAE. 
PD-L1 selectively expressed by B cells was proven to be 
indispensable for estrogen-induced protection against EAE 
[143]. Nonetheless, depletion of PD-L1 on B cells did not 
affect the onset and severity of EAE [144]. When EAE was 
induced in DC-depleted mice, a high degree of inflammation 
was observed, indicating the capacity of DCs for peripheral 
tolerance [119]. Mechanistic experiments indicated that the 
interactions between DCs and T cells by PD-L1/PD-1 liga-
tion led to T cell hyporesponsiveness to EAE [119]. Con-
sistently, conditional knockout of PD-L1 in DCs aggravated 
EAE [144]. The upregulation of PD-L1 in DCs via DNA 
hypomethylation resulted in delayed progression of EAE 
[145], and tolerogenic DCs expressed a high level of PD-L1 
were effective for EAE [118, 146]. However, Zozulya et al. 
found that intracerebral injection of PD-L1−/− DCs recruited 
regulatory  CD8+ T cells into the CNS and then ameliorated 
EAE [147]. It seems that PD-L1 on DCs is pivotal to main-
tain the susceptibility and reactivity of both pathogenic and 
protective T cells in EAE.

PD-L1 on microglia/macrophages plays a role in restrict-
ing neuroinflammation. Estrogen treatment enhanced PD-L1 
expression on peripheral macrophages, which may contrib-
ute to its efficacy for EAE [148]. Previous studies revealed 
that PD-L1 on microglia can inhibit antigen-specific T cell 
activation, Th1 differentiation and cytokine production 
in vitro [132, 149]. PD-L1 expression on microglia/infiltrat-
ing macrophages has been shown to be increased in EAE. 

The role of PD-1/PD-L1 on NK cells in MS/EAE remains 
unclear. It is well documented that PD-1/PD-L1 signaling 
regulates the functions of NK cells playing a crucial role 
on MS pathology. More efforts are needed to explore PD-1/
PD-L1 on NK cells as a potential target in the future.

PD-1 and PD-L1 have been identified to be involved in 
therapeutic mechanisms of MS/EAE. Both short- and long-
term injection of IFN-β upregulated the expression of PD-L1 
in PBMCs of RRMS patients [150, 151]. A randomized con-
trolled trial of siponimod (a selective sphingosine-1-phos-
phate receptor 1 and 5 modulator) indicated that treating 
SPMS with siponimod for 9–12 months increased circulat-
ing Tregs proliferation and upregulated PD-1 expression 
on  CD4+ T cells [152]. Similarly, PD-1 expression on Tfh 
cells in the peripheral blood was increased following fin-
golimod treatment (12-month) in MS (153). Sustained low-
dose IFN-α showed prophylactic and therapeutic efficacy 
in EAE by upregulating the mRNA expression of PD-1 on 
splenocytes (154). IL-12 administration can suppress EAE 
by increasing PD-L1 expression on  CD11b+ APCs via an 
IFN-γ-dependent manner [155]. Several studies have unrave-
led that mechanisms of estrogen to prevent EAE also include 
the upregulation of PD-1/PD-L1 [143, 146, 148, 156]. We 
have previously demonstrated that tolerogenic DCs induced 
by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are effective 
for EAE and potential therapeutic effects can be related to 
increased expression of PD-1 on T cells [118]. In summary, 
PD-1 and PD-L1 may serve as a promising target for MS/
EAE.

Mechanisms of Regulating PD‑1/PD‑L1 
Expression

Since PD-1/PD-L1 ligation plays a role in maintaining 
immune homeostasis and tolerance, a better understand-
ing of biological processes that regulate PD-1 and PD-L1 
expression is helpful. The expression of PD-L1 and PD-1 
can be tightly regulated via a complex manner, involving 
different signaling pathways, genomic and epigenetic param-
eters (summarized in Table 2).

Regulation of PD‑L1 Expression

Expression of pd-l1 gene has been shown to be controlled by 
inflammatory milieu. Multiple proinflammatory cytokines 
are prominent soluble inducers for PD-L1, including TNF-α, 
IL-17, IFN-α, IFN-β, IFN-γ, IL-2, IL-7, IL-15, IL-21 and 
IL-27 [160–165]. IL-18 derived from cancer cells can pro-
mote PD-L1 expression and IL-10 production [166]. IL-6, 
IL-1β, TNF-α, IL-10, and IL-27 increase PD-L1 expression 
on DCs [29, 167, 168]. IFN-γ-mediated PD-L1 expression 
is mainly regulated by janus kinase 1 (JAK1)/JAK2-STAT1/
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STAT2/STAT3, PI3K-AKT, MEK-ERK and NF-κB path-
ways and transcription factor interferon regulatory factor-1 
(IRF-1) [160, 169, 170]. Notably, the activation of PI3K-
AKT and MEK-ERK can augment PD-L1 expression, while 
PD-1 signaling negatively regulates these two pathways 
decreasing PD-L1 expression and inhibiting T cell functions 
[10, 71, 167]. It is a negative feedback loop of immune cells 
to respond to microenvironment changes. Signal transduc-
tion via pathogen-associated molecular patterns (PAMPs) 
and Toll-like receptors (TLRs) results in nuclear translo-
cation of NF-κB, binding NF-κB to the PD-L1 promoter 
and inducing PD-L1 expression [171]. In the condition of 
hypoxia, hypoxia-inducible factor-1α (HIF-1α) binds to 
the hypoxia-response element (HRE) in the PD-L1 proxi-
mal promoter and cooperates with the NF-κB pathway to 
promote PD-L1 transcription [172]. Besides, NF-κB also 
enhances PD-L1 protein stability [173]. There are paradoxi-
cal findings about the PD-L1 regulation by NF-κB. Inhib-
iting NF-κB pathway can induce tolerogenic DCs, which 
express higher level of PD-L1 than untreated-DCs [174, 
175]. The diversity of PD-L1 regulation by NF-κB path-
way in different immune cell types and the crosstalk among 
different signaling pathways may contribute to the discord-
ance. MiRNAs function as post-transcriptional and transla-
tional regulators of PD-L1 expression [176–181]. Specifi-
cally, miR-20b, miR-21 and miR-130b can enhance PD-L1 
expression by inhibiting the expression of PTEN, which is 
correlated with the activation of PI3K-AKT [182].

Regulation of PD‑1 Expression

IL-2, IL-7, IL-15, IL-21, IFN-α, IL-6, IL-12 and IL-18 
were reported to promote the expression of PD-1 in differ-
ent immune cells [164, 183]. IL-4 exerts negative effects 
on PD-1 expression in mice DCs, while IL-2, IL-6, IL-10, 
IFN-γ, IL-12, and TNF-α displayed no significant influences 
[121]. The upregulation of PD-1 on B cells can be induced 
by TLR9 activation [95]. However, TLR9 significantly inhib-
its PD-1 expression on mice DCs, whereas TLR2, TLR3 
and TLR4 induce PD-1 expression on DCs [121]. Follow-
ing lipopolysaccharide (LPS) stimulation, PD-1 expression 
of macrophages can be induced by the activation of NF-κB 
[187]. Upon TCR stimulation of  CD8+ T cells, calcineurin 
pathway is activated, resulting in translocation of nuclear 
factor of activated T cells c1 (NFATc1). NFATc1 binded to 
the conserved region-c (CR-C) enhances the promoter activ-
ity of PD-1 [188]. IL-6 and IL-12 can enhance PD-1 tran-
scription on activated T cells by binding STAT3 and STAT4, 
respectively [185]. As for IFN-α-induced PD-1 expression, 
the binding of IFN-α to its receptor leads to the activation 
of JAK1-STAT1/STAT2 pathway. STAT1, STAT2, and cyto-
solic IFN-responsive factor 9 (IRF9) proteins then form a 
transcription complex called IFN-stimulated gene factor 3 

(ISGF3), which binds to the interferon-sensitive responsive 
element (ISRE) motif in the PD-1 promoter [183184]. Upon 
TCR stimulation, activator protein 1 (AP-1) is upregulated 
due to the PKC-RAS activation. AP-1 subunit c-Fos directly 
binds to the AP-1 site in the CR-B region of the Pdcd1 
locus and increase PD-1 expression [189]. As discussed 
before, PD-1 signaling dampens TCR-dependent activa-
tion of PI3K-AKT pathway. A previous study demonstrated 
that the inhibition of PI3K-AKT can enhance the nuclear 
accumulation of the transcription factor FoxO1, which 
reinforces PD-1 expression [190]. The results highlight a 
positive feedback pathway of PD-1 expression, promoting 
T cell exhaustion and immune homeostasis during chronic 
infection. The binding of B lymphocyte–induced maturation 
protein 1 (Blimp-1) in Pdcd1 gene lucos leads to the evic-
tion of NFATc1 from its site and the formation of a repres-
sive chromatin structure, inhibiting the expression of PD-1 
[191]. Additionally, Blimp-1 can curtail PD-1 expression 
indirectly by repressing the expression of NFATc1 [191]. 
During chronic infection the expression of T-box expressed 
in T cells (T-bet) can be downregulated in exhausted  CD8+ 
T cells (highly express PD-1), while the over-expression of 
T-bet reduces the expression of PD-1 through binding to 
upstream regulatory elements of Pdcd1 [192]. In accord-
ance with this, transcription factor Bcl-6, acting as a PD-1 
stimulator in Tfh cells, can inhibit the ability of T-bet to 
repress PD-1 transcription [193]. Epigenetic factors includ-
ing histone modifications, DNA methylation and miRNAs 
can also affect the expression of PD-1 [188194]. However, 
DNA demethylation in CR-C and CR-B regions is not indis-
pensable for PD-1 expression in immune cells, while may be 
important for durable PD-1 expression. It has been indicated 
that miR-28 and miR-138 can reduce the PD-1 expression 
on T cells [195196], while the knowledge about regulat-
ing PD-1 expression by miRNAs remains insufficient. More 
research in this area is needed to fill the gaps.

Concluding Remarks and Future Directions

PD-1 and PD-L1 act as the brake of immune system, pro-
tecting self-tissue from autoimmunity. PD-1/PD-L1 strikes 
a balance between protective immunity and immunopathol-
ogy by regulating the functions of immune cells. Exploring 
the precise effects and mechanisms of PD-1/PD-L1 on each 
cell type in certain immune microenvironments is of vital 
importance for clinical application of PD-1/PD-L1 targeting 
therapies. The functions of PD-1/PD-L1 are not completely 
overlapping [128, 140] and the underlying diversity needs 
to be further explored. Apart from its expression on immune 
cells, tissue expression of PD-1/PD-L1 also plays an immu-
noregulatory role [138, 197], which should be concerned 
in autoimmune diseases. The interactions between PD-1/
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PD-L1 signaling and cellular metabolism have been indi-
cated recently [198], providing a new promising research 
direction of PD-1/PD-L1.

A wave of studies regarding PD-1/PD-L1 in cancer 
and autoimmune diseases has provided valuable evidence 
for understanding the role of PD-1/PD-L1 in MS/EAE. 
Dynamic PD-1/PD-L1 expression during MS is inconclu-
sive. To resolve the dispute, detailed baseline characteristics, 
clinical classifications and disease courses of MS should be 
taken into consideration. Most researches focused on the 
regulation of PD-1 on T cell activation in MS/EAE. Due to 
the involvement of B cells, NK cells, DCs, microglia/mac-
rophages in MS pathology, the expression of PD-1/PD-L1 
on these cells may also engage in MS development. Specifi-
cally, PD-1/PD-L1 not only limits autoimmunity in the CNS, 
but also exerts influences on acute and chronic pain, affec-
tive and cognitive behaviors [199, 200]. Therefore, addi-
tional physiological functions of PD-1/PD-L1 in the CNS 
may provide new insights in MS pathogenesis. Based on 
current literature of PD-1/PD-L1 in MS/EAE, we conclude 
that PD-1/PD-L1 may be useful in indicating disease pro-
gression, monitoring therapeutic responses and predicting 
prognosis in MS, while the reliability as molecular biomark-
ers should be further validated.

Targeting PD-1/PD-L1 by direct administration of ago-
nists or indirect upregulated expression may be potential 
specific treatments for MS, mirroring success of PD-1/
PD-L1 reinforcement in the treatment of autoimmunity. 
In order to design therapeutic strategies safely and effec-
tively, a variety of open questions need to be addressed: 
[1] Which cell types should be targeted by PD-1/PD-L1 
enhancement? Given that PD-1 and PD-L1 are both 
expressed on various immune cells, we cannot exclude 
the possibility of bidirectional interactions between PD-1 
and PD-L1 on these cell types. Conditional knockout of 
PD-1/PD-L1 in certain immune cell types may be helpful. 
[2] What are the appropriate time, treatment regimens, 
and patients for PD-1/PD-L1 reinforcement? Due to the 
heterogeneity of disease course and therapeutic responses 
in different patients with MS, the best intervention time-
point, the feasible combination therapeutics regimens 
and selective patients who may benefit from PD-1/PD-
L1-based therapies should be confirmed to achieve an 
optimized therapeutic outcome. [3] PD-1/PD-L1 therapies 
used for alleviate neuroinflammation must have superior 
bioavailability across the BBB. The ideal carrier can over-
come the obstacles and deliver PD-1/PD-L1-based drugs 
into the CNS. [4] Are there potentially adverse effects of 
PD-1/PD-L1 therapies? The overwhelming anti-tumor effi-
cacy of PD-1/PD-L1 blockade is usually accompanied by 
immune-related adverse events [201]. PD-1/PD-L1 signal-
ing plays a role in maintaining self-tolerance and prevent-
ing autoimmunity through general immune suppression, 

detrimental off-target effects may impair viral clearance, 
cause long-drawn-out opportunistic infections, and even 
increase the risk of cancer. Therefore, the negative impact 
of PD-1/PD-L1 reinforcement on the motility of immune 
surveillance and immune defense during long-term period 
should be thoroughly assessed. Identifying potential 
patients who will suffer from adverse effects following 
PD-1/PD-L1 administration may guide researchers to find 
a way to minimize these possible adverse events.

In conclusion, PD-1/PD-L1 plays an immunoregulatory 
role in a variety of immune cells including T cells, B cells, 
NK cells, DCs and macrophages/microglia in MS/EAE. 
PD-1/PD-L1 negatively regulates immune response. Fur-
thermore, PD-1/PD-L1 is actively involved in therapeutic 
efficacy of current DMTs for MS. Updated knowledge of 
PD-1/PD-L1 provides theoretical foundation for manipulat-
ing PD-1/PD-L1 signaling pathway as a promising therapeu-
tic target for MS in the future.
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