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This study analyzes the correlation and interaction of miRNAs and mRNAs and their

biological function in the malignant transformation of BEAS-2B cells induced by cigarette

smoke (CS). Normal human bronchial epithelial cells (BEAS-2B) were continuously

exposed to CS for 30 passages (S30) to establish an in vitro cell model of malignant

transformation. The transformed cells were validated by scratch wound healing assay,

transwell migration assay, colony formation and tumorigenicity assay. The miRNA and

mRNA sequencing analysis were performed to identify differentially expressed miRNAs

(DEMs) and differentially expressed genes (DEGs) between normal BEAS-2B and S30

cells. The miRNA-seq data of lung cancer with corresponding clinical data obtained

from TCGA was used to further identify lung cancer-related DEMs and their correlations

with smoking history. The target genes of these DEMs were predicted using the miRDB

database, and their functions were analyzed using the online tool “Metascape.” It

was found that the migration ability, colony formation rate and tumorigenicity of S30

cells enhanced. A total of 42 miRNAs and 753 mRNAs were dysregulated in S30

cells. The change of expression of top five DEGs and DEMs were consistent with our

sequencing results. Among these DEMs, eight miRNAs were found dysregulated in lung

cancer tissues based on TCGA data. In these eight miRNAs, six of them including

miR-96-5p, miR-93-5p, miR-106-5p, miR-190a-5p, miR-195-5p, and miR-1-3p, were

found to be associated with smoking history. Several DEGs, including THBS1, FN1,

PIK3R1, CSF1, CORO2B, and PREX1, were involved in many biological processes

by enrichment analysis of miRNA and mRNA interaction. We identified the negatively

regulated miRNA-mRNA pairs in the CS-induced lung cancer, which were implicated in

several cancer-related (especially EMT-related) biological process and KEGG pathways

in the malignant transformation progress of lung cells induced by CS. Our result

demonstrated the dysregulation of miRNA-mRNA profiles in cigarette smoke-induced

malignant transformed cells, suggesting that these miRNAs might contribute to cigarette

smoke-induced lung cancer. These genes may serve as biomarkers for predicting lung

cancer pathogenesis and progression. They can also be targets of novel anticancer

drug development.
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INTRODUCTION

Lung cancer is one of the most common carcinomas in men
and women around the world. It is the first and second leading
cause of cancer-related deaths in men and women, respectively
(1, 2). There were 2.09 million new lung cancer cases and 1.76
million lung cancer deaths, which accounts for about 18.4% of
all cancer deaths around the world in 2018 (3). The incidence
of lung cancer is closely associated with cigarette smoking (2, 4).
The risk of developing lung cancer in smokers is nearly ten times
higher than that in non-smokers (5, 6). However, it is still not
clear how normal lung epithelial cells become cancerous change
in cigarette smokers.

It is well-known that the initiation and development of lung
cancer are associated with abnormal expression of oncogenes
and tumor suppressor genes. Numerous evidence suggested that
the change in gene expression, which affects the occurrence
and progression of tumors is closely related to epigenetic
modification (7). Epigenetic modification could be DNA
methylation, microRNAs (miRNAs), histone modifications, and
nucleosome remodeling. These modifications are independent
but could interact with each other to regulate gene expression
(8). Epigenetic disruptions could promote the acquisition of a
cancerous phenotype and aggressive behavior in lung cancer cells
as well as primary or acquired resistance to treatment (9).

MiRNAs are highly conserved non-coding RNAs and consist
of 18–24 nucleotides (nt) that are involved in the post-
transcriptional regulation of gene (10). An individual miRNA
is able to regulate many different transcripts. It is also believed
that miRNAs can regulate more than one in three coding
RNAs in the genome (11). MiRNAs participate in many vital
biological processes through pairing with target mRNAs and
regulating their expression (12, 13). The imbalance of miRNAs
is usually associated with the progression and suppression of
cancer, suggesting that miRNAs may play important roles as
oncogenes or tumor suppressors (14).

The rapid development of high-throughput next-generation
sequencing technology made it possible to identify changes in
single bases in coding sequences of specific genes during lung
tumorigenesis. A meticulous and thorough analysis of these data
identified various vital genes and signaling pathways related to
the tumor resulting in a better understanding of the mechanism
of occurrence, development, and prognosis of lung cancer.
Using novel technology and bioinformatics analysis, The Cancer
Genome Atlas (TCGA, http://cancergenome.nih.gov/) project
has previously identified panels of genetic mutations contributed
to or were associated with the cause of a variety of cancers (15).
Recently, the TCGA had shown studies on lung adenocarcinoma
(LUAD) and squamous cell carcinomas (LUSC) at the molecular
level (16, 17).

The aim of this study is to analyze the correlation and
regulating mechanism of the regulatory network of miRNAs
and mRNAs during carcinogenesis. An in vitro cell model of
malignant transformation was established by exposing normal
lung epithelial cells BEAS-2B to cigarette smoke (CS). Using
high-throughput sequencing analysis, we analyzed the miRNA
and mRNA expression profile in BEAS-2B cells with or without

CS exposure. The differential expression miRNAs (DEMs) and
differentially expressed genes (DEGs) were selected, and the
integrative miRNA-mRNA network was analyzed. We identified
some critical genes involved in carcinogenesis. This study will
provide potential target candidates for novel drug development.

METHODS

Preparation of Malignantly Transformed
Cells
The CS-exposed malignant transformed cell model was
established as described previously. Briefly, exponentially
growing BEAS-2B cells were plated onto transwell membrane
(Corning, USA) with 1 × 105 in a single well (18). CS was
produced using an automatic smoking machine, and the CS was
pumped into an inhalation exposure chamber. Cells were directly
exposed to CS for 10min every day at a smoke concentration of
20%. This procedure was continued until the cells reached 30
passages and named S30 cells (18).

Scratch Wound Healing Assay
The normal BEAS-2B cells and S30 cells (2 × 105) were seeded
into 6 well plates and cultured at 37 ◦C. Cells were allowed to
grow up to 100% confluence and a scratch was made in the
plate using a P10 pipette. The cells were cultured in fresh serum-
free DMEM medium. Images were collected at 0 and 24 h under
an inverted microscope (Olympus, Germany) and quantitatively
analyzed with NIH ImageJ software.

Transwell Migration Assay
The normal BEAS-2B cells and S30 cells (2× 105) were seeded in
the upper chambers (pore size, 8µm) of the 6 well plate (Corning,
USA) in 1ml serum-free medium. The lower chambers were
filled with 2ml complete medium with 10% FBS, and the plate
was incubated under standard conditions for 24 h. At the end of
incubation, after removing the cells in the upper surface of the
membrane with a cotton swab, cells in the lower chamber were
fixed with methanol and stained with 0.5% crystal violet solution.
The images were taken with an inverted microscope (Olympus,
Germany) and analyzed using NIH ImageJ software.

Colony Formation Assay
1 × 103 normal BEAS-2B cells and S30 cells were plated in
0.35% agarose on top of a 0.7% agarose base supplemented with
complete medium. The medium was renewed every 2–3 days.
The colonies were stained with 0.5% crystal violet (Sigma, USA)
for 20min at room temperature. The colony formation rate was
calculated by the following equation: colony formation rate= the
number of colonies/number of seeded cells× 100%.

Tumorigenicity Assay
Five-week-old male BALB/c-nude mice of SPF grade were
purchased from Beijing Vital River Laboratory Animal
Technology Company Limited (Beijing, China). All nude
mice were housed in the Laboratory Animal Center Soochow
University. The animal experiment protocol was approved
by the Laboratory Animal Ethics Committee of Experiment
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Animal Center of the Soochow University (Suzhou, China).
Approximately 5 × 106 normal BEAS-2B cells or S30 cells
were injected subcutaneously into the right flank of male
BALB/c-nude mice (5 mice were used for BEAS-2B cells
injection and 10 mice for S30 cells injection). Animals were
euthanized 45 days after injection, and tumors were collected
and photographed.

RNA Extraction and Sequencing
Total cellular RNA was extracted from S30 and normal BEAS-
2B cells using TRIzol reagent (Invitrogen, USA) according
to the manufacturer’s protocol. Small RNA sequencing was
performed on the Illumina Hiseq 2500 platform (Illumina,
San Diego, CA). NEBNext R© Multiplex Small RNA Library
Prep Set for Illumina R© (NEB, USA.) was used to prepare
the small RNA sequencing library. To determine the known
and novel miRNAs, unique clustered reads were aligned with
the reference genome and database obtained from miRBase
20.0 (http://www.mirbase.org/). The miRDeep2 algorithm was
used to predict novel miRNA precursors. The expression levels
were estimated by transcript per million (TPM) and mRNA
sequencing was performed on the Illumina HiSeq 4000 platform.
The Illumina TruSeq RNA kit was used for preparing the mRNA
sequencing library. The mRNAs with expression profiles that
differed between the samples were normalized as fragments per
kilobase of transcript per million mapped reads (FKPM). The
DEGSeq package was used to analyze the differential expressed
miRNAs (DEMs) or mRNAs (DEGs). P-value < 0.05 and |log2
(foldchange)| ≥ 1 were regarded as the threshold of significantly
differential expression.

Data Source and Processing
The NSCLC (LUAD and LUSC) miRNA-Seq datasets and
related clinicopathology information were obtained from the

TABLE 1 | Primers used in this study.

Symbol Sequence

miR-106b-5p Forward 5′-TAAAGTGCTGACAGTGCAGAT-′3

miR-589-5p Forward 5′-TGAGAACCACGTCTGCTCTGAG-′3

miR-96-5p Forward 5′-TTTGGCACTAGCACATTTTTGCT-′3

miR-181a-5p Forward 5′-AACATTCAACGCTGTCGGTGAGT-′3

miR-361-3p Forward 5′-TCCCCCAGGTGTGATTCTGATTT-′3

IGFBP3 Forward 5′-AGAGCACAGATACCCAGAACT-′3

Reverse 5′-GGTGATTCAGTGTGTCTTCCATT-′3

KRT17 Forward 5′-GCCGCATCCTCAACGAGAT-′3

Reverse 5′-CGCGGTTCAGTTCCTCTGTC-′3

FAM129A Forward 5′-GCCTGGAAGGAACGATCCG-′3

Reverse 5′-GGCCACCATCGCTTTGATCTT-′3

FLNC Forward 5′-GCTCGTGTCCATAGACAGCAA-′3

Reverse 5′-CTGGGGCACCTTGTTCTGG-′3

TIE1 Forward 5′-ACGACCATGACGGCGAATG-′3

Reverse primers of miRNAs and U6 primers are provided by Mir-XTM miRNA First-Strand

Synthesis Kit.

Xena (https://xena.ucsc.edu). The LUADmiRNA expression data
included a total of 493 samples consisting of 448 LUAD samples
and 45 normal adjacent samples. The LUSC miRNA expression
data included a total of 380 samples comprising 336 LUSC
samples and 44 normal adjacent samples. The limma package
was used to identify the differential expressed miRNAs in LUAD
and LUSC when compared with corresponding normal adjacent
samples. The differentially expressed miRNAs were defined by a
threshold of p-value < 0.05 and |log2 (foldchange)|≥ 1.

Real-Time Quantitative PCR
A total of 1.5 µg RNA isolated from each sample was reversely
transcribed into complementary DNA (cDNA) using Revert Aid
First Strand Complementary DNA Synthesis Kit (for mRNA
detecting, Thermo, USA) or Mir-XTM miRNA First-Strand
Synthesis Kit (for miRNA detecting, Clontech Laboratories,
USA) according to the manufacturer’s instructions. Quantitative
PCR (qPCR) was performed using NovoScript R© SYBR Two-
Step qRT-PCR Kit (novoprotein, China) with a QuantStudioTM
6 Flex qRT-PCR system (USA). The internal control for the
quantitive analysis of miRNA and mRNA were U6 and GAPDH,
respectively. The primer used for qPCR were listed in Table 1.

Analysis of Gene Expression and Smoking
History
To validate the correlation between expression of miRNAs and
patients’ smoking history, all valid LUAD samples in the TCGA
database were divided into four groups according to smoking
history, including (1) lifelong non-smoker (n = 66); (2) current
smokers (n = 104); (3) Current reformed smoker for >15 years
(n= 116); (4) current reformed smoker for ≤15 years (n= 144).
The expression of miRNAs in lung adenocarcinoma tissues of
each group was compared.

miRNA-mRNA Integrative Network
For identification of the candidate miRNA-mRNA network in
smoking-inducedmalignant transformed cells, two separate steps
were carried out. First, the target mRNAs of interest miRNAs
were predicted through the miRDB database (http://mirdb.org/
miRDB/). Second, the intersection of differently expressed genes
and target genes was taken to screen the potential target genes
of miRNAs in smoking-induced malignant transformed cells.
These different expression target genes and miRNAs were used
to construct the miRNA-mRNA regulation network through the
Cytoscape software (V3.7.1, https://cytoscape.org).

Enrichment Analyses
Metascape (http://metascape.org/gp/index.html) is an effective
and efficient tool for experimental biologists to comprehensively
analyze and interpret OMICs-based studies in the big data era
(19). The database was used to perform the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis, which is used to predict the
potential biological functions of the overlapping genes of the
DEGs and target genes.
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FIGURE 1 | CS-induced malignant transformation in BEAS-2B cells in vitro and in vivo. (A) Representative photographs of the colony formation assay of the normal

BEAS-2B cells and S30 cells. (B) Graph of soft agar colony forming rate of normal BEAS-2B cells and S30 cells. **p < 0.01 vs. BEAS-2B. (C) Photographs of tumors

excised 45 days after injection of normal BEAS-2B cells and S30 cells into nude mice. (D) Representative HE staining histopathologic image of tumor tissues excised

45 days after injection of S30 cells into nude mice.

FIGURE 2 | CS promoted the migratory ability of BEAS-2B cells. (A) Representative images of scratch wound healing assay of normal BEAS-2B cells and

CS-induced malignant transformed cells (S30). (B) Graph of wound closure rate in scratch wound healing assay of normal BEAS-2B cells and S30 cells. **p < 0.01

vs. BEAS-2B. (C) Representative images of transwell assay of normal BEAS-2B cells and S30 cells. (D) Graph of migrated cells in transwell assay of normal BEAS-2B

cells and S30 cells. **p < 0.01 vs. BEAS-2B.
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Statistical Analysis
SPSS 22.0 was used for statistical analysis. Values were presented
as mean ± standard deviation (SD). Difference analysis between
two groups was performed by using student t-test. A p <

0.05 was considered statistically significant. Correlation between
differentially expressed miRNAs and predicted target mRNAs
were calculated by Pearson’s correlation. A p< 0.05 was regarded
as statistically significant.

RESULTS

CS-Induced Malignant Transformation in
BEAS-2B Cells
To validate the malignant change of S30 cells, the normal BEAS-
2B cells and S30 cells were seeded in soft agar. As shown in
Figure 1A, cells formed significantly more and bigger colonies in
S30 cells compared to the normal BEAS-2B cells. Besides, colony
formation rate in S30 cells was remarkably higher than in the
normal BEAS-2B cells (Figure 1B). Moreover, the normal BEAS-
2B cells and S30 cells were used to generate xenograft tumors
in nude mice. Among the ten mice injected with S30 cells, 3
developed tumor tissue (Figures 1C,D). While no tumor was
found in the five mice injected with normal BEAS-2B cells.

CS Promoted the Migratory Ability of
BEAS-2B Cells
To investigate the effect of CS in cell migration, we performed
scratch wound healing and transwell cell migration assays.
Scratch wound healing assay indicated that the migratory ability
was significantly increased in S30 cells compared to the normal
BEAS-2B cells (Figures 2A,B). As shown in Figures 2C,D,
further transwell migratory assay demonstrated that themigrated
cells were significantly increased in S30 cells compared to
the normal BEAS-2B cells. These results suggested that long-
term exposure to CS could promote the migratory ability of
BEAS-2B cells.

Differentially Expressed miRNAs Between
S30 Cells and Normal BEAS-2B Cells
To test whether CS affects the miRNA-mRNA regulatory
network in BEAS-2B cells, the miRNAs in normal BEAS-2B
cells and S30 cells were quantitatively analyzed using small
RNA sequencing. Compared with the normal BEAS-2B cells,
the S30 cells showed dysregulation of 42 miRNAs that had
significantly different expression levels with 2-fold change as
a cut off (Figures 3A,B, Supplementary Table 1). Of these 42
miRNAs, 28 were upregulated (67%), and 14 were downregulated

FIGURE 3 | Graphical representation of the 42 miRNAs differentially expressed between S30 cells and normal BEAS-2B cells. (A) Heatmap of the 42 differentially

expressed miRNAs (DEMs) between the CS-induced malignant transformed cells (S30) and normal BEAS-2B cells. The colors in the heatmap represent the

normalized expression values, with low expression values being colored in shades of green and high expression values in shades of red. (B) Volcano plots were

generated to visualize the distribution of DEMs between normal BEAS-2B and S30 cells. The top five most significantly dysregulated miRNAs are marked. (C) Counts

of miRNAs upregulated or downregulated in S30 cells.
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(33%) in the S30 cells (Figure 3C). The top five most significantly
aberrant expression miRNAs are marked in the scatter plot; miR-
106b-5p, miR-589-5p, and miR-96-5p were upregulated, and
miR-181a-5p and miR-361-3p were downregulated (Figure 3B).
The qPCR results of the top five miRNAs showed the increased
miR-106b-5p, miR-589-5p, and miR-96-5p and decreased miR-
181a-5p and miR-361-3p expression in S30 cells compared to
normal BEAS-2B cells (Figure 4).

Differentially Expressed mRNAs Between
S30 Cells and Normal BEAS-2B Cells
Next, we investigated the expression patterns of mRNAs using
transcriptome resequencing. Compared with the normal BEAS-
2B cells, the S30 cells showed dysregulation of 753 mRNAs
that had significantly different expression levels with 2-fold
change as a cut off (Figures 5A,B). Of these 753 mRNAs, 273
were upregulated (36%), and 480 were downregulated (64%)
in the S30 cells (Figure 5C). The top five most significantly
dysregulated mRNAs are marked in the scatter plot; IGFBP3
and KRT17 were upregulated, and FAM129A, FLNC, and TIE1
were downregulated (Figure 5B). The qPCR results of the top

five mRNAs validated the increased IGFBP3 and KRT17 and
decreased FAM129A, FLNC, and TIE1 expression in S30 cells
compared to normal BEAS-2B cells (Figure 6).

Integrated Analysis of the DEMs in S30
Cells and Lung Cancer Samples
To explore whether the DEMs’ expression is altered in lung
cancer tissues, we analyzed the miRNAs sequencing data of lung
cancer, including lung adenocarcinomas (LUAD) and squamous
cell lung carcinomas (LUSC), in the TCGA database. A total
of 8 miRNAs were found dysregulation in S30 cells, LUAD
and LUSC samples with a similar tendency of change. Among
these 8 miRNAs, 5 were upregulated (miR-96-5p, miR-93-
5p, miR-589-5p, miR-4661-5p, and miR-106b-5p) and 3 were
downregulated (miR-190a-5p, miR-195-5p, and miR-1-3p) in the
three datasets (Figure 7).

Association of miRNA Expression With
Smoking History
Among the five up-regulated miRNAs, three miRNAs, including
miR-96-5p, miR-93-5p, and miR-106-5p, showed a higher

FIGURE 4 | qPCR analysis of the top five most significantly dysregulated miRNAs in CS-exposed cells. Data are presented as relative fold induction compared with

normal BEAS-2B cells. *p < 0.05, **p < 0.01 vs. BEAS-2B.
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FIGURE 5 | Graphical representation of the 753 mRNAs differentially expressed between S30 cells and normal BEAS-2B cells. (A) Heatmap of the 753 differentially

expressed genes (DEGs) between the CS-induced malignant transformed cells (S30) and normal BEAS-2B cells. The colors in the heatmap represent the normalized

expression values, with low expression values being colored in green and high expression values in red. (B) Volcano plots were generated to visualize the distribution

of DEGs between normal BEAS-2B and S30 cells. The top five most significantly dysregulated genes are marked. (C) Counts of genes upregulated or downregulated

in S30 cells.

expression in current smoking LUAD patients when compared
with the lifelong non-smokers (Table 2). Three of the screened
down-regulated miRNAs, including miR-190a-5p, miR-
195-5p, and miR-1-3p, showed lower expression in current
smoking LUAD patients when compared with the lifelong
non-smokers (Table 2). Moreover, miR-96-5p and miR-106b-5p
are overexpressed in the current reformed smoker for >15
years, while miR-190a-5p has lower expression in the current
reformed smoker for >15 years when compared with the
lifelong non-smoker (Table 2).

Integrative Analysis of Correlation of
miRNA and mRNA in S30 Cells
To understand the potential functions of the smoking-related
differentially expressed miRNAs, and to explore miRNA-mRNA
interaction in S30 cells, we predicted the target genes of
miRNAs and performed an intersection analysis with the gene
expression data to identify genes that were inversely co-expressed
with miRNAs. A total of 2,477 target genes of low-expressed
miRNAs and 2,295 target genes of high-expressed miRNAs were
screened by searching miRDB database. Consequently, 25 up-
regulated genes and 70 down-regulated genes were found to
have at least one negatively regulated miRNA-mRNA pair for
smoking-related differentially expressed miRNAs (Figure 8A,
Supplementary Table 2). The miRNAs-DEGs network was
generated by Cytoscape software, as showed in Figure 8B.

Enrichment Analysis of Correlation of
miRNA and mRNA in S30 Cells
To further explore the function of the negatively correlated
miRNA-mRNA pairs, 95 up-regulated or down-regulated target

genes in S30 cells were selected for mapping into the
Metascape database and subjected to functional enrichment
analysis. As shown in Figure 9A, GO analysis demonstrated
that these target genes are associated with several cancer-
related, especially tumor migration related GO terms, including
“positive regulation of cell motility,” “regulation of cell adhesion,”
“mononuclear cell migration,” “cell junction organization,”
“extracellular structure organization” and so on. Among these
enriched DEGs, several DEGs, including THBS1, FN1, PIK3R1,
CSF1, CORO2B, and PREX1, were involved in many biologic
processes which derived from enrichment analysis of negative
miRNA-mRNA correlations (Figure 9B). Moreover, the KEGG
pathway enrichment analysis suggested that these target genes
were significantly correlated with “TNF signaling pathway,”
“Small cell lung cancer,” “Rap1 signaling pathway,” “PI3K-Akt
signaling pathway,” “mTOR signaling pathway,” “FoxO signaling
pathway,” “Focal adhesion,” “ECM-receptor interaction,” and
some other cancer-related pathways (Figure 10A). In particular,
“Focal adhesion” and “ECM-receptor interaction” are closely
related to cell migration. In addition, THBS1, FN1, PIK3R1,
and IRS1, were involved in many KEGG pathways which
derived from enrichment analysis of negative miRNA-mRNA
correlations (Figure 10B).

DISCUSSION

There are nearly 1.3 billion cigarette smokers in the world, which
leads to 5 million cancer related deaths every year (20). Cigarette-
smoking is a notable risk factor for multiple pathologies (21–23),
among them lung cancer takes the lead with smokers having a
much higher risk than non-smokers. Our previous studies have
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FIGURE 6 | qPCR analysis of the top five most significantly dysregulated genes in CS-exposed cells. Data are presented as relative fold induction compared with

normal BEAS-2B cells. *p < 0.05, **p < 0.01 vs. BEAS-2B.

FIGURE 7 | Identification of differential expressed miRNAs in S30 cells and lung cancer samples. DEM_UP/DEM_DOWN: up-regulated/ down-regulated miRNAs in

S30 cells; LUAD_UP/LUAD_DOWN: up-regulated/ down-regulated miRNAs in LUAD samples; LUSC_UP/LUSC_DOWN: up-regulated/ down-regulated miRNAs in

LUSC samples.
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TABLE 2 | The expression of miRNAs in the LUAD patients with different smoking history.

miRNAs Significant 1 (n = 66) 2 (n = 104) 3 (n = 116) 4 (n = 144)

miR-96-5p UP 4.25 ± 0.74 4.58 ± 1.07* 4.39 ± 1.12 4.55 ± 1.04*

miR-93-5p UP 11.70 ± 0.87 12.09 ± 0.87** 11.65 ± 0.86 11.79 ± 0.97

miR-589-5p UP 6.66 ± 0.65 6.72 ± 0.79 6.26 ± 0.71** 6.49 ± 0.77

miR-4661-5p UP 2.03 ± 0.71 2.14 ± 1.05 1.94 ± 0.84 2.10 ± 1.02

miR-106b-5p UP 7.72 ± 0.65 8.21 ± 0.72** 7.75 ± 0.68 8.03 ± 0.72**

miR-190a-5p DOWN 1.87 ± 0.77 1.52 ± 0.74** 1.74 ± 0.65 1.57 ± 0.56**

miR-195-5p DOWN 5.15 ± 0.98 4.73 ± 0.84** 5.11 ± 0.82 5.02 ± 0.87

miR-1-3p DOWN 3.37 ± 1.41 2.44 ± 1.25** 3.41 ± 1.34 3.04 ± 1.28

Lifelong non-smoker (<100 cigarettes smoked in Lifetime) = 1; Current smoker (includes daily smokers and non-daily smokers or occasional smokers) = 2; Current reformed smoker

for > 15 years (>15 years) = 3; Current reformed smoker for ≤15 years (≤15 years) = 4 (*p < 0.05 vs. non-smoker; **p < 0.01 vs. non-smoker).

suggested that chronic exposure to CS could induce malignant
transformation of the human bronchial epithelial cell line (BEAS-
2B) and tumorigenesis (18, 24). In recent years, studies have
indicated that miRNAs play an essential role in tumor initiation,
development, and metastasis as well as the cellular response to
stress by modulating the expression of their target genes (25–27).
In this study, we investigate the effect of chronic exposure to CS
on the expression of miRNA and mRNA in BEAS-2B cells and
further examined the interaction of miRNA and mRNAs.

Based on our high throughput sequencing data and the
TCGA database analysis, we found significant dysregulation
of 6 smoking-related miRNAs in S30 cells compared with
normal BEAS-2B cells. Among these miRNAs, miR-190a is
found downregulated in aggressive neuroblastoma (NBL).
Overexpression of miR-190a contributed to the inhibition of
tumor growth and prolonged the dormancy period of fast-
growing tumors (28). A recent study showed that miR-190a could
inhibit the metastasis of breast tumor by involving in estrogen
receptor (ERα) signaling (29). miR-195 usually serves as a tumor
suppressor in several cancer types, such as gastric cancer (30),
renal cancer (31), cervical cancer (32), liver cancer (33), and
osteosarcoma (34), and its downregulation was related to lymph
node metastasis and advanced clinical stage (32). Similarly, miR-
1 can regulate multiple behavior of the tumor cells, such as
proliferation (35, 36), migration (37), apoptosis (38, 39), and
metabolism (40). In addition, miR-106b and miR-93 are both
the members of miR-106b∼25 cluster, which have regarded as
significant oncogenic drivers as well as potential biomarkers and
therapeutic targets in various tumors (41–44). Moreover, Several
studies have demonstrated that miR-96 could act as an oncogene
(45–47) or tumor suppressor (48, 49) depending on the different
types of cancer. Although these miRNAs have extensively been
reported to be associated with many other kinds of cancer, their
roles in lung cancer has yet been demonstrated.

Numerous studies have established the regulatory
relationships between miRNA and mRNA expression (50, 51).
CS-induced DEMs can bind to 3′UTR regions of several genes
and down-regulate their expression, indicating that these
miRNAs may contribute to the pathogenesis of smoking-related
diseases. It has been reported that negatively regulated miRNA-
mRNA pairs are significantly contributed to the initialization

and development of different kinds of cancer (52–54). In order
to further comprehend the roles of the miRNA-mRNA pairs
in CS-induced lung cancer, we selected 95 dysregulated target
mRNAs of the 6 CS-related miRNAs and found that they are
involved in several cancer-related signaling pathways including
TNF signaling pathway, Rap1 signaling pathway, PI3K-Akt
signaling pathway, mTOR signaling pathway, FoxO signaling
pathway, ECM-receptor interaction, and so on. Meanwhile,
the GO enrichment analysis results indicated that these target
genes were participated in a series of cell adhesion and migration
biological processes, suggesting these miRNA-mRNA pairs
related to the process of epithelial-mesenchymal transformation
(EMT). EMT is considered to be an important regulator of
metastasis by promoting the invasion and spread of tumor
cells to distant organs (55). Among these enriched DEGs, IRS1,
PIK3R1, THBS1, and FN1 are related to more than 4 KEGG
pathways. As an adaptor of the insulin growth factor-1 receptor,
IRS1 plays an essential role in cell growth and proliferation,
primarily via the Akt pathway, and it was reported to be
regulated by several miRNAs through direct or indirect action
(56–59). Moreover, studies have demonstrated that PIK3R1
was directly targeted by miR-127 (60), miR-21 (61), miR-155
(62), and some other miRNAs in different kinds of cancers. It’s
reported that the activity of phosphoinositide 3- kinase (PI3K)
is activated by many oncogenes and the PI3K family members
are involved in a serious of biological processes and the genesis
and progression of various tumors (63). Thrombospondin 1
(THBS1) is a secreted protein with multiple biological functions
(64), including a potent anti-angiogenic activity and activation of
latent transforming growth factor beta (TGF-β) (65, 66). A recent
study suggested that the expression of THBS1 was modulated by
multiple miRNAs (67). Moreover, it’s reported that fibronectin
1 (FN1) is crucial to many cellular processes, including cell
proliferation, adhesion, migration and differentiation (68, 69),
and the expression of FN1 was regulated by miR-1271 (70),
miR-9 (71), and miR-206 (72). Similar to previous studies,
we identified the negatively regulated miRNA-mRNA pairs in
the CS-induced lung cancer, which were implicated in several
cancer-related (especially EMT-related) biological process and
KEGG pathways in the malignant transformation progress of
lung cells induced by CS. Further study will be needed to explore
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FIGURE 8 | Integrative analysis of miRNA-mRNA regulatory network in S30 cells. (A) Venn Diagram depicting the distribution of negatively correlated miRNA-mRNA

pairs within the four datasets. (B) Regulatory network for 95 negatively correlated miRNA-mRNA, including 25 DEG_UP/DEM_DOWN_Targets pairs and 70

DEG_DOWN/DEM_UP_Targets pairs. DEG_UP/DEG_DOWN: up-regulated/down-regulated genes in S30 cells; DEM_UP/DEM_DOWN: up-regulated/

down-regulated miRNAs in S30 cells.
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FIGURE 9 | Gene Ontology (GO) enrichment analysis for negatively correlated miRNA-mRNA. (A) The top enriched GO terms are shown in the bubble chart. The

Y-axis represents the biologic process GO terms, and the X-axis represents the rich factor (rich factor = amount of differentially expressed genes enriched in the GO

term/amount of all genes in background gene set). The color and size of the bubble represent enrichment significance and the number of genes enriched in the GO

term, respectively. (B) Network diagram of top enriched GO terms for the negatively correlated miRNA-mRNA. DEG_UP: up-regulated differentially expressed genes;

DEG_Down: down-regulated differential expression genes; GO_BP: Gene Ontology of biological process.
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FIGURE 10 | KEGG pathway enrichment analysis for negatively correlated miRNA-mRNA. (A) The top enriched KEGG pathways are shown in the bubble chart. The

Y-axis represents the KEGG pathways, and the X-axis represents the rich factor (rich factor = amount of differential expressed genes enriched in the pathway/amount

of all genes in the background gene set). The color and size of the bubble represent enrichment significance and the number of genes enriched in the pathway,

respectively. (B) Network diagram of top enriched KEGG pathways for the negatively correlated miRNA-mRNA. DEG_UP: up-regulated differential expressed genes;

DEG_Down: down-regulated differential expression genes.
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the targeting relationships of these miRNAs and their target
mRNAs and their possible roles on cancer-related molecular
mechanisms for the development of novel targeted therapy for
CS-induced lung cancer.

In conclusion, our study demonstrated that the expression
profiles of miRNA and mRNA were significantly dysregulated in
BEAS-2B cells with long-term exposure to CS. Smoking induced
miRNAs are associated with EMT and carcinogenesis.
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