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ABSTRACT Systems biology is an approach to dissection of complex traits that explicitly recognizes the impact of genetic,
physiological, and environmental interactions in the generation of phenotypic variation. We describe comprehensive transcriptional
and metabolic profiling in Drosophila melanogaster across four diets, finding little overlap in modular architecture. Genotype and
genotype-by-diet interactions are a major component of transcriptional variation (24 and 5.3% of the total variation, respectively) while
there were no main effects of diet (,1%). Genotype was also a major contributor to metabolomic variation (16%), but in contrast to
the transcriptome, diet had a large effect (9%) and the interaction effect was minor (2%) for the metabolome. Yet specific principal
components of these molecular phenotypes measured in larvae are strongly correlated with particular metabolic syndrome-like
phenotypes such as pupal weight, larval sugar content and triglyceride content, development time, and cardiac arrhythmia in adults.
The second principal component of the metabolomic profile is especially informative across these traits with glycine identified as a key
loading variable. To further relate this physiological variability to genotypic polymorphism, we performed evolve-and-resequence
experiments, finding rapid and replicated changes in gene frequency across hundreds of loci that are specific to each diet. Adaptation
to diet is thus highly polygenic. However, loci differentially transcribed across diet or previously identified by RNAi knockdown or
expression QTL analysis were not the loci responding to dietary selection. Therefore, loci that respond to the selective pressures of diet
cannot be readily predicted a priori from functional analyses.

TO what extent does genetic variation flow linearly
through the transcriptome, proteome, and metabolome

to generate phenotypes? Under the simplest model, additive
genetic variation for transcript abundance and protein ac-
tivity should correlate directly with variation in protein
abundance and metabolite abundance, and in turn with
organismal phenotypes (Lehner 2013; Civelek and Lusis
2013). We would generally expect an increase in variance
at each successive physiological level such that the strength

of genetic association decreases from transcript to metabo-
lite to phenotype. This model has been used to support the
notion that modules of gene activity, for example, may often
associate with complex traits (Ayroles et al. 2009; Harbison
et al. 2009). However, evidence that contradicts this model,
and even suggests that modular reorganization may occur
at successive levels of molecular function, is beginning to
appear, considerably complicating the mapping of genotype
to phenotype. For example, protein abundance often di-
verges between primate species to a lesser degree than tran-
script abundance (Khan et al. 2013), highly modular gene
expression in Drosophila wing imaginal discs does not asso-
ciate with wing shape (Dworkin et al. 2009), and eQTL map
poorly onto protein and metabolite levels in Arabidopsis thali-
ana (Atwell et al. 2010), where it was argued that phenotypic
buffering muddles the association with molecular measures.

Furthermore, environmental variation may also modify
genotypic effects. An area of particular concern for human
health is the increasingly prevalent metabolic syndrome
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(MetS), a collection of symptoms including obesity, insulin
resistance, and heart disease (Eckel et al. 2005; Alberti et al.
2006). The dramatic increase in MetS and its related dis-
eases in westernized nations can be largely blamed on en-
vironmental (lifestyle) effects rather than genetic effects
alone (Schulz et al. 2006). However, individuals with a high
genetic risk score for BMI accumulate weight more rapidly
when they consume sugary beverages than their low-risk
counterparts, indicating a genotype-by-diet interaction ef-
fect (Qi et al. 2012). We have also found that for MetS-like
phenotypes in Drosophila, there is a large genotype-by-diet
interaction effect contributing to variation in these traits
(Reed et al. 2010). Many genes have been identified as being
functionally linked to obesity, diabetes, and heart disease in
flies, and those effects can be exacerbated by diet (Diop and
Bodmer 2012). The questions thus arise as to whether these
dietary influences on wild-type flies manifest themselves at
the transcriptional or metabolic levels, whether modularity
at these levels is comparable, and whether it can explain
phenotypic variation for metabolism in flies.

One of the obstacles to be overcome in understanding
these complex disease phenotypes is the variable correlation
between genotype and phenotype over life history due to
interaction effects between each genome and the individu-
al’s environment. These can be complicated by behavioral
choice, such as the ability of flies to modify their nutritional
geometry, namely the ratio of protein to carbohydrate in-
take, apparently consistent with optimizing lifetime fecun-
dity (Lee et al. 2008). Concordantly, the relationship
between mRNA, protein, and metabolite abundance varies
across genotypes and environments. In the realm of medi-
cine, inclusion of clinical and functional genomic data may
enhance risk classification beyond what can be done with
genomic data alone (Patel et al. 2013), particularly where
the relationship between the static genome and dynamic
gene function changes over the lifetime of an organism.

These considerations led us to ask how genetic and
environmental effects influence patterns of transcriptional,
metabolic, and phenotypic variation and whether those
patterns bear any relationship to the response of a natural
population to artificial selection on different diets, using the
well-characterized model organism Drosophila melanogaster.
Here we report two complementary experiments. First we
asked how dietary perturbation in a genetically variable
population affects transcriptional, metabolic, and pheno-
typic profiles. Second, using an evolve-and-resequence ap-
proach (Burke et al. 2010), we quantified genomic responses
to artificial dietary selection. We then contrast the core lab-
adaptation and diet-specific genotypic changes with func-
tional genomic data from other studies.

Materials and Methods

Systems biology

Experimental analysis was performed on 20 lines represent-
ing the diversity of dietary reaction norms for pupal weight

and larval lipid storage phenotypes identified from an initial
screen of 146 inbred lines sampled from North Carolina and
Maine populations (Reed et al. 2010). Lines were raised on
four dietary treatments used in the analysis following a ratio-
nale described in detail in Reed et al. (2010). All diets were
cornmeal based but varied in their sugar and fat content. The
base for all diets is by weight 0.7% agar, 6.5% cornmeal, and
1.3% inactive yeast into water. In the normal diet (mainte-
nance diet for fly stocks in many labs in addition to our own)
the major source of calories is 4% (0.117 M) sucrose and is
made from the standard cornmeal-based lab food with the
addition of 58 ml of molasses. Sang (1956) reports that the
maximum rate of development in Drosophila larvae is
achieved at a sugar concentration of 0.75% by weight, while
a 4% sugar diet produced a decreased developmental rate.
We found that the type of sugar (e.g., sucrose vs. glucose), in
addition to the sugar concentration, affects the metabolic
health of the larvae (Reed et al. 2010); maximum weight
was achieved at a concentration of ,1% of glucose or sucrose,
and survival decreased dramatically at higher (.8%) glucose.
To both reflect the past research on dietary variation in flies
and specifically target the insulin pathway through glucose
metabolism we added glucose to the standard base at a con-
centration of 0.75% glucose by weight (0.042 M) to make our
low-sugar diet and a 4% glucose by weight (0.222 M) diet to
make the high-sugar diet. Note that the total calories are
approximately the same between the normal and high-sugar
diets but differ in which sugar is providing those calories. The
fat content of the diet base is,0.2% fat, so we supplemented
the low-sugar diet with 3% coconut oil by weight to make the
high-fat diet; coconut oil is nearly 100% fat (85% saturated,
15% mono- and polyunsaturated). The specific names of the
diets are not intended to have an absolute significance in
comparison to other studies and signify only the relative
sugar and fat concentrations used within this study.

Fifty first-instar larvae were seeded into each food vial
and six gross phenotypes were measured for each line on
each of the four diets. Samples of third-instar larvae were
pooled across a minimum of three food vials for each
treatment to be measured for their triglyceride and treha-
lose content and preserved for expression and metabolomics
analysis. Homogenates of six randomly selected larvae were
characterized using a 96-well spectrophotometer to de-
termine total triglyceride content using the Sigma triglycer-
ide determination kit and to determine trehalose content
(the primary circulating sugar) by treating with trehalase
to produce glucose was determined by Sigma glucose
determination kit (Clark and Keith 1988; Rulifson et al.
2002; Deluca et al. 2005; Reed et al. 2010). Up to 15 male
pupae from each of two food vials per treatment were
weighed individually to determine the weight phenotype.
Larval and pupal survival and the time to pupation (devel-
opment time) were also scored. Samples were generated in
randomized blocks of four synchronized lines per week on
all four diet treatments; each genetic line was replicated at
three time points.
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Whole-genome expression profiles for high-quality RNA
samples were determined using Nimblegen 12-plex micro-
arrays using the manufacturers protocols and software
(Nuwaysir et al. 2002). The gene expression data from this
publication are deposited in the GEO database under acces-
sion no. GSE50745 (http://www.ncbi.nlm.nih.gov/geo/).
Metabolomic profiling was performed by gas chromatography–
mass spectrometry (GC–MS) on samples of exactly six larvae.
Samples were homogenized in 60:40 methanol:water, dried
down, and then TMS derivitized in acetonitrile. Samples were
processed in daily randomized blocks of 15–22, along with
pooled standards. Samples were run in daily sets in a random-
ized order into a Thermo Scientific DSQ II Series single quad-
rupole GC-MS with an electron impact source and an Agilent
DB-5 column run in splitless mode with a 30-min temperature
ramp. Over the course of the experiment, a minimum of five
distinct biological samples were analyzed for each genotype
and diet. The Kovats retention index (RI) was calculated for
each chromatographic peak, and chromatograms were then
aligned to a consensus list of internally determined candidate
target profiles. Chromatographic peaks were initially cata-
loged using AnalyzerPro (http://www.spectralworks.com/
analyzerpro.html) and were then hand curated to develop
a list of potential analytes. Relative concentrations for each
chromatographic peak were determined from the standard
curve produced by a pooled standard. After quality control
filtering, 187 putative metabolites were proposed as being
reliably detectable. Chemical category of those 187 putative
metabolites was determined by the searching profiles against
the publically available National Institute of Standards and
Technology (NIST) database, identifying candidate com-
pounds, and then running candidate compounds on the
GC–MS system to confirm profile matches. Using this ap-
proach, we were able to identify with confidence the exact
molecule for 60 of the putative metabolites; another 124
were matched with confidence to chemical class (e.g., amino
acid or monosaccharide), while the remaining 3 are presently
unknown.

All statistical analyses were performed using JMP
Genomics (SAS Institute, Cary NC). Individual metabolites
were first normalized to the mean value for the metabolite
in one pooled standard for the day the sample was run. They
were then log2 transformed and the median centered stan-
dardized residuals of a day-of-run ANOVA model on the
individual metabolites composed the final data set. Of a po-
tential 15595 genes, 11650 were expressed at detectable
levels in this data set. The log2 transformed expressed gene
values were median centered, and then the standardized
residuals of the hybridization block ANOVA model were
themselves median centered and used for all subsequent
gene expression analysis. In this analysis, means for each
line and diet combination (n = 80) were determined and
those values used for all subsequent analyses. Principal com-
ponents analysis on the correlation matrix among metabo-
lites and expression profiles was performed using the
“correlation and principal components” function in JMP

Genomics and the first 10 principal components were esti-
mated. Our sensitivity to detection of rare metabolites was
lower than to detection of rare expressed gene products but
we have no a priori reason to anticipate the variance struc-
ture in the rare metabolites to be fundamentally different
from the detectable metabolites. In addition, the numerous
metabolite and gene expression variables greatly outnumber
the principal components calculated; thus the principal com-
ponents should be robust estimates of the variance in both
data sets. Very similar results were obtained after normali-
zation using the supervised normalization of microarrays
algorithm (http://www.bioconductor.org/packages/2.12/
bioc/html/snm.html). The mean values for all phenotypes,
including gene expression and metabolites, calculated for
each genotype-by-diet combination are available at the
authors’ website as data sets S1–S3 (http://www.gibsongroup.
biology.gatech.edu/supplemental-data-reed-et-al).

Laboratory adaptation

Two hundred gravid isofemale flies were trapped on the
campus of Georgia Tech over a 10-day period in June of
2010. They were placed in individual vials with a male on
standard laboratory food, and as progeny emerged, males
were examined for D. melanogaster genital arch morphology,
and two sibling virgin females and males were transferred
to bottles. In addition, we set up a fresh cross of one virgin
female to a standard D. melanogaster male to provide fur-
ther confirmation that the wild flies were predominantly
D. melanogaster. We estimated a frequency of �15%
D. simulans, and contamination of the baseline population
is likely ,1%.

Once male and female progeny had been collected from
150 isofemales, 12 bottles were seeded with 12 flies of each
sex and allowed to lay up to 100 eggs. The next generation,
36 virgin flies of each sex were collected and mixed with the
opposite sex flies from a different bottle, and at this point
adaptation to the different diets was commenced. Two
dozen progeny of each bottle were collected, and in the
third generation they were split into two parallel experi-
ments, each with 12 bottles for each of three diets (low
sugar, high sugar, and high fat as described above), and an
average of 12–15 flies of both sexes in each bottle. A bottle
rotation scheme was established to maintain outbreeding,
ensuring that the effective population size of each of the
six parallel evolving populations (that is, three diets in du-
plicate) was �300. Selection of 12 virgins from each bottle
in each generation was presumably a random sample of the
100–200 emerging flies. At generations 5 and 6, fecundity of
the high-fat diet dropped, indicating strong purifying selec-
tion and necessitating a reduction in the fat content from
coconut oil from 3 to 1.5%, at which point viability and
fecundity returned. No attempt was made to estimate the
intensity of selection, which could have occurred at any
stage of the life cycle, noting that the flies are constantly
reared on the specific diet. The stocks were maintained at
room temperature, �22�, with 15:9 hr light:dark cycle.
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Sequence analysis

To determine the allele frequencies of the SNPs that are
polymorphic in our Georgia Tech population, we mapped
paired end reads from whole-genome sequencing to the
D. melanogaster reference genome (build 5.33) using Bowtie2,
and subsequently Samtools mpileup was used to generate the
pileup files. A minimum mapping quality score of 30 (Phred
scale) and base quality score of 15 were set as lower thres-
holds for variant calling. Calls were subsequently performed
using the default parameters in Varscan downloaded from
http://varscan.sourceforge.net/. This is BioProject (http://
www.ncbi.nlm.nih.gov/bioproject/) accession no. PRJNA194129
and the raw resequencing data are available under accession
no. SRA143721 at the Sequencing Read Archive (http://
www.ncbi.nlm.nih.gov/sra) and the variant calls used in this
analysis are available as data set S4 at the authors’ website
(http://www.gibsongroup.biology.gatech.edu/supplemental-
data-reed-et-al).

Single nucleotide variant calls were then imported into
JMP Genomics and further filtered for quality control.
Only biallelic loci were considered in subsequent analyses,
and these represented .99% of all SNV calls. Read depth
ranged from 150 to 463 (with the exception of two outliers
corresponding to the chorion complexes) and had a stan-
dard deviation of 47. Given our high-mapping-quality
threshold (MAPQ $ 30), it is unlikely that many SNV posi-
tions in the genome would have high depth because of
being in repetitive regions. We also excluded all variants
with minor allele frequency (MAF) , 0.05 in baseline; this
was done to remove likely sequencing errors, but likely
also removed many low-MAF variants since our focus is
on selection acting on common variants in the natural
population. Since SNVs with both low estimated allele fre-
quency (,0.1) and low read depth in the baseline tended
to change the most in the evolving populations, low-MAF
SNPs with low coverage seem to have poor allele frequency
estimates, as also seen in Figure 1 contrasting the Georgia
Tech and Raleigh Drosophila Genetic Reference Panel
(DGRP) estimates. This is theoretically supported by the
notion that the variance of the estimate of allele fre-
quency of a given SNP is linearly dependent on the num-
ber of the alleles sampled. Consequently, positions with
depth ,150 in the baseline population were excluded in
the final analyses reported in the manuscript.

Since one replicate of each of the evolved populations
was sequenced using a different technology, we confirmed
that there was no platform effect by performing a paired
two-sample t-test of all frequencies between replicates of the
evolved populations. Each SNP is represented by six mea-
sures, namely the one replicate of each diet measured on the
GAiix platform and the second replicate on the HiSeq2000
platform. The values for each diet were paired and a t-test
for the difference between platforms was assessed. The
results shown in the Q–Q plot in Supporting Information,
Figure S1 confirm that there is no enrichment of variants

that tend to show a higher or lower frequency between the
GAiix and HiSeq platforms.

After quality-control steps, we identified the SNPs that
likely evolved in frequency under laboratory adaptation, by
finding alleles in the evolved populations that differed more
than expected under the assumption of drift compared to
the baseline population. We did so by deriving the effective
population size from the expectation that the variance in
each allele frequency is proportional to the baseline fre-
quency and the number of generations at a given effective
population size

Vt � pq
�
12 e2t=2Ne

�
; (1)

which upon rearrangement, recognizing that it is measured
from the sum of squared deviations between each observed
yi after evolution and its expected frequency ŷ;

Vt � 1
n2 1

Xn

i¼1

ð pi 2 p̂iÞ (2)

yields

Ne ¼ 2t

23 lnð12 ½1=n�Þ3Pn
i¼1

h
ð pi 2 p̂iÞ2

.
piqi

i; (3)

where n is the number of SNPs (�16,000 per bin), and t is
the number of generations of laboratory adaptation (14 for
replicate 1, 17 for replicate 2). The expected value under the
null hypothesis of no sequence evolution, p̂ is just the base-
line frequency. The effective population size of each evolved
population was initially estimated assuming that most SNPs
in our data set were not evolving.

The value ðpi2p̂iÞ2=piqi is calculated independently for
every SNP because each SNP has a different starting allele
frequency. The average estimated effective population size
was calculated for bins of varying initial allele frequencies
(Figure S2) and across all bins is �60 flies for all six pop-
ulations. The estimates for effective population size both
support the consistency in the fly cultivation techniques
employed in the course of the experiments and corroborate
the effective population size estimated from the experimen-
tal procedures.

Since it is likely that at least some alleles are under
selective pressure in our evolving populations, this pro-
cedure certainly underestimates Ne. We examined the effect
of removing the alleles that changed the most in frequency
on our estimate of Ne. Removing 20% of the most extreme
SNPs increased our estimate of effective population size to
between 80 and 100 flies per generation. Another source of
variance inflation is the contribution of technical variance.
Technical variance is the component of the total variance,
which is introduced by the fact that each allele-frequency
estimate is derived from high-throughput sequencing read
depths and has a defined variance. Since we had technical
replicates for the baseline population (alternate lanes of the

784 L. K. Reed et al.

http://varscan.sourceforge.net/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
http://www.gibsongroup.biology.gatech.edu/supplemental-data-reed-et-al
http://www.gibsongroup.biology.gatech.edu/supplemental-data-reed-et-al
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163857/-/DC1/genetics.114.163857-2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163857/-/DC1/genetics.114.163857-8.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163857/-/DC1/genetics.114.163857-5.pdf


GAiix), we estimated the technical variance introduced by
random sampling of alleles. We then calculated a more ac-
curate estimate for biological variance due to drift, which
increased our estimates of Ne to consistently �100–120 flies.
Consequently, we note that while our estimates of Ne may
be .100, we use this value in our subsequent analysis as
a conservative estimated parameter.

The SNPs on the X chromosome suggest a higher effective
population size than for those of the autosomes. This effect
may partially be explained by the fact that we used a scaling
factor of 3/2 instead of 2 in the estimation of Ne for the X

chromosome because there are only 1.5 chromosomes per
effective individual of the population. However, scaling by 2
for the X chromosome led to an underestimate of the Ne

relative to the autosomes.
After estimating Ne for each evolved population, we then

used this value to calculate the variance expected under
drift using Equation 1. The expected variance is also depen-
dent upon the initial allele frequency. Since our analysis
suggested that the accuracy of the estimates of allele fre-
quency decreased with decreasing minor allele frequency,
we set a minimum value of p 3 q of 0.85 3 0.15 = 0.1275,

Figure 1 Comparison of laboratory adaptation
between studies in Atlanta, Raleigh, and
Vienna. Density plots contrast the allele fre-
quency for all SNPs with q50 read depth
.150 in the Atlanta Baseline population that
are also documented in the Raleigh and Vienna
studies, considering only the major allele in
the Atlanta Baseline also with minor allele
frequency .0.05. (A) Raleigh DGRP against
Atlanta Baseline showing predominant density
along the expect equivalence of major allele
frequencies between 0.5 and 0.95. (C and E)
Raleigh DGRP against high-fat evolved popula-
tions 1 and 2, showing convergence of fre-
quencies across the full range from 0.0 to 1.0,
suggesting parallel laboratory adaptation. (B, D,
and F) Schlotterer lab Vienna allele frequencies
against Atlanta high fat 1 evolved frequencies,
at Baseline, and after 15 and 37 generations of
lab adaptation, respectively. The Vienna Base-
line is actually derived from a Portuguese pop-
ulation that was maintained as isofemale lines
for 5 generations before initiation of lab adaptation
under an elevated fluctuating temperature regime
from 18� to 28�. Clearly the lab-adapted allele fre-
quencies again converge, but ongoing laboratory
adaptation causes some alleles to diverge with re-
spect to dietary selection. (G and H) Impact of read
depth on estimation of baseline allele frequency.
Including all SNPs with a q50 read depth of at least
50 identifies a large density of less common var-
iants (major allele frequency .0.9, vertical density
at right of A that appear to have very different
frequencies than those observed in the DGRP ref-
erence population. However, when the read depth
is increased to 150 this set of polymorphisms largely
disappears (B), suggesting that many of the less
common variants called at low depth are sequenc-
ing or alignment errors.
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which would prevent alleles with low MAF from benefiting
from both a poor estimate of p and a decreased level of
expected variance due to drift. We then divided the allele
frequency change by the standard deviation (the square root
of the variance), which yielded a z-score that was subse-
quently used to calculate a P-value. To correct for multiple
testing, we used a Bonferroni correction of six tests for
143,975 SNPs at P , 0.05, which yields a genome-wide sig-
nificant threshold of P , 4.00 3 1028, which we reiterate is
a conservative threshold.

Since the median baseline major allele frequency is
0.85, the response to lab adaptation is highly asymmetric
as many sites go to fixation under drift. Our test for
selection requires changes of frequency at least 0.3, so
effectively only analyzes reduction in the major allele
frequency. Table 1 illustrates, however, that similar (but
more variable, as expected) results are observed for alleles
increasing in frequency.

Results

Genotype-by-diet effects on physiological phenotypes

Both theoretical and classical work on Drosophila point to
genotype-by-environment interactions as an important as-
pect of the genetic architecture of complex traits (Takano
et al. 1987; Barnes et al. 1989; Zhou et al. 2012). In our
earlier study of multiple phenotypes related to growth and
development in 146 highly inbred wild-type lines of
D. melanogaster (Reed et al. 2010), diet effects across all lines
were negligible, whereas genotype-by-diet (G 3 D) interac-
tion effects accounted for a substantial amount of the varia-
tion. To test whether this pattern derives from interaction
effects at the level of gene activity, we here performed me-
tabolite and whole transcriptome profiling on third-instar lar-
vae from 20 of the highly inbred lines chosen to represent the
range of phenotypic diversity in our larger panel (Reed et al.
2010). The larvae were grown on each of four diets: normal
cornmeal–molasses (N, 4% sucrose by weight), high fat
(F, 0.75% glucose and 3% coconut oil by weight), high sugar
(4% glucose by weight), and low sugar (C, 0.75% glucose by
weight). We expected one of two possible outcomes: (i) that
some component(s) of transcriptional and/or metabolite var-
iation would be closely associated with metabolic phenotypes
and predictable across diets or (ii) that such associations
would be diet specific, reflecting the observed genotype de-
pendence of dietary response.

The pattern of variation for genetic, dietary, and G 3 D
interaction effects for all of the measured organismal phe-
notypes (e.g., weight and development time) were consis-
tent with the previous results observed in the larger panel of
lines (Figure 2A and Table S1). Gene expression was mea-
sured on Nimblegen Drosophila transcriptome arrays
(Nuwaysir et al. 2002) using total RNA from between three
and six replicates of 30 larvae pooled from different vials.
The metabolome of larvae reared on the same food vials was

measured by GC–MS, resulting in 187 high confidence
metabolites, many of which were assigned to specific chem-
ical structures by comparison to chemical standards. The
transcriptome and GC–MS-derived metabolomes have very
different variance components (Figure 2B). Whereas the
transcriptome shows highly significant genotype (24% of
the variance) and G 3 D interaction effects (5.3%), but
no main effect of diet (,1%), the metabolome shows
highly significant genotype (16%) and diet (9%) effects
but only limited interaction (2%). In other words, the tran-
scriptomic response to dietary shift is highly genotype de-
pendent, whereas the metabolome has a much stronger
dietary component.

The first five principal components of the metabolite and
gene expression profiles are only mildly correlated with one
another (Figure 2C), suggesting that there is only weak
predictive value when comparing one functional physio-
logical level to the next. However, the second metabolite
principal component (metpc2) is mildly correlated with
each of the first four expression principal components
(0.003 , P , 0.04; Table S2), which suggests that the
metabolites with heavy loadings for metpc2 are the most
likely to be tied mechanistically to changes in gene expres-
sion (e.g., potential cofactors or upstream regulators of gene
transcription). The metabolites most strongly correlated
with the metpc2 include six amino acids, two monosacchar-
ides, and the components of dopamine metabolism, L-dopa
and n-arachidonoyl dopamine (Table S3).

There are a number of significant associations between
the principal components and individual metabolic traits as
documented in Table 2. This is particularly evident for
metpc2, which is also significantly correlated with the four
traits of development time, triglycerides, sugar, and body
weight. Six of the first 10 principal components for both
gene expression and for metabolites are significantly corre-
lated with one or more phenotypic traits. For five of the six
traits, the total variance explained by the first 10 principal
components is greater for the metabolite profiles than for

Table 1 Number of SNPs evolving in frequency under lab adaptation

NLP 5a NLP 1.3a . 0.3b ,20.3c Fixedd

High fat 1 3,292 6,653 16,805 996 7,628
High fat 2 3,501 6,634 22,036 1,889 14,289
High sugar 1 3,725 6,859 18,906 1,073 7,003
High sugar 2 3,395 6,385 22,328 1,491 11,099
Low sugar 1 2,705 6,090 14,413 830 5,821
Low sugar 2 3,259 6,345 20,919 1,807 14,719
High fat (both) 1,662 5,676 8,502 295 3,613
High sugar (both) 1,862 5,592 9,217 298 3,025
Low sugar (both) 1,245 4,958 6,697 235 2,619
High calorie 609 4,318 3,568 47 852
Sugar diet 451 3,652 2,549 27 635
All six populations 232 3,032 1,614 7 302
a Number of SNPs of the 8343 significant at NLP 5 in any replicate, significant at NLP
1.3 (P , 0.05) for the indicated contrast with baseline.

b Major alleles at baseline that decreased in frequency by .0.3.
c Major alleles at baseline that increased by at least 0.3 (compare with footnote d).
d Major alleles at baseline that increased to fixation.
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gene expression (Table S4). The metabolite most strongly
associated with metpc2 is glycine (P = 1.9 3 1029, R2 =
0.64), which in turn is associated with weight (P = 4.6 3
1025, R2 = 0.27), triglycerides (P = 0.0005, R2 = 0.14),
and nominally with sugar (P = 0.0327, R2 = 0.057). Spec-
ifying heavy weight as a function of glycine produces an area
under the ROC curve of 0.86, with peak sensitivity of 92%
achieved with 78% specificity.

Despite the above examples, in general the relationship
between gene expression or metabolomic variation and
phenotype is confounded by dietary interactions, so not
predictive across all diets, as illustrated in Figure 3. Never-
theless, we next tested whether the variation in phenotypes,
metabolite profiles, or transcript profiles can predict a dis-
ease outcome. Metabolic imbalance in Drosophila due to
extreme diets or genetic manipulation can cause an increase
in cardiac arrhythmias (Birse et al. 2010; Lim et al. 2011;
Na et al. 2013), which we quantified as the arrhythmia
index (AI) from high-speed movies of semi-intact heart prep-
arations (Ocorr et al. 2007). The AI was measured on 15 of
the 20 lines used in the G3 D analysis on individual 1-week-
old adult females raised on a normal diet. ANOVA of AI

according to phenotype categories found that lines that
had high weight and triglyceride concentrations as larvae
had more than twice the average adult AI (P = 2.3 3
1025 and P = 0.0093, respectively; Figure 2, D and E) than
the lines in the lowest categories. In addition, lines with low
larval sugar (total trehalose) levels had a mean AI two-and-
a-half times greater than the lines with high sugar levels
(P = 9.0 3 10210; Figure 2F). This result shows that line
(hence genotype) trait measurements in larvae can be pre-
dictive of disease state in a different developmental stage,
in this case heart dysfunction in adult flies.

To relate AI to the metabolite and transcriptome vari-
ance, we performed linear regression on the principal
components of variation. Third-instar gene expression prin-
cipal component 8 (geppc8) was highly significantly corre-
lated with adult AI (P = 1.3 3 1024), explaining .27%
of the variance (Table 2). AI was also correlated with
three metabolite principal components, including metpc2
(P = 0.012), the principal component that is also strongly
correlated with weight, triglycerides, sugar, and develop-
ment time. Collectively the first 10 principal components
for gene expression and metabolite profiles explain comparable

Figure 2 Architecture of phe-
notypic, gene expression, and
metabolome profiles. (A) Vari-
ance partition for the pheno-
types measured on 20 genetic
lines across four diets. Weight,
triglyceride, and sugar pheno-
types show low levels of variance
due to diet while survival and de-
velopment time traits show large
effects of diet. (B) Variance parti-
tion on the first 10 principal com-
ponents for gene expression and
metabolite profiles. Expression
profiles show a small dietary com-
ponent while metabolite profiles
show a large dietary component.
(C) Correlations of the first five
principal components of gene ex-
pression (gep) and metabolite
(met) profiles. Only small correla-
tions are observed and none are
significant at a Bonferroni cor-
rected P-value (the smallest raw
P-value observed was 0.003 be-
tween metpc2 and geppc4).
(D–F) Phenotypic classification of
metabolic phenotypes explains
significant variation in heart ar-
rhythmia index (AI). Data points
are colored by genetic line, error
bars indicate the mean 61 SE,
phenotypic groups are defined
as being light/low ,1 SD below,

heavy/high .1 SD above, and normal within 1 SD of the mean of the lines across all diets. AI data points are measures of individual flies. (D) Lines
grouped by pupal weight category vs. AI measures. Heavy genetic lines had significantly higher AI: AI means are low 0.09, normal 0.11, high 0.21.
(E) Lines grouped by third-instar triglyceride content. Genetic lines with low triglyceride levels had significantly lower AI: AI means are low 0.07,
normal 0.12, high 0.18. (F) Lines grouped by third-instar trehalose content genetic lines with low trehalose levels had significantly higher AI (mean 0.23
vs. 0.10).
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amounts of the variation in AI (45 and 38%, respectively), so
unlike some of the other traits, both gene expression and me-
tabolite profiles are useful in predicting disease risk at a later
developmental stage. In addition, third-instar glycine levels are
significantly negatively correlated with adult heart AI (R2 =
0.148, P = 0.0048).

Adaptive response to diet

We collected 200 gravid female D. melanogaster on the cam-
pus of Georgia Tech in summer 2010 and sequenced the
population to an average depth of 3003 to estimate genotype
frequencies at millions of polymorphic sites genome wide.
The second-generation progeny founded six parallel popula-
tions each with an expected effective population size of 180
virgin females and 180 males, which were adapted in dupli-
cate to three diets with a deliberate schema to prevent in-
breeding. The high-fat diet resulted in high morbidity and
loss of fecundity, necessitating a reduction in coconut oil con-
centration at generation five, but no gross loss of viability was
observed for the high-sugar and low-sugar diets. After 14–17
generations, we resequenced both replicates of each popula-
tion to � 703 depth, facilitating estimation of allele fre-
quency changes in response to adaptation to each diet.

We identified 1,474,945 biallelic SNPs and here report
data for a filtered set of 143,975 high-confidence common
polymorphisms where the minor allele frequency at baseline
was at least 0.05 (estimated from 150 or more reads), and
all short-read alignments had a sequence quality score
corresponding to an error rate of 1023 or better. To detect
selection, we devised a method by which to calculate the
actual effective population size and subsequently the expected
allele frequency under drift. We then used the magnitude
of the change in allele frequency from baseline to each of
the evolved populations to ascertain which SNPs were
evolving more than expected by drift alone (Figure S3).
A total of 8343 SNPs had significantly different allele fre-
quencies between the baseline and at least one of the
evolved populations at P , 4 3 1028; of these, 36% were
in common to all six evolved populations at P , 0.05
(Figure 4A and Table 1).

We also observed significant enrichment for diet-specific
responses, with 692 SNPs showing significant deviation in
allele frequencies between both replicates of one diet and
baseline (at P , 1025) but not in the other diets. A total of
571 genes are located in the immediate vicinity of SNPs that
are significant for high fat, 661 for high sugar, and 484 for
low sugar. In addition, 48% of all SNPs found to change
frequency significantly on one diet also showed significant
adaptation on the second dietary replicate (Figure S2), an
overwhelming proportion given the independent population
dynamics in each replicate. The allele frequencies among
the replicates were most highly correlated between the
within-diet replicates (Figure S4). Thus, parallel adaptation
to a specific food source occurs in conjunction with the stron-
ger overall adaptation to laboratory culture. The dietary re-
sponse is genome wide, resulting in correlated changes in
allele frequency comparing all three diets to baseline or to
one another. For the pairwise comparisons of each diet, across
all SNPs for the allele frequency difference between diet and
baseline, correlations are 0.5 or greater.

In addition, the two high-calorie diets (high fat and high
sugar) resulted in much more similar allele frequency
profiles than either did to the low-calorie diet (Figure 4B).
Figure 4C highlights distinct clusters of genes that show di-
et-specific responses, particularly those that changed in the
opposite directions on the high-fat, high-sugar, and low-
sugar diets. Responses were distributed across all chromo-
somes (Figure 5A and Figure S5). The mean size of selected
blocks was between 100 and 200 kb (Figure 5B), which is
expected given the very-low linkage disequilibrium observed
in outbred Drosophila (Haddrill et al. 2005) coupled with
the measured effective population size between 100 and
150 female flies per generation. There was no evidence
for selective sweeps on large blocks surrounding a rare
variant.

We conclude that there is pervasive standing genetic
variation available for dietary response, with selection
differentials ranging from 10% or more for sites that change
as much as 50% in frequency, to very small differentials

Table 2 Correlation of gene expression and metabolite PC with
phenotypes at P < 0.05

Phenotype
Principal

componenta Correlation P-value

Development time geppc1 (20.8%) 20.224 0.046
Development time geppc4 (7.5%) 0.305 0.006
Sugar geppc4 (7.5%) 0.236 0.035
Weight geppc4 (7.5%) 20.316 0.004
Larval survival geppc5 (5.4%) 20.311 0.005
Sugar geppc5 (5.4%) 20.276 0.013
Weight geppc7 (3.1%) 0.289 0.009
Arrhythmia index geppc8 (2.7%) 20.523 1x1024

Development time geppc8 (2.7%) 20.222 0.048
Arrhythmia index geppc10 (1.9%) 20.274 0.041
Sugar geppc10 (1.9%) 0.225 0.045
Larval survival metpc1 (9.1%) 0.314 0.005
Pupal survival metpc1 (9.1%) 0.278 0.013
Arrhythmia index metpc2 (7.8%) 20.333 0.012
Development time metpc2 (7.8%) 0.437 0.011
Triglycerides metpc2 (7.8%) 20.321 0.004
Sugar metpc2 (7.8%) 0.286 0.010
Weight metpc2 (7.8%) 20.559 0.009
Arrhythmia index metpc4 (4.4%) 20.397 0.002
Triglycerides metpc4 (4.4%) 20.281 0.012
Sugar metpc4 (4.4%) 0.255 0.022
Development time metpc5 (3.8%) 0.358 0.001
Pupal survival metpc5 (3.8%) 20.302 0.007
Arrhythmia index metpc6 (3.5%) 20.362 0.006
Larval survival metpc6 (3.5%) 20.496 0.002
Pupal survival metpc6 (3.5%) 20.507 3x1024

Weight metpc6 (3.5%) 20.239 0.033
Development time metpc8 (2.9%) 20.250 0.025
Triglycerides metpc8 (2.9%) 20.227 0.043
a geppc refers to gene expression principal component (describing the indicated
percentage of variation), while metpc refers to principal components of the
metabolome.
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responsible for the overall genomic response. Figure 5B
highlights two representative regions showing adaptation
to both the laboratory and diet-specific selection regimes.
Both chorion complexes on X and 3L showed consistent
adaptation across all diets, likely because substrate differ-
ences between wild (rotting fruit) and laboratory (solid agar
media) settings would dramatically alter the fitness of egg
chorion structural alleles because of differences in both wa-
ter tension and oxygen availability. The chorion complex
undergoes early embryonic amplification that could intro-
duce a technical bias (Orozco-Terwengel et al. 2012), but
this unusual feature of the loci also underscores their critical
role in organismal physiology. For comparison, a third rep-
resentative region adjacent to the chorion complex on the X
chromosome (Figure 5B) showed a selective response only
on the high-calorie diets, implying that genes in that region
are especially relevant in a nutrient-rich environment.

Adaptation and gene expression

Although selection presumably acts on individual sites, the
resolution of our experiment was to no less than 100-kb
intervals that often include multiple genes. Consequently,
we sought experimental support for the function of a subset
of variants. We first confirmed genotypic divergence for
.80% of a sample of 48 polymorphisms in regulatory
regions by genotyping 96 flies from one of each of the
evolved populations on three diets using Fluidigm arrays
(Spurgeon et al. 2008). Next, we measured gene expression
in whole adults from eight inbred lines derived from each of
the three populations and observed significant divergence in
Ct counts from the Fluidigm nanoscale qRT–PCR assays for
23 of the 41 transcripts (Table S5), indicating that dietary
adaptation has modified gene expression at these target loci,
consistent with selection on the regulatory polymorphisms.
For example, BG4 shows a fourfold downregulation after
adaptation to the high-fat diet relative to the low-sugar
diet (Figure S6).

As a second approach to linking the genotypic adaptive
responses to the transcriptomic analyses, we asked whether
there is significant enrichment of shared genes (i) in the
vicinity of selected loci, (ii) in the list of differentially
expressed transcripts across diets, (iii) among the 505 genes

found to regulate larval lipid levels in an RNAi screen
(Pospisilik et al. 2010), or (iv) among a published list of 486
regulatory eQTL detected in adults of both sexes (Massouras
et al. 2012). Surprisingly, for all of these pairwise compar-
isons, the overlap of genes was no greater than expected
by chance (Table S6).

Discussion

We find that the transcriptome as a whole is more sus-
ceptible to genotype-by-environment (diet) interactions
than is the metabolome, but certain transcripts and metab-
olites can nevertheless predict phenotype: for example,
heart arrhythmia susceptibility in adults is correlated with
the metabolite glycine (as well as triglycerides, weight, and
blood sugar) in larvae. In parallel, evolve-and-resequence
contrasts of populations of recently trapped wild flies
demonstrated pervasive genome-wide variation for adapta-
tion to three different diets that is superimposed on rapid
adaptation to the lab environment. There was, however,
little overlap with loci inferred to influence metabolic traits
from gene expression profiles or from RNAi knockdown.
Thus, environmental influences on the genotype to pheno-
type map involve somewhat independent organization of
transcriptional and metabolic profiles. Similarly, eQTL asso-
ciate poorly with expected metabolite abundances in Arabi-
dopsis (Atwell et al. 2010), and metabolic flux is not well
predicted by metabolic enzyme transcript levels in bacteria
(Chubukov et al. 2013).

It is noteworthy that glycine was correlated with MetS-
like phenotypes and heart arrhythmia in our study, since it is
a gluconeogenic amino acid, low levels of which in serum
have been associated with type 2 diabetes risk in humans
(Floegel et al. 2013). NMR spectroscopy of cardiac tissue
from patients with persistent atrial fibrillation also revealed
elevated levels of ketogenic amino acids including glycine
(Mayr et al. 2008). In addition, a recent systems genomics
analysis of cancer cell lines pinpointed glycine as a key reg-
ulator of cancer-cell proliferation by acting as a rate-limiting
mediator of DNA synthesis (Jain et al. 2012).

Given the strong signal of G3 D interaction effects across
a panel of wild-type Drosophila lines, we wondered whether

Figure 3 Associations between
metabolites and phenotypes. Each
plot shows the correlation be-
tween phenotype on the y-axis
and metabolic or transcriptional
measure, colored by the diet (F,
high fat, green; 4, high sugar,
blue; N, normal cornmeal–molas-
ses, purple; C, low sugar, red) on
which the 20 lines were grown.
Letters to the side indicate signifi-
cance of the correlation on each

diet (*) P , 0.05; (**) P , 0.01; (***) P , 0.001. (A) Weight (mg) is significantly correlated with metabolite PC2 on three diets. (B) Sugar (log transformed)
is negatively correlated with metabolite PC2 on 1 diet. (C) Weight is not significantly correlated with expression PC2 on any diet.
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it was possible to identify genetic loci responsible for the
interaction effect through artificial dietary selection on
a wild population of flies and thus predict the genetic evo-
lutionary trajectory of a population after a shift in diet. Spe-
cifically, we hypothesized that it would be possible to
identify SNPs or genomic regions that evolve similarly in
response to similar diets. We found that rather than selec-
tion being limited to a handful of genetic variants, adapta-
tion to the artificial diets was highly polygenic, but a large
portion of those regions that did respond to selection did so
in parallel across dietary replicates. Published evolve and
resequence experiments mostly utilizing previously lab-
adapted Drosophila have demonstrated substantial genome-
wide genetic variation for artificial selection on courtship
song (Turner and Miller 2012), late-reproductive capacity
(Burke et al. 2010), and body size (Turner et al. 2011), as
well as adaptation to the lab environment in general
(Orozco-Terwengel et al. 2012).

It appears that the genomic adaptation to the laboratory
may occur consistently as soon as flies are trapped, since
allele frequencies of our evolved lines are similar to those
reported in two other laboratory adapted samples. In
comparing our baseline allele frequencies to those found
in the DGRP isofemale lines (Mackay et al. 2012), we found
a strong positive correlation, indicating that the standing
genetic variation present in the Raleigh Farmers Market
(Raleigh, NC) and on the Georgia Tech campus (Atlanta,
GA) are very similar despite being 650 km apart (Figure
1A). This correlation was even stronger following lab adap-
tation (Figure 1, C and E), implying caution about the use of
isogenic lines for population genetic inference in natural
populations. A similar though weaker correlation between

a Portuguese baseline population (Orozco-Terwengel et al.
2012) and our evolved samples was also observed, but this
became weaker as their flies experienced the effects of
strong lab-specific selection (Figure 1, B, D, and F). It should
also be noted that an excess of high-frequency variants
was observed in the Atlanta population relative to the
DGRP (Mackay et al. 2012) when all polymorphisms with
a 503 or greater read depth were considered, but that
excess disappeared when read depth was constrained
to be 1503 or greater (Figure 1, G and H). Thus, even
high-depth resequencing is prone to significant error and
read depths exceeding 1503 may be needed to accurately
genotype a population.

While we did find that a substantial portion of the tested
loci that showed a response to selection at cis-regulatory
regions showed a corresponding change in gene expression,
we did not observe a significant overlap between loci show-
ing significant variation for genotype-by-diet expression
effects and loci responding to selection in our study nor
between those loci and genes independently functionally
characterized as effecting obesity traits. At a gross level, this
implies that the genes that can be artificially manipulated to
cause an obesity phenotype under standard laboratory con-
ditions are not necessarily the ones that have altered expres-
sion as the diet changes or have regulatory variants that
respond to adaptation to different diets. (See File S1, File
S2, File S3, and File S4.)

Collectively, then, in natural populations of Drosophila,
there are extensive genotype-by-diet interaction effects at
the gene expression, metabolomic, and phenotypic levels.
However, there is not always direct or clear linkage between
the source of the genetic variation (the genome) and the

Figure 4 General and diet-spe-
cific laboratory adaptation. (A)
Volcano plot of the average sig-
nificance (NLP) against average
difference between baseline and
evolved allele frequency across all
six laboratory adaptation experi-
ments. Only the major allele at
baseline is shown, which results
in the asymmetric distribution
since there is a greater range over
which SNPs can change in fre-
quency. Colored dots represent
2734 SNPs that were significant
at NLP . 6 in both high fat
(red), both HIGH Sugar (blue), or
both LOW Sugar (green) repli-
cates. (B) Ternary plot of average
significance of adaptation in both
replicates of each diet, with
27,459 SNPs significant at NLP .
4 in at least one experiment, col-
ored with respect to significance

(yellow, low; red, high). Contour lines show the density of SNPs, showing a greater number of sites significant in both high-calorie diets and relatively
independent evolution on low sugar. (C) Heat map of average difference between baseline and evolved allele frequency on the three diets, with red
representing higher frequency of the major allele at baseline and blue representing higher frequency in the evolved population. Clusters of sites showing
largely diet-specific changes are indicated by horizontal bars. Plot includes all SNPs with average NLP . 6 for both replicates of at least one diet.
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(endo)phenotypes (transcription, metabolites, traits). Differ-
ent physiological levels are buffered against dietary perturba-
tion to differing degrees, and every genetic line tested has
a different reaction norm to dietary variation. Direct ties be-
tween physiological markers and phenotypic outcomes are
most robust when they are measured in the same environ-
ment, but some general patterns can be linked across environ-
ments such as predicting the risk of disease (heart arrhythmia)
from a genotype’s metabolic or expression profile. Others have
also documented genotypic differences in the magnitude of
environmental or genetic perturbations on the transcriptome
that complicate the mapping of genotype onto phenotype
(Dworkin et al. 2009; Jumbo-Lucioni et al. 2010; Doroszuk
et al. 2012; Zhou et al. 2012; Civelek and Lusis 2013).

In summary, we tell both a cautionary and a hopeful tale.
We show the limited power of particular genetic loci to
predict phenotypes or evolutionary response and the tre-
mendous variance that is introduced when a genome is
challenged by different environments. The presence of such
complexity in a disease phenotype, such as MetS, suggests
that we have much work to do before a complete picture of
the mechanisms of the disease can be resolved. However, we

also share the optimistic perspective that, despite the
complexity of interacting biological factors, by using a sys-
tems biology approach it is still possible to find many useful
signals. We know that for most complex traits any given
genetic locus can explain only a small percentage of the total
genetic variation, and thus most traits of pressing bio-
medical or evolutionary interest have a highly polygenic
basis. Genome-wide association studies are very powerful
for finding the largest-effect loci, but provide only a static
picture of a small component of standing variation that has
limited capacity to predict organismal responses in evolu-
tionary or ecological settings. We do not believe that
previous findings about the mechanisms underlying of MetS
should be disregarded; what has already been determined
about the relationship between dietary influences and
metabolic health is extremely useful, and important public
health recommendations are being made as a result. In-
stead, we mean to address the causes of and possible
strategies to closing the remaining gaps in our understand-
ing. Systems biology provides an orthogonal and more
holistic approach to association mapping for identification
of predictive factors of phenotypic outcomes.

Figure 5 Change in allele frequency by chromosomal position. (A) Manhattan plots of first replicate of the high-fat lab adaptation showing
significance of the change in frequency against chromosomal position, for the indicated chromosome arms. (B) Sliding window plots of average
change in frequency (expressed as the squared change difference with baseline), in two less than 5-Mb intervals on 3L and X indicated by solid
black bars in A. Each of the six replicates, two per diet, is shown as a different color. Upward arrows show location of the two chorion complexes,
indicating parallel evolution on all diets, while the adjacent downward arrow on the X shows a region that only changes in frequency on the high-
calorie (not the low-sugar) diets. Most sliding window peaks are between 100 and 150 kb in width, indicating that this is the extent of
chromosome selected.
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Figure S1   Absence of platform effect on allele frequency estimation.  The Q‐Q plot shows the observed versus expected NLP 
value for all pairwise comparisons of allele frequencies measured between the first and second replicates for each diet, which 
were sequenced on Illumina GAiix and Hi‐Seq2000 platforms respectively.  Significance values were assessed by simple binomial 
contrasts. 
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Figure S2   Volcano plots for each replicate.  Significance computed as NLP from the Drift‐Variance approximation is plotted against 
the allele frequency change for the major allele with higher frequency in Baseline to the right.  Since the significance is calculated 
with respect to the initial major allele frequency, the maximum frequency change is bounded, with the consequence that very highly 
significant changes in frequency are more likely to occur when the allele frequency is reduced under selection.  For each figure above, 
the significant SNPs (NLP>6) for the first replicate of each diet are colored, and the same SNPs are colored in the second replicate: the 
vast majority change in the same direction and many are highly significant.  
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Figure S3   Estimation of effective population size. Ne is estimated for each replicate and each chromosome arm, using 4 
different models.  The lowest estimate (purple) uses all SNPs, but is downwardly biased because it does not account for SNPs 
that are under positive selection during lab adaptation.  Trimming 20% of the SNPs that diverge the most in allele frequency 
(green, corresponding to the upper limit of the estimated fraction in LD with sites under selection) increases the estimate on 
average from Ne ˜50 to Ne ˜75.  Further adjustment for sampling error in frequency estimation from the sequence data increases 
the estimate of Ne up to a further 25%.  Trimming 50% of the SNPs results in Ne ˜150, but is almost certainly an over‐estimate 
since it reduces the variance estimate.  Note that the estimates on 3R are lower, likely reflecting the increased selection on that 
chromosome arm possibly due to the presence of a common inversion ‐ IN(3R)Payne, while those for the X are elevated and 
need to be down‐weighted to account for the smaller number of X chromosomes in the population.  We conclude that the 
effective population size is between 75 and 100 in all replicates, consistent with the experimental design in which 12 bottles 
with up to 15 flies of each sex were selected each generation.   
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Figure S4   Correlation of allele frequencies between replicates.  The heat map shows the Pearson correlation coefficient for 
each pairwise contrast of the difference between baseline and evolved frequencies, for the six replicates, from zero (white) to 1 
(black).  All alleles that passed the QC cut‐offs  (minimum depth 150, Q30) were included.  Clustering of these correlations 
confirms that the two pairs of diets for the same replicate are closer to one another than to the other diets, and that the two 
high calorie diets (high fat and high sugar) are more similar than the low sugar diet.   
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Figure S5   Heat maps of most significant selective events by chromosome.  (A)  Locations of the sliding windows in the top 10% 
of mean change in allele frequency across all 6 replicates, color coded by diet (HF green, HS red, LS blue).  (B)  Similar plot, but 
showing locations where comparisons between two diets were in the top 10%. (C)  Heat map of sliding window average change 
in frequency on 3R for two diet replicates showing parallel evolution to the lab environment across all diet. 
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Figure S6   Example evolution of gene expression.  Quantitative RT‐PCR was used to monitor the expression of 41 transcripts 
located within regions showing laboratory adaptation in at least one diet.  23 of these showed a significant difference in 
abundance between the 12 flies sampled from one replicate of each diet.  BG4 expression is approximately 4‐fold down‐
regulated on the high fat diet relative to the low sugar diet, as it shows Ct counts elevated by 2 cycles. 
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External Databases available for download as Excel files at authors’ website, 
http://www.gibsongroup.biology.gatech.edu/supplemental‐data‐reed‐et‐al and at 
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.163857/‐/DC1 

 

File S1   Gene expression Line and Diet means 

File S2   Metabolite Line and Diet means and identities 

File S3   Phenotype Line and Diet means 

File S4   Baseline and Evolved allele frequencies and significance estimates 
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Table S1   Proportion of Variance Explained (PVE) by Genetic, Dietary, and GD contributions to gross phenotypes 

 

Trait  Source  PVE  p Value 

Weight  Genetic  0.256  <10‐324 

Weight  Diet  0.006 5.1x10‐15 

Weight  Genetic x Diet 0.047 2.6x10‐73 

Weight  Replicate 0.112 6.6x10‐151 

Triglyceride  Genetic  0.148 2.4x10‐34 

Triglycerides  Diet  0.034 1.2x10‐12 

Triglycerides  Genetic x Diet 0.140 1.5x10‐19 

Triglycerides  Replicate 0.472 6.8x10‐48 

Sugar  Genetic  0.123 3.9x10‐18 

Sugar  Diet  0.015 5.3x10 ‐4 

Sugar  Genetic x Diet 0.155 4.8x10‐12 

Sugar  Replicate 0.357 2.2x10‐19 

Larval Survival  Genetic  0.156 2.2x10‐16 

Larval Survival  Diet  0.198 1.4x10‐29 

Larval Survival  Genetic x Diet 0.076 1.1x10 ‐1 

Larval Survival  Replicate 0.309 5.5x10 ‐6 

Pupal Survival  Genetic  0.065 1.3x10‐16 

Pupal Survival  Diet  0.487 2.3x10‐86 

Pupal Survival  Genetic x Diet 0.116 2.4x10‐17 

Pupal Survival  Replicate 0.186 1.4x10‐12 

Development Time  Genetic  0.228 3.4x10‐19 

Development Time  Diet  0.091 1.7x10‐13 

Development Time  Genetic x Diet 0.087 4.2x10 ‐2 

Development Time  Replicate 0.348 3.4x10 ‐7 
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Table S2   Correlations between the first 5 principal components of the gene expression (geppc) and metabolite (metpc) 
profiles based on line and diet means. 
 

Expression PC  Metabolite PC  Correlation  p‐value 

geppc1 (20.8%)  metpc2 (7.8%)  ‐0.270  0.015 

geppc1 (20.8%) metpc5 (3.8%) ‐0.205 ns

geppc1 (20.8%) metpc3 (4.9%) ‐0.072 ns

geppc1 (20.8%) metpc1 (9.1%) 0.068 ns

geppc1 (20.8%) metpc4 (4.4%) 0.056 ns

geppc2 (12.5%) metpc2 (7.8%) 0.303 0.006

geppc2 (12.5%) metpc5 (3.8%) ‐0.145 ns

geppc2 (12.5%) metpc3 (4.9%) ‐0.034 ns

geppc2 (12.5%) metpc4 (4.4%) ‐0.032 ns

geppc2 (12.5%) metpc1 (9.1%) ‐0.004 ns

geppc3 (9.8%)  metpc2 (7.8%) ‐0.231 0.039

geppc3 (9.8%)  metpc5 (3.8%) ‐0.085 ns

geppc3 (9.8%)  metpc3 (4.9%) 0.059 ns

geppc3 (9.8%)  metpc4 (4.4%) 0.056 ns

geppc3 (9.8%)  metpc1 (9.1%) ‐0.033 ns

geppc4 (7.5%)  metpc2 (7.8%) 0.330 0.003

geppc4 (7.5%)  metpc1 (9.1%) 0.292 0.009

geppc4 (7.5%)  metpc5 (3.8%) 0.206 ns

geppc4 (7.5%)  metpc3 (4.9%) ‐0.101 ns

geppc4 (7.5%)  metpc4 (4.4%) 0.026 ns

geppc5 (5.4%)  metpc5 (3.8%) 0.230 0.041

geppc5 (5.4%)  metpc1 (9.1%) ‐0.197 ns

geppc5 (5.4%)  metpc3 (4.9%) 0.061 ns

geppc5 (5.4%)  metpc4 (4.4%) 0.056 ns

geppc5 (5.4%)  metpc2 (7.8%) 0.010 ns
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Table S3   Identified metabolites strongly correlated with Metabolite PC 2 
 

Metabolite ID  Correlation  p‐value   

glycine   0.65  1.9x10‐9 

arachidonoyl dopamine  0.54 1.4x10‐5

glucose  0.44 4.0x10‐3

fructose  0.39 1.0x10‐2

valine  ‐0.47 1.3x10‐3

leucine  ‐0.48 9.1x10‐4

l‐dopa  ‐0.50 1.2x10‐4

methionine  ‐0.52 5.9x10‐4

isoleucine  ‐0.53 2.8x10‐5

phenylalanine  ‐0.55 1.8x10‐7
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Table S4   Variance in metabolic traits explained by expression and metabolite profiles.          
 

Trait     Gene Expressiona         Metabolitesa 

Weight  0.320  0.522 

Triglycerides  0.167  0.279 

Sugar  0.295  0.180 

Larval Survival  0.273  0.480 

Pupal Survival  0.131  0.582 

Development Time  0.353  0.427 

Arrhythmia Index  0.452 0.382 

 
a Cells show weighted sum of R2 values fitting the trait as a function of the first 10 principal components of 
either gene expression or metabolite profiles.  
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Table S5   Dietary Change in Gene Expression measured by qRT‐PCR 
 

GENE  pdiet   RSqdiet                Sigdiet  Low in    

amos     0.31  0.01

BBS8     0.17  0.05

beg     0.02  0.15 *

BG4  2E‐09  0.66 ***    HF

CG10336  3E‐05  0.42 ***    HF

CG10505     0.31  0.01

CG11035     0.39  0.00

CG11251     0.02  0.16 *

CG1138  5E‐06  0.47 ***    Sugar

CG11865  1E‐05  0.44 ***    HF, LS

CG12030     0.01  0.20 **      HS

CG13800     0.59  0.00

CG14823  7E‐06  0.46 ***    HS

CG14826     0.07  0.09

CG15506  7E‐08  0.59 ***    Sugar

CG31099  7E‐06  0.46 ***    Sugar

CG3124  7E‐06  0.47 ***    Sugar

CG3199  2E‐06  0.50 ***    Sugar      

CG32982  3E‐05  0.42 ***    Sugar

CG34275     0.95  0.00

CG3748     0.88  0.00

CG4650     0.02  0.17 *        High Cal

CG8525     0.39  0.00

cv‐c     0.18  0.05

daw     0.03  0.14 *        HF

Den1   0.003  0.25 **      High Cal

Dg  3E‐04  0.34 **      High Cal

DmsR‐1  5E‐08  0.60 ***    Sugar

dro3     0.64  0.00

Gli     0.75  0.00

Gr64e  0.07  0.09

heph  0.0001  0.37 **      HF

IM2  0.05  0.11 *        High Cal

Lip4  0.07  0.09

PH4αSG1  0.21  0.03

PpD6  0.02  0.15 *        LS

Psf2  0.0001  0.37 **      HF

raw  0.33  0.01

scramb1  0.16  0.05

scrt  0.25  0.02

Src64B  4E‐08  0.60 ***    HF

pdiet  is the p‐value associated with the R‐squared measure by ANOVA for differential expression between the three diets 
(High Fat, HF; High Sugar, HS; and Low Sugar, LS), where gene expression was measured in a pool of 10 whole flies for 
each of 8 inbred lines for one replicate of each diet.  The “Low In” column shows which diet(s) show the lower expression 
(higher Ct values) where High Calorie is both High Fat and High Sugar, and Sugar implies lower expression on both high 
and low sugar diets. Significance is summarized as * 0.05 > p > 0.01   **  0.01 > p > 0.0001   ***  p< 0.0001 
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Table S6   Lack of overlap between types of genomic response. 
 

   Total  HS SNP LS SNP G×D Txt     TG RNAi    eQTL 

HF SNP Genesa  571  287 208 34 22 25 

HS SNP Genesa  661    222 28 21 24 

LS SNP Genesa  484    28 15 14 

G×D Transcriptsb  697    38 22 

TG RNAi Genesc  505    19 

eQTL Genesd  486     

            
Cells show number of genes out of the Total listed for each of 6 genomic responses that are found in the indicated pair of 
responses.  With 13,394 CG entries in the genome, and an average of 495 genes for each type of genomic response (3.7% of all 
genes), expected values are ~18 overlaps per pair.  There may be an enrichment for the transcripts that show a significant G×D 
interaction and genes that affect Triglyceride content after RNAi‐knockdown. 
 
a Gene nearest to a SNP that shows significant change in frequency of both replicates of the High         Fat (HF), High 
Sugar (HS) or Low Sugar (LS) diets at p<10‐5. 
b Transcripts that show a significant Genotype×Diet interaction term in the microarray analyses. 
c Genes that influence total adult triglyceride content when knocked down by RNAi (Pospisilik et  

al, 2010) 
d regulatory eQTL detected in adults of both sexes (Massouras et al, 2012) 

 


