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Charité Universitätsmedizin Berlin,
Germany
Annabell Szymansky,
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Pro-metastatic and
mesenchymal gene
expression signatures
characterize circulating
tumor cells of neuroblastoma
patients with bone marrow
metastases and relapse
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Medicine, National University of Singapore, Singapore, Singapore
Existing marker-based methods of minimal residual disease (MRD)

determination in neuroblastoma do not effectively enrich for the circulating

disease cell population. Given the relative size differential of neuroblastoma

tumor cells over normal hematogenous cells, we hypothesized that cell size-

based separation could enrich circulating tumor cells (CTCs) from blood

samples and disseminated tumor cells (DTCs) from bone marrow aspirates

(BMA) of neuroblastoma patients, and that their gene expression profiles could

vary dynamically with various disease states over the course of treatment. Using

a spiral microfluidic chip, peripheral blood of 17 neuroblastoma patients at 3

serial treatment timepoints (diagnosis, n=17; post-chemotherapy, n=11; and

relapse, n=3), and bone marrow samples at diagnosis were enriched for large

intact circulating cells. Profiling the resulting enriched samples with

immunohistochemistry and mRNA expression of 1490 cancer-related genes
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viaNanoString, 13 of 17 samples contained CTCs displaying cytologic atypia, TH

and PHOX2B expression and/or upregulation of cancer-associated genes.

Gene signatures reflecting pro-metastatic processes and the neuroblastoma

mesenchymal super-enhancer state were consistently upregulated in 7 of 13

samples, 6 of which also had metastatic high-risk disease. Expression of 8

genes associated with PI3K and GCPR signaling were significantly upregulated

in CTCs of patients with bone marrow metastases versus patients without.

Correspondingly, in patients with marrow metastases, differentially-expressed

gene signatures reflected upregulation of immune regulation in bone marrow

DTCs versus paired CTCs samples. In patients who later developed disease

relapse, 5 genes involved in immune cell regulation, JAK/STAT signaling and the

neuroblastoma mesenchymal super-enhancer state (OLFML2B, STAT1,

ARHGDIB, STAB1, TLR2) were upregulated in serial CTC samples over their

disease course, despite urinary catecholamines and bone marrow aspirates not

indicating the disease recurrences. In summary, using a label-free cell size-

based separation method, we enriched and characterized intact circulating

cells in peripheral blood indicative of neuroblastoma CTCs, as well as their DTC

counterparts in the bone marrow. Expression profiles of pro-metastatic genes

in CTCs correlated with the presence of bone marrow metastases at diagnosis,

while longitudinal profiling identified persistently elevated expression of genes

in CTCs that may serve as novel predictive markers of hematogenous MRD in

neuroblastoma patients that subsequently relapse.
KEYWORDS

circulating tumor cells, neuroblastoma, minimal residual disease, microfluidic, bone
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Introduction

Neuroblastoma is the commonest extracranial malignancy of

childhood and responsible for a disproportionate number of

deaths from childhood cancer. Nearly 60% of neuroblastomas

relapse in distant sites (1), most commonly bone marrow. Disease

relapse is thought to arise from undetected, chemo-resistant cells.

Yet, current treatment-response evaluations in neuroblastoma do

not consider MRD for treatment allocation, particularly of bone

marrow and blood, unlike in many hematological and adult

cancers where this is a routine part of clinical treatment

protocols (2–5). As the thoroughfare for cellular trafficking, these

compartments are thought to harbor micrometastases that seed

distant sites. Their prognostic significance has been demonstrated

in various adult malignancies and pediatric leukemia (6). However,

existing PCR-based approaches to determine MRD in

neuroblastoma provide limited actionable biological information

and are unable to enrich for the cells in question (7–11).

More recently, single cell capture techniques have allowed CTCs

to be enriched from peripheral blood. However, as most CTC

capture platforms employ affinity-binding methods, they are limited

by low throughput, cell viability and an inherent selection bias (12–
02
15). Thus, non-affinity-binding methods may facilitate enrichment

for a population of intact, viable CTCs in a high-throughput

manner. Size-based separation methods have also identified

circulating cells undergoing epithelial to mesenchymal transition,

with biological characteristics of malignancy but lacking known

surface epithelial markers like EpCam (15). Using capture-based

methods, CTCs expressing neurogenic markers have been isolated

from blood of neuroblastoma patients and shown to correlate with

relapse and bonemarrowmetastases (16–18). Yet, as neuroblastoma

tumor cells are mostly larger than normal blood cells (~20mm vs

~12mm), and have been found in peripheral blood samples (19), this

suggests that they may be selectively concentrated by size-based

separation (20). A spiral microchannel biochip utilizing inertial

microfluidics and inherent centrifugal forces for size-based

separation of CTCs from blood has been successfully employed in

various cancers (21–25).We hypothesized that this high-throughput

label-free method could enrich CTCs from blood samples and

DTCs from bone marrow aspirates (BMA) of neuroblastoma

patients, and that gene expression of these cells would vary

dynamically with various disease states over the course of treatment.

In this study, we enriched CTCs and DTCs that expressed

neuroblastoma markers on immunohistochemistry and
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quantitative reverse transcription PCR (RT-qPCR). We

identified distinct CTC and DTC expression signatures that

distinguish neuroblastoma patients with bone marrow

metastases at initial diagnosis, and that persist in patients with

subsequent relapse.
Materials and methods

Patients and samples

Following informed consent under an institutional review

board-approved protocol (SHS/2016/2022), neuroblastoma

patients treated at KK Women’s and Children’s Hospital were
Frontiers in Oncology 03
recruited at initial diagnosis. Tumor, venous blood and BMA

samples were obtained at diagnosis, after induction chemotherapy

following ANBL0032 protocol, and at relapse (Figure 1A).

Demographic, disease, treatment and outcome data were

obtained from the Singapore Childhood Cancer Registry

(SCCR). All tumor and BMA smears were centrally reviewed by

a senior pediatric pathologist and evaluated according to

International Neuroblastoma Response Criteria standards (26).

At respective timepoints, at least 6ml of venous blood and

3ml of BMA were drawn and collected using K2-EDTA

vacutainer® tubes (BD, Singapore) or Cell-Free DNA BCT

tubes (Streck, USA) and processed on the same working day

using the ClearCell® FX system (Biolidics, Singapore), as

described (27, 28). Separate CTC-enriched and CTC-depleted
B

C

A

FIGURE 1

Neuroblastoma CTCs expressing characteristic markers are isolated using cell size-based separation. (A) Schema of experimental design and 3
serial timepoints where blood and/or bone marrow samples were obtained from patients for CTC enrichment. (B) Representative
photomicrographs of cytospots of CTC-enriched fractions demonstrating PHOX2B- and TH-positivity of isolated large, atypical cells on
immunohistochemical staining (arrows; NBL20 at initial diagnosis and NBL10 following induction chemotherapy, respectively; scale bar: 50 µm),
and corresponding bone marrow aspirate with neuroblastoma tumor cell infiltration for size comparison (NBL20 at initial diagnosis; H&E, scale
bar: 50 µm). (C) Relative gene expression of PHOX2B and TH in CTC-enriched and waste fractions from blood samples taken at diagnosis.
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(waste) fractions were obtained. CTC-enriched fractions were

separated equally for downstream gene expression analysis and

immunocytochemistry to verify their expression of established

neuroblastoma markers. Cytospots were created from half of

each CTC-enriched fraction for immunohistochemistry, and

mRNA was purified from the other half for gene expression

analysis. For gene expression analysis of CTCs and cell lines,

RNA was extracted using the RNeasy micro kit (Qiagen,

Germany). RNA was quantified using nanodrop and stored at

-80°C. For immunohistochemistry, the apportioned CTC output

was fixed in Shandon Cytospin Collection Fluid (Fisher

Scientific, Inc.) and cytospots stained for PHOX2B, TH and

GD2 synthase.

For initial evaluation of cell separation efficacy and

subsequent gene expression analysis, 1mL whole blood

samples from 3 anonymized age-matched healthy controls

were obtained from the Department of Pathology and

Laboratory Medicine, KK Women’s and Children’s Hospital,

under the same research protocol.
Cell lines

Human neuroblastoma cell lines NB1, CHP212, SK-N-SH,

NLF (RRID: CVCL_1440, CVCL_1125, CVCL_D044,

CVCL_E217) and human gastric cancer cell line AGS (RRID:

CVCL_0139) were maintained in RPMI-1640 (Hyclone)

containing 10% fetal bovine serum (FBS; Hyclone). Kelly was

maintained in RPMI-1640 (Hyclone) with HEPES containing 10%

FBS. IMR32 was maintained in MEM/EBSS (Hyclone) containing

1% NEAA, 1% sodium pyruvate and 10% FBS. BE2C was

maintained in DMEM/F12 (Hyclone) containing 10% FBS. All

cells were obtained from America Type Culture Collection

(ATCC) and cultured in a 37°C, 5% CO2 humidified incubator.
Single-cell isolation using a
microfluidic device

Normal blood samples spiked with NLF cells were subjected

to 1% paraformaldehyde (PFA) fixation and staining with Anti-

Human CD45-PE (Miltenyi Biotec, Germany, RRID :

AB_2725946) and Hoechst 33342 (Trihydrochloride,

Trihydrate, Life Technologies, CA, USA, RRID : AB_10626776)

prior to loading into the microfluidic device. Having 10 single-cell

capture chambers, the device was mounted on a microscope

(Olympus BX61, Japan, RRID : SCR_020343) for isolation of

single CTCs based on immunofluorescence and morphology.

Two syringe pumps (Chemyx Fusion 200, TX, USA) were used

to maintain constant flow rates (i.e., cell flow to sheath flow = 10

ml/min: 30ml/min). Hoechst+/CD45- cell (i.e., CTC) and

Hoechst+/CD45+ cell (i.e., WBC) in the capture chamber were

ejected into the recovery and recycling port, respectively.
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Single-cell lysis and cDNA generation

Each single CTC was transferred to 0.2 ml PCR tube and

subjected to lysis and RNA extraction according to the

manufacturer’s specifications (Single Cell Lysis Kit, Thermo

Fisher Scientific, MA, USA). 2.5 mM oligo (dT) primers and 0.5

mM dNTPMix (all Life Technologies, Singapore) were added into

the lysed CTC sample, which was subsequently incubated at 65°C

for 5 min and cooled on ice for at least 1 min. 1x first-strand buffer,

5 mM DTT, 10 U RNaseOUT Recombinant RNase Inhibitor, and

50 U SuperScript III RT (all Life Technologies, Singapore) were

used, made up to a final volume of 20 ml in nuclease-free water.

The final product was incubated at 25°C for 5 min, 55°C for

60 min, and 85°C for 5 min for reverse transcription on a

C1000TM Thermal Cycler (Bio-Rad, Hercules, USA).
Target-specific preamplification

Prior to preamplification, 1 mM primer mix comprising

PHOX2B, TH, GD2 synthase, b2 microglobulin, GAPDH and

UBB gene primers were prepared by adding 1 ml of 100 mM
forward gene primer and 1 ml of 100 mM reverse gene primer up

to a final volume of 100 ml in nuclease-free water. 1x PCRBIO

Ultra Mix (PCR Biosystems Ltd, London, UK), 100 nM of each

primer, and 10 ml of the reverse-transcribed products were

added to a final volume of 20 ml in nuclease-free water. The

final product was incubated at 95°C for 10 min, followed by 25

cycles of 95°C for 20 sec, 60°C for 1 min and 72°C for 20 sec with

an addition of 1 cycle of 72°C for 7 min on a C1000™ Thermal

Cycler (Bio-Rad, Hercules, USA). The amplified products were

purified prior to quantitation using Agencourt AMPure XP

beads (Beckman Coulter, IN, USA) according to the

manufacturer’s recommendations.
Real-time quantitative PCR

1x FastStart SYBR Green Master mix (Roche), 300 nM of

forward and reverse gene primer (Integrated DNA

Technologies), and 1 ml of eluted DNA product were added to

a final volume of 10 ml in nuclease-free water. The final product

was incubated at 95°C for 10 min, followed by 40 cycles of 95°C

for 20 sec, 55°C for 30 sec and 72°C for 20 sec with an addition of

1 cycle of 72°C for 7 min on a CFX96 Real-Time PCR Detection

System (Bio-Rad, Hercules, USA). Two housekeeping genes (i.e.,

GADPH and UBB) were used for normalization of expression

data. Each experiment was performed in duplicate.
GAPDH forward: CAAGCTCATTTCCTGGTATGAC

GAPDH reverse: CAGTGAGGGTCTCTCTCTTCCT

UBB forward: GCTTTGTTGGGTGAGCTTGT

UBB reverse: CGAAGATCTGCATTTTGACCT
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Gene expression analysis using real-time
quantitative PCR

cDNAwas synthesized from 10 ng of total RNA of each sample

(Promega, USA). Two µl of cDNA in triplicate was used for real-

time quantitative PCR (RT-qPCR) in 384-well plate (Bio-Rad,

USA) and performed on LightCycler® 480 System (Roche,

Switzerland, RRID : SCR_020502). PHOX2B (forward primer; 5’-

GGCTTCCAGTATAACCCGATAAG-3’, reverse primer; 5’-

TGGTCCGTGAAGAGTTTGTAAG-3’), tyrosine hydroxylase

(TH) (forward primer; 5’-ATTGCTGAGATCGCCTTCCA -3’,

reverse primer; 5’-AATCTCCTCGGCGGTGTACTC -3’), GD2

synthase (forward primer; 5’-GACAAGCCAGAGCGCGTTA-3’,

reverse primer; 5’-TACTTGAGACACGGCCAGGTT-3’), and b2
microglobulin (forward primer; 5’-GAGTATGCCTGCCGTGTG-

3’, reverse primer; 5’-AATCCAAATGCGGCATCT-3’), primers

were designed as previously described and purchased from Sigma

Aldrich (Merck, Germany) (29–31). Primers were checked for

specificity using Primer-BLAST (32). The samples were

considered positive if at least two of the three quantification cycle

(Ct) values were lower than 40. Positive results of RT-qPCR analysis

were expressed as DDCt values using b2-microglobulin as

endogenous reference mRNA, and the NB1 and AGS cell lines as

the exogenous reference samples.
Immunohistochemistry

CTC and DTC cytospots were fixed in 10% buffered

formalin (Leica Biosystems, Richmond VA), and stained with

PHOX2B (1:100) (ab183741, Abcam, RRID : AB_2857845) and

TH (1:3200) (66334-1-Ig, Proteintech, RRID : AB_2881714)

with the BOND-III Automated IHC stainer (Leica Biosystems,

USA), using manufacturers’ default automated staining

protocol, as follows: pre-treatment unmasking with BOND

epitope retrieval solution 2 (for PHOX2B) or 1 (for TH) (Cat.

AR9640, AR9961, Leica Biosystems, USA), wash with absolute

alcohol and Bond Wash Solution, staining with primary

antibodies and detection using Bond™ Polymer Refine

Detection (Cat. DS9800, Leica Biosystems, USA). After

staining, slides were dehydrated in absolute alcohol, cleared

with xylene and mounted in DEPEX medium.
NanoString gene expression analysis of
clinical samples

Samples (1ng) were amplified using nCounter Low RNA

Input Amplification Kit followed by multiplexed target

enrichment according to manufacturer’s instruction and

underwent 17-hour hybridization and post-hybridization high-

sensitivity cleanup with the nanoString nCounter Prep Station

(nanoString Technologies, USA, RRID : SCR_021712), and
Frontiers in Oncology 05
automated counting using the nCounter Digital Analyzer.

Additional probes were added to the PanCancer Pathway

panel encoding for KIF1Bb, PHOX2B, TH, GD2 synthase,

CHD5, LIN28B, CASZ1, BARD1, LMO1, and TP73; and to

the Progression panel for KIF1Bb, PHOX2B, TH, GD2 synthase,

CHD5, CHRNA3, PTPN14, GAP43, DCX and DDC. Samples

were hybridized for 17 hours and underwent nanoString

nCounter gene expression assay, according to manufacturer’s

instructions (nanoString Technologies, USA, RRID :

SCR_021712). Genes with fewer than the recommended

minimum background threshold of 20 probe counts were

filtered out. Custom gene signatures comprising genes of the

ADR and MES neuroblastoma super enhancer state found

within the PanCancer panels were defined and used to

calculate custom ADR and MES signature scores across both

panels. Raw data was analyzed using nSolver™ software

(nanoString Technologies, USA, RRID : SCR_003420) under

standard settings and normalized against manufacturer’s

respective default housekeeping genes.

Pathway scores were generated using default annotations of

the NanoString nSolver Advanced Analysis v2.0.115. Pathway

scores are calculated as the first principal component of the

pathway genes’ normalized expression, with a higher score

indicating increased expression in the majority of pathway genes.
Statistical analysis

Continuous variables were compared between clinical

subgroups using one-way ANOVA. Univariate statistical

significance was defined as a P-value of <0.05.

Differential expression analyses were performed using

NanoString nSolver Advanced Analysis v2.0.115 and DESeq2

(RRID : SCR_000154) v.1.28.1 on R v.4.0.1 (33), and pathway

enrichment analysis with default NanoString PanCancer

signatures and the custom neuroblastoma gene set as

previously described (34).

Statistical over-representation testing was performed using

Protein ANalysis THrough Evolutionary Relationships

annotations (PANTHER (RRID : SCR_004869), v.14) (35).

Fisher exact test was used to compare the 46-gene bone

marrow metastasis CTC signature and corresponding log2
fold-change values against a reference human genome. FDR

was calculated using Benjamini-Hochberg procedure and an

adjusted p-value of 0.05 was considered significant.

Since the counts of default housekeeping genes varied

substantially between timepoints, in order to compare gene

expression over multiple timepoints, the most stably-expressed

housekeeping genes (NOL7, COG7, NUBP1, DDX50 and USP39)

were selected based on their respective average gene stability

measure ~M (Supplementary Data 1), which was computed

using geNorm geometric averaging as previously described (36).

Analysis was performed on R v.4.0.1.
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Results

Cells with cytologic atypia enriched from
peripheral blood via cell size-based
separation express characteristic
neuroblastoma markers

To first evaluate the utility of size-based separation for

neuroblastoma tumor cells, we used the ClearCell® FX

microfluidic device to recover neuroblastoma cells from

normal blood samples spiked with the NLF neuroblastoma cell

line. Large cells measuring 14-16 µm were captured

(Supplementary Figure 1A), which expressed known

neuroblastoma markers GD2 synthase, PHOX2B and TH

(Supplementary Figure 1B) – the primers having been first

verified by demonstrating their expression in 7 neuroblastoma

cell lines. Since PHOX2B and TH showed the highest relative

expression across the panel of cell lines compared to non-

neuroblastoma cell line AGS (Supplementary Figure 1C), the

separation method and primers were then used to discriminate

neuroblastoma from blood cells in clinical samples.

We obtained peripheral blood samples from 17 consecutive

neuroblastoma patients at initial diagnosis, as well as bone

marrow aspirates from 4 of these patients (Supplementary

Table 1). In 11 patients, blood samples were also drawn after

induction chemotherapy and in 3 patients also during subsequent

disease relapse. Each sample was enriched for CTCs using a spiral

microchannel biochip and characterized accordingly (Figure 1A).

From half of each CTC-enriched fraction, cytospots were

generated. Immunohistochemical staining showed large cells

with cytological atypia that expressed PHOX2B and TH

(Figure 1B). Mean diameter of CTCs on cytospots of samples

obtained at initial diagnosis was 16.2 ± 8.0µm (n=78 cells). To

explore the clinical relevance of their relative abundance in the

clinical samples, we counted the number of cells with cytologic

atypia in the cytospots of the 17 patients and correlated the cell

counts with clinical and pathological variables. There were

significantly more cells with cytologic atypia in CTC-enriched

fractions of patients with bone marrow metastases than those

without (P=0.04) (Supplementary Table 2). This suggested the

association of the presence of peripheral blood cells with

cytologic atypia with a metastatic disease phenotype.

Next, the other half of the same CTC-enriched fractions

were compared with corresponding waste eluent from the

ClearCell FX enrichment process for expression of

neuroblastoma markers. RT-qPCR analysis showed higher

PHOX2B and TH expression in CTC-enriched fractions

compared to corresponding waste fractions in n=6 and n=10

cases respectively (Figure 1C). This suggested that increased

mRNA expression of PHOX2B and TH in CTC-enriched

fractions was unlikely due to acellular sources such as cell-free

DNA. However, since PHOX2B and TH were markers of the

adrenergic (ADR) super-enhancer state, and were not
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universally expressed by neuroblastoma cells, a further

understanding of the gene expression landscape of these

neuroblastoma CTCs, including markers of the mesenchymal

(MES) state, was required.
Neuroblastoma CTCs predominantly
display pro-metastatic and mesenchymal
gene expression signatures

We next sought to identify other cancer-related genes

expressed in neuroblastoma CTCs. From the CTC-enriched

fractions of the 17 neuroblastoma patients and peripheral

blood from 3 healthy controls, we profiled the expression of

1490 genes from the NanoString PanCancer panels and their

associated PanCancer gene signature scores (Supplementary

Data 2). Unsupervised clustering of mRNA gene expression

profiles identified 2 groups with gene expression profiles either

similar to or distinct from controls (Supplementary Figures 2A,

B). In 4 samples (cases NB 8, 23, 24 and 28) where the gene

expression profiles clustered closest with controls, atypical cells

expressing PHOX2B or TH were also not detected on

immunohistochemistry (Supplementary Figure 2C). This

suggested that these samples with expression profiles similar to

blood and without cells with cytologic atypia likely contained

few or no CTCs. Conversely, the remaining samples contained

non-hematogenous cells with cytological atypia and increased

expression of multiple cancer-associated genes.

Next, to determine differential gene expression signatures of

CTC samples, PanCancer gene signature scores were calculated

for the remaining 13 patients with samples that had a non-blood

signature or where cells with cytologic atypia were seen on

immunohistochemistry. Across both panels, multiple cancer-

associated signaling pathways related to metastatic processes and

a signature for the neuroblastoma mesenchymal state were

consistently upregulated in 7 patients, had mixed expression in

5 patients, and were downregulated in 1 patient (Figures 2A, B).

On the PanCancer Pathway panel, the latter patient had

upregulation of the neuroblastoma adrenergic signature

instead (Figure 2A); the adrenergic signature score could not

be calculated in the Progression panel as probe counts were

below the minimum threshold. Together, these results indicated

that in a significant proportion of neuroblastoma patients, CTCs

showed upregulation of a mesenchymal gene signature.
Pro-metastatic genes are most
significantly upregulated in CTCs of
neuroblastoma patients with high risk
metastatic disease

Since the presence of detectable CTCs was associated with a

metastatic/mesenchymal disease phenotype, we then sought to
frontiersin.org
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understand the differential expression of unique genes in CTCs of

patients with metastatic disease and other clinical risk features.

First, using an intention-to-treat analysis approach, unsupervised

clustering was performed to correlate gene expression against

clinical variables for all 17 patients. Patients with relapse, and

most patients with metastases showed upregulation of multiple

genes from the NanoString PanCancer gene sets (Supplementary
Frontiers in Oncology 07
Figure 3). Among the 13 samples ascertained to contain CTCs, the

earlier unsupervised clustering analysis showed that 6 of the 7

patients with consistent upregulation of PanCancer gene signatures

and the neuroblastoma mesenchymal signature had metastatic

high-risk disease, and metastases to lymph nodes and bone

marrow (NB 4, 5, 13, 17, 20, 27) (Figures 2A, B). Together, these

indicated that specific genes related to metastatic processes and the
B

C D

A

FIGURE 2

Differentially expressed genes in CTCs of neuroblastoma patients with bone marrow metastases. Heatmaps of unsupervised non-hierarchical
clustering of the pathway signature scores of gene sets from (A) the PanCancer Pathway Panel, representing 13 cancer-associated canonical
pathways, and (B) the PanCancer Progression Panel representing pathways involved in the cancer progression process, in CTC fractions of 13
neuroblastoma patients at initial diagnosis. Volcano plots of genes from the (C) PanCancer Pathway Panel, and (D) PanCancer Progression Panel
that were significantly more upregulated in patients with bone marrow metastases than those without metastases, with multiple measures
correction using the Benjamini-Hochberg method. Dot colors and reference lines indicate corresponding adjusted p-value thresholds.
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neuroblastoma mesenchymal state could be significantly

differentially expressed in CTCs of patients with metastatic disease.

Since the bone marrow is the commonest site of distant

metastasis and disease relapse in neuroblastoma, we focused on

profiling the most dysregulated genes in the CTCs of patients

with and without bone marrow metastases. Differential

expression analysis was performed with FDR correction,

comparing the 10 patients with bone marrow metastases

against the other 3 without. This revealed 4 genes from the

PanCancer Pathway panel (1.26–3.71 log2 fold change) and 12

genes from the PanCancer Progression panel (2.28–5.31 log2
fold change) that were significantly upregulated in the CTCs of

patients with bone marrow metastases compared to those

without (adjusted p-value <0.05) (Figures 2C, D)

(Supplementary Data 3). In view of potential inter-panel

differences in variance, we independently evaluated gene

expression values of both NanoString PanCancer panels using

DESeq2 with variance-stabilizing transformation (33). Applying

similar FDR and adjusted p-value thresholds, in all, 2 of the

above 4 PanCancer Pathway panel genes (SOS1 and FOXO4)

and 6 of the above 12 PanCancer Progression panel genes

(PROK2, C3AR1, ROCK2, ZFYVE16, HK3 and PPP2CB) were

significantly differentially upregulated in patients with bone

marrow metastases versus patients without bone marrow

metastases (adjusted p-value <0.05) (Table 1; Supplementary

Figure 4; Supplementary Data 4). Comparing the 8 genes against

reference human genome using over-representation testing, they

were enriched for REACTOME pathways related to signaling by

FGFR1, FGFR3 and FGFR4 (log2 fold change >6.6) and GPCR

downstream signaling (log2 fold change 4.4), and PANTHER

pathways related to PI3K signaling (log2 fold change 6.5) (FDR

adjusted P-value <0.05, Fisher exact test). Given their known

function in tumor metastases (37, 38), the overexpression of

these genes in the CTCs of neuroblastoma patients with bone

marrow metastases indicated potential pro-metastatic processes
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in the CTCs of neuroblastoma patients that could play a role in

development of bone marrow metastases.
DTCs in neuroblastoma bone
marrow metastases express genes
regulating immune response and
stemness characteristics

Next, we investigated the genes that were also significantly

dysregulated in the DTCs of corresponding BMAs. Paired BMA

samples drawn at initial diagnosis were similarly subjected to

size-based enrichment with the ClearCell® FX device, and

immunohistochemical and gene expression of DTCs and

CTCs from the same patients were compared. In 4 patients

with clinically-proven metastatic disease in their bone marrow

aspirates (NB4, NB17, NB19, NB25), DTCs stained positive for

neuroblastoma immunohistochemical markers PHOX2B and

TH, and DTC-enriched fractions from BMAs also expressed

elevated levels of PHOX2B and TH on RT-qPCR (Figure 3A).

Mean diameter of DTCs on cytospots of samples obtained at

initial diagnosis was 21.5 ± 5.4µm (n=416 cells).

Comparing the differential gene expression profiles of the 4

CTC-DTC sample pairs from patients with bone marrow

metastases, 5 genes (CD24, CDH1, CTSG, KDM1A, MUC1)

were significantly upregulated in CTCs compared to DTCs, and

6 genes (CLEC2B, CXCR2 (IL8RB), EVI2A, IL1B, SERPINA1,

TNFSF10) were significantly downregulated (adjusted p-value

<0.05) (Figure 3B; Supplementary Data 2). Correspondingly, gene

signatures for basal lamina, EMT to metastasis, collagen family,

ECM structure, metastasis suppressors, basement membrane,

vasculogenesis and the neuroblastoma mesenchymal super-

enhancer state were upregulated in 3 of 4 DTC samples

(Figure 3C). Together, these results indicated that DTCs and

CTCs both expressed recognized neuroblastoma markers, and
TABLE 1 Genes significantly differentially expressed in patients with bone marrow metastases versus patients without bone marrow metastases,
commonly identified by FDR and DESeq2 differential expression analyses.

Gene FDR DESeq2

Log2 fold change Adj. P-value Log2 fold change Adj. P-value

PanCancer Pathway Panel

SOS1 3.41 0.0213 2.80 0.029

FOXO4 3.71 0.0213 2.71 0.029

PanCancer Progression Panel

PROK2 3.42 0.0202 3.53 0.001

C3AR1 4.53 0.0202 3.08 0.025

ROCK2 2.28 0.0238 2.20 0.032

ZFYVE16 3.66 0.0238 2.65 0.032

HK3 3.83 0.0238 2.50 0.041

PPP2CB 5.31 0.0238 2.52 0.041
Ordered by FDR P-value.
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reflected an upregulation of innate immunity-associated cytokine

signaling in DTCs, which could represent CTCs that have

circulated into the bone marrow metastatic niche.
Expression of genes related to the
neuroblastoma mesenchymal super-
enhancer state remain persistently
elevated in CTCs of patients who relapse

Since bone marrow metastasis is closely related to clinical

treatment failure in neuroblastoma, we studied the CTC
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expression profiles in 3 of 17 patients who subsequently

relapsed. At initial diagnosis, CTC gene expression of the 2

patients with the shortest times to relapse (cases NB1 and 25)

clustered separately from the third relapse patient who had a

more protracted disease course (case NB13) and the non-relapse

patients, with significant upregulation in a unique set of genes

(Supplementary Figures 2A, B, 3). Thus, we sought to

understand if disease relapse might be associated with

dysregulation of CTC genes at initial diagnosis or over the

disease course.

Five genes (OLFML2B, STAT1, ARHGDIB, STAB1, TLR2)

remained persistently upregulated despite treatment
B C

A

FIGURE 3

Bone marrow DTCs are isolated by size-based separation and express unique differentially expressed genes. (A) Representative
photomicrographs of cytospots of DTC-enriched fractions from bone marrow aspirates of a patient with known bone marrow metastasis (NB9),
showing nuclear immunoreactivity for PHOX2B and cytoplasmic staining for TH (asterisks). Corresponding relative gene expression of PHOX2B
and TH in DTC-enriched bone marrow (BM) and waste fractions are shown alongside, as well as photomicrograph of BM aspirate showing
infiltrating neuroblastoma tumor cells for size comparison (NB9, H&E, scale bar: 50 µm). (B) Volcano plot of genes from the PanCancer
Progression Panel that were significantly upregulated (red) and downregulated (green) in bone marrow DTCs, compared to peripheral blood
CTCs, in patients with known bone marrow metastases. Adjusted p-values are derived using Benjamini-Hochberg correction. Dot colors and
reference lines indicate corresponding adjusted p-value thresholds. (C) Heatmap of signature scores of genes from the PanCancer Progression
Panel in paired CTC and DTC samples from 4 patients with known bone marrow metastases, on unsupervised non-hierarchical clustering.
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(Figure 4A). Among the candidate genes identified to be

upregulated at diagnosis or over time, OLFML2B and STAT1

were known to be markers of the mesenchymal super-enhancer

state. These remained elevated even though standard disease

markers of bone marrow aspirate cytopathology, urinary

catecholamines, and serum LDH did not consistently show a

rise before the diagnosis of disease relapse (Figure 4B). Patient

NB1 abandoned therapy and returned with liver metastases and

elevated urinary catecholamines – at relapse, OLFML2B and

STAT1 expression levels rose. Patients NB13 and NB25 relapsed

on treatment after initial remission – in both, multiple genes

showed increased expression, while routine urinary markers did

not rise (Figure 4B). These anecdotal cases demonstrated that in

CTCs of neuroblastoma patients with disease relapse, selected
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upregulated at diagnosis, and remained so throughout treatment

course, highlighting their potential utility to be studied as

markers of persistent disease activity.
Discussion

Using label-free size-based cell separation, we demonstrated

for the first time the enrichment of intact cells from peripheral

blood of neuroblastoma patients that displayed cytologic and

gene expression characteristics of CTCs. We identified

s ignificant ly dysregula ted cancer-assoc ia ted genes

characterizing these CTCs and corresponding DTCs of
B

A

FIGURE 4

CTCs of relapse patients show persistent upregulation of genes related to interleukin and JAK/STAT signaling. (A) Boxplots showing distribution
of normalized gene expression of 5 genes which were persistently elevated in 3 patients with disease relapse, at diagnosis, post-chemotherapy
and relapse. (B) Graphical time course illustration of disease markers in 3 patients with disease relapse. Top panel: clinical events. Middle panel:
serial values of standard clinical markers of disease including percentage of tumor involvement of bone marrow trephines, urinary
catecholamines and serum tumor markers (BM: bone marrow, HVA: homovanillic acid, VMA: vanillylmandelic acid, LDH: lactate dehydrogenase).
Lower panel: relative expression of 5 genes persistently elevated in CTCs of relapse patients.
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patients with bone marrow metastasis at diagnosis, and showed

that the gene expression profile of neuroblastoma CTCs is

modulated temporally in response to systemic therapy. In a

pilot set of patients who developed disease relapse, 5 genes

remained persistently elevated in their CTC samples, suggesting

possible subclinical persistence of disease that was not otherwise

detected by conventional disease markers.

Measures of neuroblastoma MRD have been proposed in cell-

free DNA or mRNA of peripheral blood (39, 40), and BMA (41,

42), and associated with unfavorable prognosis if detected at

completion of therapy (39), or in contaminated peripheral blood

stem cell harvests (43, 44). Attempts to enrich neuroblastoma

CTCs have been largely limited to capture-based methods relying

on cellular expression of TH, PHOX2B, NCAM and GD2

synthase (8, 16, 18), though these inherently introduce a

selection bias. Proposed flow cytometric methods using CD45-

negative gating suffer from significant false positivity (45, 46),

while immunocytology is ineffective for hypocellular samples or

those with clusters, as is often seen in peripheral blood or BMA

(47). These limit the clinical usefulness of these MRD measures as

actionable prognostic biomarkers (44, 47), and were also

demonstrated in our findings. Instead, dysregulated mRNA

expression of selected prognostic genes of neuroblastoma CTCs

may represent more biologically-relevant markers of MRD (3, 48)

in the intact CTCs captured via our unbiased label-free system.

In CTCs of a set of relapsed patients, we identified a set of

persistently-elevated genes with known associations with

metastatic disease progression, immune cell regulation, and

the recently-described neuroblastoma mesenchymal super-

enhancer state (49). ARHGDIB and STAT1 are increased in

models of breast cancer CTCs (50, 51) while STAB1 and TLR2

are increased in tumor-associated inflammatory cells in breast

and colorectal cancer (52–55). Correspondingly increased

expression of ARHGDIB (56, 57), OLFML2B (58–60), STAB1

(61) and TLR2 (62, 63) have been associated with disease relapse

in most of the same cancers. Notably, STAB1 has been identified

as a potential therapeutic target in neuroblastoma to block the

tumorigenic effects of osteonectin (64).

Currently, prognostic and treatment decisions do not

consider the gene expression profiles of metastatic cells,

despite known genomic variations between CTCs, DTCs and

primary tumors. There is also limited understanding of how this

relates to CTC cell numbers, which we did not find to correlate

with clinical prognostic variables. Indeed, MRD has also been

identified in the bone marrow of children with low stage disease

(64), supporting our proposed view that CTC gene expression

may be more critical to overall disease phenotype than absolute

cell numbers. Furthermore, significant gene expression changes

have also been observed in CTCs and DTCs collected using

density gradient methods corresponding to various states of

clinical treatment failure and relapse (3, 48, 65), though these

isolation approaches have not proven to be very efficient. Thus,

the dysregulated genes identified in our study adds to the
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understanding of the altered gene expression landscape of

neuroblastoma CTCs and DTCs.

Further clinical evaluation is required to better define the role

of CTCs as markers of MRD and disease clearance, especially as

CTCs were detected in relapsed patients whose routine disease

markers were negative. It will be critical to establish if MRD-

positivity in these patients may indicate potential upstaging in

future. Suboptimal CTC enrichment may reflect limitations with

current early-generation microfluidic technology, particularly for

low volume blood samples and BMAs. In future, advanced single-

cell capture and rare cell enrichment methods may facilitate the

study of CTC biology in vitro and in CTC-derived xenograft

models (6, 25, 66–68).

In summary, intact CTCs from peripheral blood of

neuroblastoma patients enriched using label-free size-based

cell separation expressed characteristic diagnostic markers.

Putative gene signatures denoting CTCs associated with bone

marrow metastases and latent disease relapse were identified and

may facilitate further study of CTCs as a clinically-relevant and

biologically-novel aspect of neuroblastoma MRD.
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SUPPLEMENTARY FIGURE 1

(A) Representative image of enriched live NLF neuroblastoma cells (arrows)
from ClearCell® FX output, isolated using microfluidic single-cell capture

device (scale bar: 20µm). (B) Expression of neuroblastoma gene markers and
housekeeping genes in 15 captured single NLF cells, demonstrating highest

expression of PHOX2B and TH, followed by GD2 synthase. (C) Relative gene
expression of PHOX2B, TH and GD2 synthase in 7 neuroblastoma cell lines in

comparison with non-neuroblastoma cell line AGS. NB: neuroblastoma; GC:
gastric cancer.

SUPPLEMENTARY FIGURE 2

Heatmaps of Pearson z-scores of genes from the (A) PanCancer Pathway and

(B) PanCancer Progression panels, of 17 patients at initial diagnosis, as well as
normal controls of peripheral blood samples from3 healthy subjects, showing

segregation of cases with gene expression patterns similar or dissimilar to
normal controls (red and green, respectively) on unsupervised hierarchical

clustering. (C) Counts of atypical cells identified in each ¼ CTC-enriched

fraction demonstrating immuno-positivity or negativity for PHOX2B and TH.

SUPPLEMENTARY FIGURE 3

Heatmap of log2 normalized counts of all 1490 cancer-related genes,

clustered according to clinical and pathological variables and sites of
metastases (Euclidean unsupervised hierarchical clustering). INPC:

International Neuroblastoma Pathology Classification system. Clusters

indicating upregulated genes in patients with bone marrow metastases and
relapse are indicated in dashed lines.

SUPPLEMENTARY FIGURE 4

(A) MA (Bland–Altman) plots comparing means of normalized counts against
the log fold change of genes from the PanCancer Pathway and Progression

panels of enriched CTC fractions of 17 neuroblastoma patients. Colored

points indicate genes with significant differential expression between
patients with and without bone marrow metastases, at adjusted p-value

threshold of 0.05. (B) Corresponding principal component analysis score
plots of patients with and without bone marrow metastases.

SUPPLEMENTARY TABLE 1

Clinical and pathological characteristics of study patients.

SUPPLEMENTARY TABLE 2

Correlation of clinical variables with numbers of cells with cytologic atypia
in peripheral blood CTC-enriched fractions at initial diagnosis

(bold, P<0.05).
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