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cortical region, referred to as the location map (Figure 1A). The 
location map was assumed to project to another population of neu-
rons, referred to as the summation clusters, that have monotonic 
numerosity tuning with various activation thresholds. Unimodal 
numerosity tunings then emerge in the neurons downstream of 
the summation clusters by receiving central excitation and lateral 
inhibition (Dehaene and Changeux, 1993). From a theoretical 
point of view, it was pointed out (Verguts and Fias, 2004) that 
since the mapping from the location map to the neurons with 
unimodal numerosity tuning is linearly inseparable, implement-
ing this mapping requires another neural population, such as the 
summation clusters, in between (Minsky and Papert, 1969). In 
experiments, neurons having monotonic numerosity tuning have 
recently be found in the lateral intraparietal area (Roitman et al., 
2007), in line with the prediction of the model (Dehaene and 
Changeux, 1993).

It is unknown, however, how such a hierarchical circuitry as 
proposed in the model (Dehaene and Changeux, 1993) is shaped 
by plasticity mechanisms in the brain. Verguts and Fias (2004) 
have addressed this issue, and demonstrated by simulation that 
if there exist neurons having monotonic numerosity tuning (i.e., 
the summation clusters) from the beginning, then neurons show-
ing unimodal numerosity tuning can be developed via biologically 
plausible unsupervised learning. They have not shown whether or 
not monotonic and unimodal numerosity tuning can be  developed 
together via unsupervised learning given the location map at the 

INTRODUCTION
Humans and animals are known to share an ability to estimate or 
compare the numerosity of sensory stimuli or voluntary move-
ments, referred to as the number sense (Dehaene, 1997). Diffi culty 
of the comparison of two numerosities, measured by the response 
time or the error rate, is known to increase along with the decrease 
in their ratio (Brannon and Terrace, 1998; Dehaene and Changeux, 
1993; Gallistel and Gelman, 1992) according to the Weber–Fechner 
law (Dehaene, 2003; Fechner, 1860; Weber, 1850). Recently, neurons 
showing unimodal tuning for the number of visual stimuli (Nieder 
and Merten, 2007; Nieder and Miller, 2004; Nieder et al., 2002) or 
the order of repetitive movements (Sawamura et al., 2002) were 
found in the monkey neocortex, and are considered to underlie 
such rudimentary numerical competence of animals and humans 
(Nieder, 2005; Nieder and Dehaene, 2009). Moreover, it was shown 
that the tuning curve of these neurons broadens along with the 
increase in the preferred numerosity (Nieder and Merten, 2007; 
Nieder and Miller, 2003), suggesting that the degree of interference 
between the tuning curves can explain the Weber–Fechner law in 
numerical cognition (Dehaene, 2003; Nieder and Miller, 2003).

As for the mechanism of the neuronal numerosity tuning, 
Dehaene and Changeux (1993) have proposed a neural network 
model, before the discovery of the number-selective neurons in 
monkeys. According to their model, each single visual stimulus 
(object) is represented, after being processed through the dorsal 
visuospatial pathway, as a similar level of localized activity in a 
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beginning. Instead, they have shown that if unimodally tuned 
neurons exist from the beginning, monotonically tuned neurons 
can be developed afterward via supervised learning. Since super-
vised learning is not considered to be implemented by plasticity 
mechanisms in the cerebral cortex, as noted by the authors, this 
result cannot directly relate to actual circuit formation in the cortex. 
Nevertheless, it reminds us of the possibility that the summation 
clusters might actually be developed after, rather than before, the 
unimodally tuned neurons are developed.

In the present paper, I propose a hypothesis on how unimo-
dal numerosity tuning can be shaped, given the location map 
proposed in the previous study (Dehaene and Changeux, 1993), 
through cooperative plasticity induction among nearby dendritic 
sites (Morita, 2009), which has been theoretically predicted 
(Govindarajan et al., 2006; Mehta, 2004; Mel, 1993; Poirazi and 
Mel, 2001) and recently demonstrated in hippocampal pyramidal 
cells (Harvey and Svoboda, 2007; Harvey et al., 2008; Larkum and 
Nevian, 2008; Losonczy et al., 2008; Morita, 2009; Sjöström et al., 
2008), in combination with dendritic nonlinear input integra-
tion, which was also theoretically predicted (Koch et al., 1982; 
Mel, 1993; Poirazi et al., 2003b) and demonstrated in hippoc-
ampal and neocortical pyramidal cells (Gasparini et al., 2004; 

Liu, 2004; Losonczy and Magee, 2006; Milojkovic et al., 2005; 
Nevian et al., 2007; Polsky et al., 2004; Schiller et al., 2000; Wei 
et al., 2001). Notably, the indication of the necessity of an inter-
mediate neural population because of the linearly inseparable 
nature of the mapping (Verguts and Fias, 2004) is no longer 
applicable given that single neurons implement multiple non-
linear operations (Poirazi et al., 2003b) (Figure 1B). According 
to the proposed mechanism, the tuning curve broadens roughly 
in proportion to the preferred numerosity, explaining the experi-
mental results (Nieder and Merten, 2007; Nieder and Miller, 
2003) and thereby providing a possible mechanistic explana-
tion of the Weber–Fechner law in numerical cognition (Dehaene, 
2003; Nieder and Miller, 2003). The simulated tuning curves are 
less sharp than reality, however, and together with the evidence 
from human imaging studies that numerical representation is a 
distributed phenomenon (Dehaene et al., 2004), it may not be 
likely that the proposed mechanism operates by itself. Rather, 
the proposed mechanism might initially shape rough numeros-
ity preference, which would then facilitate the formation of the 
hierarchical circuitry proposed in the previous studies (Dehaene 
and Changeux, 1993; Verguts and Fias, 2004) by serving as an 
effi cient initial condition.

FIGURE 1 | Neural circuitry connecting to the numerosity detector 

neurons. (A) Hierarchical circuitry proposed in the existing models. Visual fi eld 
is mapped onto the location map, where each stimulus is represented as a 
similar level of localized activity regardless of the original size or the shape. The 
location map projects to the neurons called the summation clusters, which 
have monotonic numerosity tuning with various activation thresholds. Unimodal 

numerosity tunings emerge in the neurons downstream of the summation 
clusters by receiving central excitation and lateral inhibition. (B) Direct 
projection form the location map to the numerosity detector neurons proposed 
in the present study. The morphology of the neuron was adapted by permission 
from Macmillan Publishers Ltd: [Nature] Mainen and Sejnowski, 1996, 
copyright (1996).
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MODEL AND SIMULATION RESULTS
MODEL
I propose a hypothetical mechanism of the formation of unimodal 
numerosity tuning as follows:

(I) A single visual stimulus (object) evokes a similar level of 
localized activity in the “location map” regardless of the size, 
position in the visual fi eld, or any other physical features, and 
thereby the number of the localized activities on the location 
map matches the number of the visual stimuli (numerosity) 
(Figure 1B), in the same manner as considered in the previous 
models (Dehaene and Changeux, 1993; Verguts and Fias, 2004) 
(Figure 1A). In addition, the level of each localized activity 
decreases with the numerosity, presumably by recurrent (late-
ral) inhibition (Carandini and Heeger, 1994) that was demon-
strated to be prevalent in neocortical circuits (Kapfer et al., 
2007; Shu et al., 2003; Silberberg and Markram, 2007). Most 
simply, the total activity (sum) in the location map could be 
normalized to the same level regardless of the numerosity. I fi rst 
examined this simplest case. In reality, however, whether recur-
rent inhibition can implement such a perfect normalization is 
uncertain; it may be more likely that the level of each locali-
zed activity decreases along with the numerosity but to a lesser 
extent so that the total activity sublinearly increases, as consi-
dered in a previous model (Verguts and Fias, 2004). Therefore, 
later I also examined this second possibility, showing that the 
main features of the model behavior remain unchanged.

(II) The original notion of self-organizing map (Amari, 1980; 
Kohonen, 1982; von der Malsburg, 1973) refers to that nearby 
inputs are mapped onto nearby neurons because of the spatially 
restricted recurrent excitation, combined with the Hebbian 
plasticity induced by concurrent pre- and post-synaptic neu-
ronal fi ring activities (Figure 2A). Recently, it was suggested 
(Archie and Mel, 2000; Govindarajan et al., 2006; Larkum and 
Nevian, 2008; Mehta, 2004; Mel, 1993, 2007; Mel et al., 1998; 
Morita, 2009; Poirazi and Mel, 2001) that the principle of self-
organizing map can also operate in a fi ner scale, specifi cally, 
nearby inputs can be mapped onto nearby sites on the same 
dendritic branch of a single neuron (Figure 2B) because of 
the branch-specifi c (i) electrical and (ii) biochemical coope-
rativity, possibly combined with (iii) the dendritically-regu-
lated plasticity induced by concurrent pre-synaptic neuronal 
fi ring and post-synaptic dendritic spike generation. Here, 
the electrical cooperativity (i) refers to supralinear synap-
tic integration and dendritic spike generation, as predicted 
(Mel, 1993; Poirazi et al., 2003a,b) and observed in the neo-
cortex and the hippocampus (Gasparini et al., 2004; Losonczy 
and Magee, 2006; Milojkovic et al., 2005; Nevian et al., 2007; 
Polsky et al., 2004; Schiller et al., 2000; Wei et al., 2001) while 
the biochemical cooperativity (ii) means spatially restricted 
availability of the plasticity-related proteins, as recently sug-
gested (Govindarajan et al., 2006) and observed for Ras in the 
hippocampus (Harvey et al., 2008), and the plasticity induc-
tion by dendritic spikes (iii) was observed in the hippocampus 
(Golding et al., 2002; Harvey and Svoboda, 2007). This mecha-
nism, referred to as the clustered plasticity (Govindarajan et al., 
2006; Harvey and Svoboda, 2007), was recently demonstrated 

in the  hippocampus (Harvey and Svoboda, 2007). Moreover, 
other recent fi ndings, specifi cally, branch-specifi c change in 
the excitability via activity-dependent regulation of potassium 
channels, named the branch strength potentiation (Losonczy 
et al., 2008) and activity-dependent secretion of brain- derived 
neurotrophic factor (BDNF) from individual spines (Tanaka 
et al., 2008), may also facilitate such a self- organizing map at 
the single neuron level (Morita, 2009). The exact meaning of 
the “nearby inputs” in the above would depend on the nature 
of the inputs such as the level of the fi ring rate or the fi ring pat-
terns, but since the relevant branch-specifi c events have rather 
long time scales, specifi cally, more than tens of milliseconds 
for the dendritic NMDA spikes (Nevian et al., 2007; Polsky 
et al., 2004; Rhodes, 2006; Schiller et al., 2000) and minutes 
or more for the local availability of  plasticity-related proteins 
(Govindarajan et al., 2006; Harvey and Svoboda, 2007; Harvey 
et al., 2008),  millisecond-order spike synchronization may not 
be necessary; being coactive in the same epoch of the order of 
seconds or more may be enough at least under certain con-
ditions. Based on these considerations, I assumed that inputs 
from the same portion of the location map are “nearby” (in 
the above sense) whereas  those from different portions are 
not, so that inputs from the same portion of the location map 
tend to be clustered onto single dendritic branches whereas 
those from different portions tend to project to different parts 
of the dendritic tree, or more specifi cally, to different dendritic 
branches (Figure 1B). In consequence, each localized activity 
on the location map, corresponding to an individual visual sti-
mulus, usually activates a different dendritic branch, though 
strict one-to-one correspondence can be somewhat degraded 
(see below).

(III) Each dendritic branch implements nonlinear input integra-
tion through dendritic spike generation (Gasparini et al., 
2004; Losonczy and Magee, 2006; Mel, 1993; Milojkovic 
et al., 2005; Nevian et al., 2007; Poirazi et al., 2003b; Polsky 
et al., 2004; Schiller et al., 2000; Wei et al., 2001). Specifi cally, 
when and only when the input to a branch exceeds a certain 
threshold, the branch gives an excitation to the cell body so 
as to contribute to action potential generation (Figures 3A,B, 
small graphs in the left). I assumed that the level of the thre-
shold varies from neuron to neuron, similar to what was 
assumed in the previous model (Dehaene and Changeux, 
1993) but here for the dendritic threshold rather than for the 
somatic threshold. Threshold should also vary from branch 
to branch within a single neuron; this was incorporated later. 
The inter-neuronal variability in the threshold is expected to 
emerge from the difference in global properties of the neu-
ron such as the cell size or the expression level of relevant 
genes, or in the amount of inhibition provided by nearby 
interneurons, whereas the intra-neuronal variability would 
emerge from morphological and physiological variations 
between branches. I assumed that the branch is saturated 
whenever it receives suprathreshold input (i.e., binary) for 
the sake of simplicity. This can actually be a good approxi-
mation (c.f., Nevian et al., 2007; Wei et al., 2001), although 
considering continuous nonlinearity (e.g., sigmoidal) might 
be more precise.
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SIMULATION RESULTS
Let us see how the model works in a simple case where the neu-
ron has four dendritic branches (Figure 3). When there are two 
visual stimuli, and thus two localized activities in the location map, 
the neuron receives inputs on two different branches (Figure 3A, 
second from the top). Given that these inputs are larger than the 
dendritic threshold, as indicated in the left small graphs, the neural 
activity becomes “2”. If there is only one visual stimulus instead, 
and thus input is applied only to a single branch (Figure 3A, top), 
the neural activity decreases to “1”, because the branch is satu-
rated and thus it cannot provide more excitation to the cell body 
than the previous case. Hereby this neuron turned out to be more 
activated, or more selective, to the numerosity 2 than to 1, as indi-
cated by the color in the fi gures. If there are three stimuli and the 

inputs are applied onto three branches (Figure 3A, third from the 
top), the neural activity increases to “3”. However, if there are four 
stimuli (Figure 3A, bottom), the input to individual branches can 
no longer exceed the threshold, because of the presumed decrease 
in the level of each localized activity in the location map along with 
the numerosity [in the assumption (I)], so that the neural activity 
becomes “0”. In this way, the neural activity differs according to the 
number of visual stimuli, resulting in the unimodal tuning property 
(Figure 3C, top). Now, consider another neuron that has a higher 
threshold (Figure 3B). For this neuron, a single visual stimulus 
evokes suprathreshold input on a single branch (Figure 3B, top) 
whereas two visual stimuli evoke only subthreshold inputs on 
two branches (Figure 3B, bottom). Therefore, the neural activity 
becomes “1” for the numerosity 1 but “0” for 2 (Figure 3C, bottom), 
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FIGURE 2 | Self-organizing map in different scales. (A) The original notion of 
self-organizing map. Left: Assume that the neurons P and Q tend to be coactive, 
representing the sources of “nearby inputs” to the “post” area, and that the 
connection from the neuron P to the neuron S is slightly stronger (as indicated 
by the line width) from the beginning just because of randomness. Receiving 
such a strong input, the neuron S becomes active when the neurons P and Q 
are active (as indicated by the red color). Middle: Assume that nearby (either 
physically or functionally) neurons in the “post” area mutually excite whereas 
distant neurons mutually inhibit (indicated by the red and blue colors, 
respectively) through recurrent connections. Then, the activated neuron S 
excites nearby neurons, including the neuron T. Receiving both the feed-forward 
excitation from the neuron Q and the recurrent excitation from the neuron S, the 
neuron T now becomes active. Right: Since the neuron Q and the neuron T are 
now coactive, the connection between them is strengthened whereas other 
connections (Q and U, or R and T) are weakened, according to the Hebbian 

plasticity. (B) Self-organizing map at the single neuron level. Left: Assume that 
the neurons P and Q again tend to be coactive. Assume that the connection 
from the neuron P to the dendritic branch α is slightly stronger from the 
beginning just because of randomness. Middle: Since the branch α receives 
such strong excitation from the neuron P, there emerge electrical and 
biochemical events, both of which are restricted to that branch; the former is 
supralinear summation of post-synaptic potentials and subsequent dendritic 
spike generation and the latter is spatially restricted availability of the proteins 
necessary for synaptic potentiation (indicated by the red feathering). Right: In 
consequence, other synapses on the same branch receiving inputs in the same 
time epoch, including the synapse from the neuron Q, become strengthened by 
virtue of the cooperative plasticity induction. Note that although this fi gure 
explains so-called associativity, cooperativity is also expected to occur. The 
morphology of the neuron was adapted by permission from Macmillan 
Publishers Ltd: [Nature] Mainen and Sejnowski, 1996, copyright (1996).
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demonstrating that the numerosity preference differs according to 
the level of the threshold.

Numerosity tuning curves of three neurons, each of which has 
50 dendritic branches but with three different levels of threshold, 
are shown in Figure 4A; neural activity is normalized so that the 
maximum is equal to 1 (throughout the paper), primarily for the 
purpose of illustration but such a normalization might actually 
be realized at least to some extent by homeostatic mechanisms 
(Ibata et al., 2008; Turrigiano and Nelson, 2004). As shown in the 
fi gure, as the threshold decreases (from blue to green, and then to 
red), the preferred numerosity increases. Notably, the width of the 

tuning curve also increases proportionally, as naturally expected 
from the mechanism. This is in line with the experimental obser-
vations (Nieder and Merten, 2007; Nieder and Miller, 2003, 2004; 
Nieder et al., 2002). More specifi cally, such a proportionality indi-
cates that the widths of the tuning curves will become equal if they 
are plotted on the logarithmic scale (Figure 4C). Therefore, this 
can naturally explain the Weber–Fechner law-dependent accuracy 
in numerosity estimation and comparison tasks (Dehaene, 2003; 
Nieder and Miller, 2003). The shape of the tuning curve, however, 
looks different from reality; the right slope is too steep. This point 
can be resolved in the course of making the model more realistic. 

FIGURE 3 | Schematic diagram of the proposed mechanism of unimodal 

numerosity tuning. Consider neurons having four dendritic branches (for the 
purpose of explanation). (A) A neuron receives inputs (red circles) on 1, 2, 3, or 4 
branches (top to bottom, respectively). In the fi rst three cases, the input exceeds 
the threshold in individual branches, as shown in the left graphs, so that the 
neural activity increases along with the number of the branches that receive 

inputs (indicated by the contrast of the red color). In the last case (bottom), 
however, the input on each branch is below the threshold and thus the neuron 
remains inactive. (B) The same as (A) except that this neuron has a higher 
threshold. (C) Numerosity tuning of the neuron (A) (top) and the neuron 
(B) (bottom). The tuning is unimodal, and the preferred numerosity differs 
according to the level of the threshold.
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FIGURE 4 | Numerosity tuning curves obtained by simulations of the 

proposed mechanism. Neurons having 50 dendritic branches were considered. 
(A) Tuning curves of neurons with three different threshold levels are shown. As 
the threshold decreases (from blue to green, and then to red), the preferred 
numerosity increases, and notably, the width of the tuning curve also increases 
proportionally. (B) Possible elaborations of the model by which the tuning curve 
entails right-oriented asymmetry as observed in the experiments. Top: Variability in 
the input magnitude was incorporated. Middle: Intra-neuronal variability in the 
threshold was incorporated. The error bars indicate the standard deviations over ten 
neurons. Bottom: One-to-one correspondence between the localized activity in the 
location map and the dendritic branch (Figure 1B) was degraded so that each 
branch received inputs from up to three distant portions of the location map. (C) 
Schematic diagram showing that if the tuning curve has the same shape in the 
logarithmic scale, the peak (most preferred numerosity) and the width of the tuning 

curve varies proportionally. (D) Top and middle: Numerosity tunings, taking all of (B) 
into account, in the cases of the preferred numerosity around 1 ∼ 5 (top) or 3, 6, 12, 
and 24 (middle). Bottom: The same tuning curves in the middle panel plotted on the 
logarithmic scale, with the Gaussian fi tting curves. The curves are asymmetric in 
the linear scale (middle), but become more symmetric in the logarithmic scale 
(bottom). (E) Top: How the dependence of the tuning width (the standard deviation 
of the Gaussian fi ttings) on the preferred numerosity changes with the scale. The 
width drastically increases with the preferred numerosity when plotted on the 
linear scale (black dots), whereas the change in the width is much less in the cases 
with the nonlinear scales (blue, red, and green dots), consistent with the 
experimental observations (Bottom: Reprinted from (Nieder and Merten, 2007), 
Figure 7B by permission of the Journal of Neuroscience.). (F) The goodness of the 
Gaussian fi t in the different scales. The logarithmic scale gives the best fi t, 
indicating that the tuning curve becomes most symmetric in that scale.
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First, although the input magnitude and the dendritic threshold 
were so far assumed to be the same for all the branches in a single 
neuron, in reality they are expected to differ from branch to branch 
at least to some extent. If such intra-neuronal branch-to-branch 
variability in either the input magnitude or the dendritic threshold 
is incorporated (modeled by Gaussian pseudo random numbers: 
see Model details for details) in addition to the inter-neuronal 
variation that was already considered, there appears a tail on the 
right side of the tuning curve (Figure 4B, top and middle panels, 
respectively). This can be explained as follows. Provided there exists 
variability in the level of input to branches (and no intra-neuronal 
variability in the threshold, for simplicity) (Figure 4B, top), then 
even if the average of the input (over trials and branches) is smaller 
than the threshold (i.e., there are more items than the preferred 
numerosity of the neuron of the case without the variability), input 
can sometimes (i.e., in some trials and for some branches) exceed 
the threshold by virtue of the variability, thereby causing neuronal 
fi ring. Likewise, provided there exists intra-neuronal variability in 
the dendritic threshold (and no variability in the input magnitude, 
for simplicity) (Figure 4B, middle), then even if the input is smaller 
than the average of the threshold (i.e., again, there are more items 
than the preferred numerosity of the neuron of the case without the 
variability), neuron can still fi re when the inputs are applied onto 
branches whose thresholds are smaller than the average. Second, 
since the number of the branches is limited and the plasticity rule 
would not always operate perfectly, inputs from different portions 
on the location map might sometimes converge onto the same 
dendritic branch, as mentioned at the end of the assumption (II). 
Incorporating such an input convergence also causes an increase 
in the expected neural activity for larger numerosities (Figure 4B, 
bottom: arrows), thereby contributing to the right-side tail when it 
is combined with the variability introduced above. Inversely, single 
localized activity may be formed at an arbitrary location and thus 
may sometimes project to two or more branches, possibly further 
broadening the tuning curve, although it is possible that localized 
activity can only be formed at numerous but fi nite predetermined 
positions (i.e., attractors; c.f. Brody et al., 2003; Wang, 2001), each 
of which projects to a single dendritic branch.

The top and middle panels of Figure 4D show the numerosity 
tunings, taking into account all of the above, namely, variability in 
the input (Figure 4B, top) as well as in the threshold (Figure 4B, 
middle) and the input convergence (Figure 4B, bottom), in the 
cases of the preferred numerosity at 1 ∼ 5 (top) or 3, 6, 12, and 24 
(middle). They appear comparable to those observed in the experi-
ments (Nieder and Merten, 2007; Nieder and Miller, 2003, 2004; 
Nieder et al., 2002); specifi cally, the model well reproduced the 
observation that the width increases with the preferred numerosity. 
The bottom panel of Figure 4D shows the same tuning curves in 
the middle panel plotted on the logarithmic scale, with the fi tting 
curves of the normal distributions (Gaussians). As shown in the 
panel, the tuning widths become more comparable and the shapes 
become more symmetric in the log scale than in the linear scale 
(middle panel), in line with the experiments (Nieder and Merten, 
2007; Nieder and Miller, 2003). The top panel of Figure 4E shows 
how the dependence of the tuning width, defi ned by the stand-
ard deviation of the fi tted Gaussian functions, on the preferred 
numerosity changes with the scale on which the tuning curves 

are plotted. As shown in the panel, the width drastically increases 
with the preferred numerosity when plotted on the linear scale 
(black dots), whereas the changes in the width are much less in 
the cases with the nonlinear scales (blue, green, or red dots), con-
sistent with the experimental observations shown in the bottom 
panel (Reprinted from (Nieder and Merten, 2007), Figure 7B by 
permission of the Journal of Neuroscience). Figure 4F shows the 
goodness of the Gaussian fi t in the different scales; the nonlinear 
scales give better fi ts than the linear scale, refl ecting that the tun-
ing curves are more symmetric in the nonlinear scales (Figure 4D, 
middle and bottom).

ROBUSTNESS AND PLAUSIBILITY
Next, I examined how the behavior of the model depends on the 
parameter values, in particular, the degree of variability in the input 
magnitude (Figure 4B, top) and the dendritic threshold (Figure 4B, 
middle), or the number of dendritic branches. Figure 5A shows the 
simulation results when the variability in the input magnitude and 
the dendritic threshold was decreased; standard deviation per mean 
was 0.2 for both, compared with 0.3 in the simulations described 
in the above (Figures 4D–F). As shown in Figure 5A, emergence 
of the unimodal number selectivity and broadening of the tun-
ing curves along with the numerosity were preserved, whereas 
the shape of the tuning curve was affected, i.e., the right tail was 
reduced (decayed faster), as can be expected from the mechanism 
mentioned before (Figure 4B, top and middle). Consequently, 
the tuning curves became better fi tted by Gaussian in the scale of 
the power functions rather than in the log scale, although the log 
scale still gives better Gaussian fi tting (i.e., better symmetry) than 
the linear scale (Figure 5Ae). Similar outcomes were obtained when 
the convergence of the multiple inputs corresponding to different 
portions of the location map onto the same branch (Figure 4B, 
bottom), which was assumed (up to three branches) in the simula-
tions described in the above (Figures 4D–F), was not considered, 
as shown in Figure 5B. Conversely, increasing the variability in 
the input magnitude and the dendritic threshold (standard devia-
tion per mean was 0.4, compared with the original 0.3), as well 
as increasing the degree of input convergence (i.e., allowing the 
convergence of inputs from up to fi ve different portions, compared 
with the original up to three portions), thickened the right tail of 
the tuning curves so that the logarithmic scaling gave even better 
symmetry than the scaling with the power functions (Figures 5C,D, 
respectively), compared with the results with the original parameter 
values (Figures 4D–F), though the difference between Figures 4 
and 5D is small. It is therefore suggested that the model can well 
reproduce the experimental observation that the tuning curve 
becomes most symmetric in the logarithmic scale (Nieder and 
Merten, 2007; Nieder and Miller, 2003), provided there exist suffi -
cient variability in the input magnitude and the dendritic threshold 
and/or a certain degree of input convergence. Figures 5E,F show 
the results of the cases where the number of dendritic branches was 
decreased (30 branches, compared with the original 50 branches) or 
increased (100 branches), respectively. The variability in the input 
magnitude and the dendritic threshold was also increased in the 
latter case (standard deviation per mean was 0.4, compared with 
the original 0.3). As shown in the fi gures, the main features of the 
model behavior explained above (Figures 4D–F) were preserved 
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FIGURE 5 | Determinants of the tuning curve shape. (A,C) Simulation results 
when the variability in the input magnitude and in the dendritic threshold was 
decreased [(A); standard deviation per mean 0.2 for both, compared with the 
original 0.3 in Figures 4D–F] or increased [(C); 0.4]. As the variability was decreased 
or increased, the right tail of the tuning curve was reduced or thickened [most 
apparent in (b)], respectively, as can be expected from the mechanism mentioned 
before (Figure 4B, top and middle). (B,D) Results when the degree of convergence 
of the inputs from different portions of the location map was decreased [(B); each 
branch receives input only from a single portion] or increased [(D); each branch 
receives input from up to 5, compared with the original 3 in Figures 4D–F, different 
portions]. As the input convergence was removed or increased, the right tail of the 
tuning curve was reduced or thickened, respectively, as can be expected from the 
mechanism mentioned before (Figure 4B, bottom). From these results (A–D), it is 
suggested that the model can well reproduce the experimental observation that 

the tuning curve becomes most symmetric in the logarithmic scale, provided there 
exist suffi cient variability in the input magnitude and the dendritic threshold and/or a 
certain degree of input convergence. (E,F) Results when the number of dendritic 
branches was decreased [(E); 30 branches, compared with the original 50 branches 
in Figures 4D–F] or increased [(F); 100 branches]. The variability in the input 
magnitude and the dendritic threshold was the same as the original (0.3) in (E), and 
increased (0.4) in (F). The degree of input convergence was assumed to the same 
as the original (up to three different portions of the location map). The main features 
of the model behavior were preserved in those cases. (a,b) Numerosity tunings in 
the cases of the preferred numerosity around 1 ∼ 5 (a) or 3, 6, 12, and 24 (b). 
(c) The same tuning curves in (b) were plotted on the logarithmic scale, with the 
Gaussian fi tting curves. (d) Dependence of the tuning width (the standard deviation 
of the Gaussian fi ttings) on the preferred numerosity in four different scales. 
(e) Goodness of the Gaussian fi t in the different scales.
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in those cases [if the standard deviation per mean was set to 0.3 
in the case of 100 branches, the power function scale gave slightly 
better Gaussian fi ts than the log scale (not shown)].

In the simulations so far presented, it was assumed that the sum-
mation of the localized activities in the location map, or equiva-
lently, the summation of the inputs to all the dendritic branches 
of individual numerosity detector neurons, was normalized to be 
around a constant level (except for the presumed input variability) 
regardless of the numerosity of visual stimuli. Such a normalization 
of the linear summation, however, may not be the case in reality, as 
mentioned before [in the assumption (I)]. Therefore, I also exam-
ined the case in which the level of each localized activity, or input 
to each branch, again decreases with the numerosity but to a lesser 
extent than the previous case so that the total activity in the loca-
tion map (i.e., the linear summation of the inputs to the branches) 
sublinearly increases with the numerosity. Specifi cally, I examined, 
as an example, the case where the sum of the squares of the localized 
activities is assumed to be constant (except for the variability), which 
is the same assumption as considered in a previous network-based 
model (Verguts and Fias, 2004). Figure 6 shows the results of the 
simulations, in which the variability (standard deviation per mean) 
in the input magnitude and the dendritic threshold (Figure 4B, top 
and middle) was set to 0.25 and the convergence of multiple inputs 
corresponding to different portions of the location map onto the 
same branch (Figure 4B, bottom) was not considered [as originally 
assumed in the assumption (II)]. As shown in Figure 6, the main 
features of the model behavior, namely, formation of the unimo-
dal numerosity selectivity, broadening of the tuning curve roughly 
in proportion to the preferred numerosity (explaining the Weber-
Fechner law) better symmetry in the nonlinear scales than in the 
linear scale, and better symmetry in the log scale than in the scales 
with the power functions, were preserved under this assumption. 
Given that recurrent inhibition is prevalent in the neocortex (Kapfer 
et al., 2007; Shu et al., 2003; Silberberg and Markram, 2007), nor-
malization of the activity in the location map is expected to occur at 
least to a certain extent (c.f., Carandini and Heeger, 1994; Hahnloser 
et al., 2000). Meanwhile, there may also exist feed-forward inhibition 
from the location map to the numerosity detector neurons. If the 
total activity of the location map increases with the numerosity, such 
feed-forward inhibition is expected to increase accordingly, thereby 

effectively increasing the  threshold of the numerosity neurons. This 
is theoretically equivalent to decreasing each localized activity in the 
location map while keeping the threshold of the numerosity  neurons 
 constant, thereby possibly complementing the  normalization within 
the location map.

As shown above, I have examined whether and how the model 
behavior changes according to the parameter values and the way 
the level of each localized activity decreases with the numeros-
ity [as mentioned in the assumption (I)], showing that consider-
able fl exibility is permitted for the main features to hold. It would 
be tempting to explore biologically detailed implementation of the 
proposed hypothetical mechanism. Examining whether and how 
single neuronal properties could implement branch-specifi c nonlin-
earity [assumption (III)] by using detailed neuron models has been 
an active research topic (Mel, 1993; Poirazi et al., 2003a,b; Rhodes, 
2006), and the hypothesis that individual dendritic branches can 
operate as an independent functional unit has been extensively vali-
dated (Mel, 2007). Some of the important natures, such as the effect 
of inhibition applied onto branches (Jadi and Mel, 2007; Cosyne 
abstract) or the possibility of the existence of multiple functional 
compartments within a single branch (Major et al., 2008), however, 
are continuing to be actively studied. As for the branch-specifi c 
plasticity [assumption (II)], there are pioneering modeling studies 
(Mel, 1993; Poirazi and Mel, 2001). However, recent fi ndings and 
indications such as the involvement of spatially restricted avail-
ability of the plasticity-related proteins (Govindarajan et al., 2006; 
Harvey and Svoboda, 2007; Harvey et al., 2008), branch-specifi c 
activity-dependent regulation of potassium channels (Losonczy 
et al., 2008), and activity-dependent local BDNF secretion (Tanaka 
et al., 2008), have not yet been considered in the model. Before that, 
whether cooperative plasticity induction among nearby dendritic 
sites actually occurs in the neocortical regions where numerosity 
detector neurons exist is expected to be clarifi ed; so far cooperative 
plasticity induction has been demonstrated in the hippocampus 
and currently there is no evidence for or against in the neocortex. 
Effects of homeostatic plasticity (Ibata et al., 2008; Rabinowitch 
and Segev, 2006a,b, 2008; Turrigiano and Nelson, 2004) would also 
need to be considered. Construction of a realistic detailed model, 
incorporating all of these, is desired to be addressed in the future, 
although it is beyond the scope of the present paper. Nevertheless, 

FIGURE 6 | Simulation results with a different way of normalization of the 

activity in the location map. Simulation results when the level of each localized 
activity in the location map decreases with the numerosity but the summation of 
them sublinearly increases; specifi cally, the sum of the squares of the localized 
activities was assumed to be constant. The main features of the model behavior 
were preserved under this assumption. Variability in the input magnitude and in 
the dendritic threshold was set to 0.25 (standard deviation per mean), and the 

convergence of multiple inputs corresponding to different portions of the location 
map onto the same branch was not considered. (A,B) Numerosity tunings in the 
cases of the preferred numerosity around 1 ∼ 5 (A) or 3, 6, 12, and 24 (B). (C) The 
same tuning curves in (B) was plotted on the logarithmic scale, with the Gaussian 
fi tting curves. (D) Dependence of the tuning width (the standard deviation of the 
Gaussian fi ttings) on the preferred numerosity in four different scales. 
(E) Goodness of the Gaussian fi t in the different scales.
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a previous study using a multicompartment model of pyramidal 
cell may support the plausibility of the mechanism proposed in this 
paper. Specifi cally, it was shown (Mel, 1993), in a different context 
from the number selectivity, that the fi ring activity of the pyramidal 
cell model was maximized when synaptic inputs are grouped into 
a certain size of (and thus a certain number of) spatially localized 
“clusters”, and the “preferred number” (of clusters) varied accord-
ing to conditions such as the type or the level of dendritic active 
conductance (see Fig. 7 of Mel, 1993).

DISCUSSION
RELATIONSHIP WITH THE PREVIOUSLY PROPOSED HIERARCHICAL 
CIRCUITRY FOR NUMEROSITY TUNING
I have proposed a hypothetical mechanism of how unimodal 
tuning for numerosity (Nieder and Merten, 2007; Nieder and 
Miller, 2004; Nieder et al., 2002) can be shaped through coopera-
tive plasticity induction and nonlinear input integration at nearby 
dendritic sites, on the basis of the existing proposal (Dehaene and 
Changeux, 1993) that individual visual stimuli are represented as 
similar level of localized activities in a cortical area in the dorsal 
visual pathway. A previous modeling study (Verguts and Fias, 
2004) demonstrated by simulation that the appropriate connec-
tion strengths between the summation clusters and the numeros-
ity detector neurons (Figure 1A) in the hypothesized hierarchical 
circuitry (Dehaene and Changeux, 1993; Verguts and Fias, 2004) 
can be acquired by a biologically plausible unsupervised learn-
ing algorithm, if the summation clusters exist from the begin-
ning of the simulation. However, they have not demonstrated 
that the connections from the location map to the summation 
clusters can also be formed via unsupervised learning; instead, 
they have shown (Verguts and Fias, 2004) that the summation 
clusters can be formed via supervised learning (backpropaga-
tion algorithm) if the numerosity detector neurons exist from the 
beginning. Therefore, so far it has remained unknown whether 
and how the unimodal tuning of the numerosity detector neurons 
is developed through plasticity mechanisms from the very begin-
ning (i.e., without assuming that the summation clusters have 
already been shaped); for which the present study proposed a 
possible solution. Moreover, as shown above, the proposed model 
can explain a prominent feature of the numerosity detector neu-
rons, namely, broadening of the tuning curve in proportion to 
the preferred numerosity (further discussed below). However, 
tuning curves obtained in the proposed model (Figure 4D, top, 
Figures 5A–Fa and 6A) were less sharp around the peaks than 
the reality (Nieder and Miller, 2004; Nieder et al., 2002), and thus 
the proposed mechanism may not operate by itself but rather 
cooperate with the previously proposed network-based mecha-
nisms (Dehaene and Changeux, 1993; Verguts and Fias, 2004). 
Specifi cally, it seems possible that initially rough numerosity 
preference is shaped through the proposed mechanism, and the 
existence of such numerosity detector “precursor” neurons then 
facilitate subsequent network-level learning, resulting in gen-
eration of neurons having monotonic numerosity tuning (the 
summation clusters) and sharp unimodal tuning. So far, neu-
rons showing unimodal numerosity tuning (Nieder and Merten, 
2007; Nieder and Miller, 2003, 2004; Nieder et al., 2002) and those 
showing monotonic numerosity tuning (Roitman et al., 2007) 

were observed in different animals doing different tasks. It would 
be insightful if these two types of neurons are found in a single 
animal in the future.

POSSIBLE DENDRITIC CONTRIBUTION TO THE WEBER–FECHNER 
LAW IN NUMEROSITY COMPARISON
In the proposed mechanism, broadening of the tuning curve along 
with the preferred numerosity, which was experimentally observed 
and proposed to underlie the Weber–Fechner law-dependent 
accuracy in numerosity estimation and comparison, is naturally 
accompanied. Specifi cally, since the tuning curve width is exactly 
proportional to the preferred numerosity in the extreme case 
without variability in the input and the threshold (Figure 4A), the 
proportionality is expected to still roughly hold after incorporat-
ing the variability, as actually confi rmed (Figure 4E). Therefore, 
the proposed model provides a possible mechanistic explanation 
of the Weber–Fechner law in numerical comparison. So far two 
psychological models have been proposed for the Weber–Fechner 
law, namely, logarithmically compressed representation of number 
(Dehaene and Changeux, 1993) and scale-free variability on the 
linear representation (Brannon et al., 2001; Gallistel and Gelman, 
1992). They are rather similar, however, in their behavioral predic-
tions (Dehaene, 2001), and distinguishable almost solely by the 
shape of the tuning curve; specifi cally, the shape should be symmet-
ric on the log scale, i.e., asymmetric on the linear scale in the former 
but symmetric in the linear scale in the latter (Dehaene, 2003). 
The experimental results that the tuning curve of the numerosity 
detector neurons appeared most symmetric in the log scale (Nieder 
and Merten, 2007; Nieder and Miller, 2003) has been proposed to 
imply the logarithmic representation. Recent behavioral studies in 
humans (Dehaene et al., 2008) as well as in monkeys (Merten and 
Nieder, 2008) also support the compressed scaling. In the model 
presented in this paper, the tuning curve becomes most symmetric 
in the log scale, compared with the linear and power function scales 
(Figures 4D,F and 6B,C,E), if suffi cient variability in the input and 
the threshold or the input convergence from different locations are 
incorporated (Figures 4B and 5). It is therefore suggested that such 
a variability or input convergence could be a biological substrate 
of the compressed scaling of the mental number line, although 
whether and how they can be optimized so that a particular scaling, 
such as the logarithmic, gives the best symmetry is unclear.

NUMEROSITY-TUNED PERSISTENT ACTIVITY
Another important issue regarding the neural basis of numerical 
cognition is how the activity of some number-selective neurons can 
sustain after the disappearance of the stimuli with graded prefer-
ences to numerosities (Nieder and Miller, 2004; Nieder et al., 2002). 
Although it is very likely that excitatory reverberation plays a crucial 
role in the neuronal delay activity (Wang, 2001), sustaining a graded 
activity is not straightforward, since it corresponds to keeping a 
state at a neutrally, rather than an asymptotically, stable equilib-
rium (Brody et al., 2003; Machens et al., 2005; Miller et al., 2003). 
Interestingly, a previous modeling study (Goldman et al., 2003) has 
shown that if each dendritic branch of individual neurons in the net-
work possesses bistability, i.e., capability of remaining at two differ-
ent levels of activation (Loewenstein and Sompolinsky, 2003; Wang 
and Major, 2003), each neuron can show graded  persistent activity 



Frontiers in Computational Neuroscience www.frontiersin.org August 2009 | Volume 3 | Article 12 | 11

Morita Dendritic contribution to numerical cognition

depending on how many branches are in the activated state. It would 
be intriguing to construct a network model incorporating multiple 
dendritic branches of each neuron (Goldman et al., 2003; Morita, 
2008) to see if such a model can explain  numerosity-tuned transient 
as well as sustained  neuronal activity, and  moreover,  computation 
utilizing such activity (Dehaene and Changeux, 1993).

EXPERIMENTALLY TESTABLE PREDICTIONS
In order to experimentally clarify if the mechanism proposed in this 
paper operates in the actual brain, possibly in combination with 
the previously proposed network-based mechanisms (Dehaene 
and Changeux, 1993; Verguts and Fias, 2004) as discussed above, 
it would be useful to examine whether the unimodal numerosity 
tuning is lost in the absence of inhibition by blocking GABAergic 
transmission in vivo, because inhibition onto the numerosity detec-
tor neurons seems essential in the network-based models (Dehaene 
and Changeux, 1993; Verguts and Fias, 2004) but it is not explicitly 
required in the proposed dendritic model. It would be probable, 
however, that the dendritic threshold considered in the proposed 
model is partly determined by the level of inhibition. In this case, 
the proposed model would predict that if inhibition is strengthened 
by applying GABA agonists and thus the threshold is increased, the 
peak of the tuning curve shifts downward, i.e., the neurons become 
to prefer smaller numerosities (c.f., Figure 3). In contrast, if only 
the network-based mechanism (Dehaene and Changeux, 1993; 
Verguts and Fias, 2004) operates, strengthening inhibition would 
reduce overall activity of the number-selective neurons but would 
not shift the peak position of the tuning curve (c.f., Figure 1A). 
Another existing model for unimodal numerosity tuning based 
on oscillations (Miller and Kenyon, 2007) assumes winner-take-
all competition at the fi nal stage, which could be implemented by 
lateral inhibition similar to what is considered in the network-based 
models (Dehaene and Changeux, 1993; Verguts and Fias, 2004), 
so that strengthening inhibition is expected not to shift the tun-
ing curve; thus this is also expected to be distinguishable from the 
proposed model. In order to test the contribution of the proposed 
model, it would also be interesting to examine whether and how 
single neuronal properties such as the dendritic morphology or 
the spike width correlates with the numerosity preference in vivo. 
Examining the membrane property and the gene expression profi le, 
as well as testing whether disturbing them affects the number selec-
tivity, by in vivo patch-clamp experiments would also be desired.

GENERAL DISCUSSION
The notion that individual dendritic branches of neurons can 
operate as independent compartments in terms of both the func-
tion and the plasticity (Govindarajan et al., 2006; Koch et al., 1982; 
Mel, 1993; Poirazi and Mel, 2001; Poirazi et al., 2003b), developed 
in the theoretical research stream exploring the functional sig-
nifi cance of dendrite (Ascoli, 2002; Koch, 1998; Koch and Segev, 
2000; Koch et al., 1983; London and Häusser, 2005; Mainen and 
Sejnowski, 1996; Mel, 1994, 2007; Rall, 1964; Rinzel, 1975; Segev, 
1995; Segev et al., 1995; Shepherd, 2003; Shepherd et al., 1985), 
has now acquired a lot of experimental supports (Gasparini et al., 
2004; Harvey and Svoboda, 2007; Harvey et al., 2008; Larkum and 
Nevian, 2008; Losonczy and Magee, 2006; Losonczy et al., 2008; 
Milojkovic et al., 2005; Morita, 2009; Nevian et al., 2007; Polsky 

et al., 2004; Schiller et al., 2000; Wei et al., 2001). Not only suggested 
as a possible source of rich general computational power, dendritic 
compartmentalization of pyramidal cell has been proposed to play 
specifi c roles in particular cortical functions, such as translation-
invariant orientation tuning (Mel et al., 1998) or binocular dis-
parity (Archie and Mel, 2000). In the light of these latter works, 
the present study proposes a novel role of the compartmentalized 
dendrite in numerical cognition with novel insights into the issues 
raised therein, so as to postulate that single neuron property can 
directly contribute to abstract cognitive processes. The possibility 
that the same function can potentially be implemented either by 
a single neuron or by a network through similar self-organizing 
principles at two different scales (Morita, 2009) sounds redundant, 
and this may refl ect evolutional processes that must have endowed 
biological systems with robustness. I would like to propose a more 
specifi c relationship between these two scales. Lower animals typi-
cally have a relatively small number of neurons each of which has a 
highly specialized function and thus is wired in a very specifi c way 
whereas higher animals possess much more neurons that would 
be less specialized and wired in a less specifi c manner. Given that 
ontogeny recapitulates phylogeny (Haeckel, 1866), however, it is 
conceivable that even in higher animals, individual neurons origi-
nally acquire highly specialized functions through single neuronal 
dendritic plasticity mechanisms in early stages of development, 
and such an individuality of single neurons will then facilitate 
the formation of functional circuits, which might otherwise be 
unrealistically diffi cult to be organized.

DETAILED METHODS
MODEL DETAILS
The basic architecture of the model is described in the Section 
“Model”, Figures 1B and 3. Neurons were assumed to have 50 den-
dritic branches in most simulations unless otherwise described. This 
value was chosen because it is in line with a study using a detailed 
model with a real morphology of the pyramidal cell (Poirazi et al., 
2003b), which indicated that several dozen long thin terminal 
branches comprise independent nonlinear input integration subu-
nits. I have confi rmed that the main features of the model remain 
unchanged when 30 or 100 branches are assumed (see Figures 5E,F, 
respectively). In the simulations other than those for Figure 6, the 
magnitude of the input from a single localized activity in the loca-
tion map to a single dendritic branch of the numerosity neuron 
was assumed to be distributed according to a normal distribution 
with the mean µ = 1/N, where N represents the numerosity of visual 
stimuli, and thus the summation of the inputs from all the local-
ized activities was constant except for the variability. In the case of 
Figure 6, I assumed μ = 1 N , whereby the sum of the squares of 
the localized activities was constant except for the variability. The 
standard deviation per mean was set to 0 (i.e., no variation; Figures 
3, 4A and 5B middle and bottom), 0.2 (Figure 5A), 0.25 (Figure 6), 
0.4 (Figure 4B top and Figure 5C), or otherwise, 0.3. The dendritic 
threshold of individual neuron was assumed to be distributed accord-
ing to a normal distribution. The standard deviation per mean was 
assumed to be 0 (i.e., no variation; Figures 3 and 4A,B top and bot-
tom), 0.2 (Figure 5A), 0.25 (Figure 6), 0.4 (Figure 5C), or otherwise, 
0.3. The mean of the dendritic thresholds of individual neurons over 
branches was set to 0.3 (Figure 3A); 0.6 (Figure 3B); 0.36 (light blue), 
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0.24 (green), and 0.15 (red) in Figures 4A,B. Regarding the large scale 
 simulations (Figures 4D–F, 5 and 6), the mean was determined so 
that the number of neurons maximally tuned for each  numerosity 
becomes roughly comparable. Specifi cally, approximate levels of the 
threshold to make a neuron tuned to the numerosities 1 ∼ 30 were 
at fi rst estimated by a preparatory small-scale simulation. Then the 
relationship between the preferred numerosity and the threshold was 
fi tted by a smooth function, as shown in black lines in Figures 7A,B 
for the cases where the summation of the localized activities, or the 
sum of their squares, was normalized, respectively. Thereafter, evenly 
spaced 3,000 points from 0.51 to 30.50 (i.e., 100 points centered at 
each of the tested numerosities 1 ∼ 30) were transformed by those 
functions, and the resulting values were used as an expected mean 
threshold value of 3,000 neurons, i.e., deviation obeying independent 
normal distribution was added to generate actual threshold value 
for each branch (see above). Red points and error-bars in Figures 
7A,B indicate means and standard deviations of the individual neu-
ron’s mean threshold value (over branches) over neurons tuned for 
each numerosity in the simulations shown in Figures 4D–F and 6, 
respectively. Number of neurons maximally tuned for each numer-
osity is shown in Figures 7C,D; the number was comparable for 
any numerosity, as expected from the above procedure. Note that 
the relationship between the dendritic threshold and the preferred 
numerosity is rather steep for small numerosities [and it is steeper in 
the case where the summation of the localized activities was normal-
ized (Figure 7A) than in the case where the sum of squares was nor-
malized (Figure 7B)]. Therefore, if the threshold were assumed to be 
uniformly distributed over the same range, there must have emerged 
a gradient in the number of neurons tuned for each numerosity, i.e., 
there were expected to exist more neurons tuned for small numerosi-
ties than those tuned for large numerosities. It would be intriguing 
if this could be related to the experimental observation that there 
was an overrepresentation of neurons preferring small numerosities 
(Nieder and Merten, 2007), although there is little biological reason 
to assume that the dendritic threshold is uniformly distributed. In 
the analysis of the goodness of fi t for the tuning curves (see below), 
average was fi rst taken for each numerosity, before being averaged 
over numerosities, and thus, the number of neurons tuned for each 

numerosity does not have a direct effect. Input corresponding to 
each localized activity in the location map was randomly assigned 
onto a single dendritic branch without convergence (in Figures 3 
and 4A,B top and middle, Figures 5B and 6) or with convergence 
of up to 3 times (Figures 4B bottom, D–F and 5A,C,E,F) or up to 
5 times (Figure 5D).

SIMULATIONS AND ANALYSES
Numerical simulations were performed by MATLAB (The 
Mathworks, Natick, MA, USA), using the built-in pseudo random 
number generating functions (“randn” and “randperm”). For each 
(simulated) neuron with a particular set of dendritic thresholds, 
100 different sets of the input magnitudes for each of the numer-
osity 1 ∼ 30 were applied, and the mean activity of the neuron 
to each numerosity (over the input sets) was calculated to obtain 
the tuning curve. The tuning curve was then normalized, for each 
neuron, by setting the maximum (mean activity for the most pre-
ferred numerosity) as 100% and the minimum (mean activity for 
the least preferred numerosity) as 0%, in the same way as done in 
the experimental studies (Nieder and Merten, 2007; Nieder and 
Miller, 2003). The normalized tuning curves for neurons having the 
same preferred numerosity, out of the 3,000 neurons (see above), 
were then averaged for each numerosity (1 ∼ 30); this “population 
average tuning curve” was plotted, with the standard deviation, 
in the fi gures (Figures 4D, 5A–Fa–c and 6A–C). Gaussian func-
tions were fi tted to the population average tuning curves plotted 
in four different scales, namely, a linear scale, a power function 
with exponent of 1/2, a power function with exponent of 1/3, and 
a logarithmic scale, by minimizing the mean squared error accord-
ing to the Nelder–Mead method by using “fminsearch” function of 
MATLAB. The goodness of fi t was defi ned as 1 – SSE/SST, where 
SST was the sum of squares total and SSE was the sum of squared 
errors. Since the fi tting procedure was not appropriately converged 
for the numerosity 1, or for 1 and 2, in some cases, these date were 
not plotted in the fi gures nor used to calculate the linear regres-
sions in Figure 4E top, Figures 5A–Fd and 6D (dashed lines) and 
the goodness of fi t in Figures 4F, 5A–Fe and 6E. Specifi cally, data 
for the numerosity 2 ∼ 30 were plotted and used in the case of the 

FIGURE 7 | Dendritic threshold and number of neurons tuned for each 

numerosity. (A,B) Dendritic threshold of neurons maximally tuned for each 
numerosity in the cases where the summation of the localized activities in the 
location map (A), or the sum of their squares (B), was normalized, respectively. 
Black lines indicate functions to fi t the relationship between the preferred 
numerosities and the thresholds obtained from a preparatory small scale 
simulation. Evenly spaced 3,000 points from 0.51 to 30.50 were transformed by 
those functions, and the resulting values were used as an expected mean 

threshold value of 3,000 neurons (deviation obeying independent normal 
distribution was added to generate actual threshold value for each branch; see 
Model details). Red points and error-bars in (A) and (B) indicate means and 
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Figures 4D–F (C) and in Figure 6 (D).
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