
OPEN

ORIGINAL ARTICLE

No evidence for attenuated stress-induced extrastriatal
dopamine signaling in psychotic disorder
D Hernaus1, D Collip1,7, Z Kasanova1,7, O Winz2, A Heinzel2, T van Amelsvoort1,3, SM Shali2, J Booij3, Y Rong2, M Piel4, J Pruessner5,
FM Mottaghy2,6 and I Myin-Germeys1

Stress is an important risk factor in the etiology of psychotic disorder. Preclinical work has shown that stress primarily increases
dopamine (DA) transmission in the frontal cortex. Given that DA-mediated hypofrontality is hypothesized to be a cardinal feature of
psychotic disorder, stress-related extrastriatal DA release may be altered in psychotic disorder. Here we quantified for the first time
stress-induced extrastriatal DA release and the spatial extent of extrastriatal DA release in individuals with non-affective psychotic
disorder (NAPD). Twelve healthy volunteers (HV) and 12 matched drug-free NAPD patients underwent a single infusion [18F]
fallypride positron emission tomography scan during which they completed the control and stress condition of the Montreal
Imaging Stress Task. HV and NAPD did not differ in stress-induced [18F]fallypride displacement and the spatial extent of stress-
induced [18F]fallypride displacement in medial prefrontal cortex (mPFC) and temporal cortex (TC). In the whole sample, the spatial
extent of stress-induced radioligand displacement in right ventro-mPFC, but not dorso-mPFC or TC, was positively associated with
task-induced subjective stress. Psychotic symptoms during the scan or negative, positive and general subscales of the Positive and
Negative Syndrome Scale were not associated with stress-induced [18F]fallypride displacement nor the spatial extent of stress-
induced [18F]fallypride displacement in NAPD. Our results do not offer evidence for altered stress-induced extrastriatal DA signaling
in NAPD, nor altered functional relevance. The implications of these findings for the role of the DA system in NAPD and stress
processing are discussed.
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INTRODUCTION
In the last decade, significant progress has been made in
understanding the role of the dopamine (DA) system in the
human stress response.1–3 Evidence has emerged showing that, at
least in part, the stress response is facilitated by DA release in the
striatum1,2,4 and prefrontal cortex (PFC).5,6 Dopaminergic (DAergic)
involvement in the stress response is particularly relevant for
psychiatric disorders such as psychotic disorder,7 as evidence
suggests that stress has an important role in the onset of
psychotic symptoms8,9 and DAergic abnormalities are a hallmark
feature of psychotic disorder.10 Investigating stress-related DAer-
gic activity in the context of psychotic disorder could thus provide
new insights into the pathogenesis of the disorder.
Stress-induced DAergic activity in humans has been studied

in vivo with positron emission tomography (PET), hinging on
competition between radioligand binding and endogenous DA
release.11 In these studies, DA release was assessed during a
psychosocial evaluation paradigm2 (for metabolic stress, see Adler
et al.12, Brunelin et al.13). Although psychosocial stress in healthy
volunteers (HV) produced modest and variable changes in striatal
DA release,1,2,4,14 the same stressor reliably increased DA release in
the (associative) striatum of individuals across the psychosis
continuum.1,2,4 Importantly, this suggests that the putative

association between stress and psychotic disorder may be
moderated by the DA system.
Preclinical work, however, has revealed that short-lived stressors

consistently and primarily increase DAergic activity in the PFC
analog of the rodent.15,16 Moreover, selective destruction of
frontal DA neurons increases stress-related DA transmission in
mesolimbic regions,16,17 hinting at a key regulatory role for PFC
DA transmission in the stress response. Because DA-mediated
hypofrontality is hypothesized to be a cardinal feature of
psychotic disorder,18,19 this preclinical work indirectly suggests
that the well-documented link between stress and psychotic
disorder20,21 may be underlain by cortical DA function. More
specifically, decreased cortical DA function may constitute a
neurochemical feature of vulnerability to psychotic disorder and
underlie increased behavioral stress sensitivity.21

In the only two human studies currently available, psychosocial
stress in HV increased medial PFC (mPFC) DA release6 and
increased the area (that is, spatial extent) of mPFC DA release5

assessed with high-affinity D2/3 binding ligand [18F]fallypride.22 In
an add-on sample of first-degree relatives of patients with
psychotic disorder, Lataster et al.3 showed that the spatial extent
of stress-induced mPFC DA release decreased as a function of
increased subjective stress. Although this latter finding hints at
stress-related DA-mediated hypofrontality in the psychosis
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continuum, investigating stress-induced PFC DAergic activity in
established psychotic disorder could further elucidate the role of
this mechanism in the pathogenesis of the illness. To these aims,
we investigated the effect of psychosocial stress on extrastriatal
DA signaling in a sample of HV and medication-free individuals
with a diagnosis of non-affective psychotic disorder (NAPD) using
[18F]fallypride PET.
However, measuring extrastriatal DAergic activity remains

methodologically challenging; the density of extrastriatal D2

receptors is 2–8% compared with the striatum.23 Radioligands
with suboptimal affinity and selectivity to investigate DAergic
activity in extrastriatal areas may yield low signal-to-noise ratio,
thus limiting quantification.11,24 Although [18F]fallypride has been
used to quantify DA release in cortical regions due to its high
affinity and specificity, the effects of amphetamine on extrastriatal
DA release quantified using [18F]fallypride have not been
uniformly consistent.25–29 While this has been attributed to the
radioligand’s inherent signal-to-noise ratio,26,28 within-subject
variation introduced by two-day scanning protocols, with control
and experimental scan on separate days, may also constitute a
source of measurement error, particularly in the context of subtle
changes in neurotransmitter activity. To minimize within-subject
variation, we utilized a validated single infusion [18F]fallypride
paradigm, which circumvents subtraction and yields a model fit
approach.3,30,31

In the current study, medication-free NAPD and HV underwent
a well-validated experimental psychosocial stress paradigm, the
Montreal Imaging Stress Task (MIST).2 All the participants
completed a MIST control and stress condition in a single [18F]
fallypride session. Subjective stress responses, psychotic symp-
toms and plasma cortisol levels were assessed throughout each
condition. Conform previous work, we first investigated stress-
induced [18F]fallypride displacement and the spatial extent of
stress-induced [18F]fallypride displacement in mPFC,5,6 after which
we explored other extrastriatal regions. It was expected that both
outcome parameters of DA signaling would be positively
associated with the subjective stress response in HV. Consistent
with the notion of DA-mediated hypofrontality, we expected that
NAPD would show less stress-induced extrastriatal [18F]fallypride
displacement and a decrease in the spatial extent of stress-
induced extrastriatal [18F]fallypride displacement, compared
with HV.

MATERIALS AND METHODS
Sample
The sample consisted of 12 HV (unrelated to Lataster et al.5) and 12 NAPD
matched on age, gender and education (Table 1). All NAPD were
diagnosed with a non-affective psychotic disorder (Supplementary Table
1). Four included NAPD were antipsychotics naive. Except for one NAPD,
the remaining group was treated with antipsychotics for o2 years. At the
time of scanning, NAPD were off antipsychotics for at least 1 year (Table 1),
were not exposed to mood stabilizers, were off antidepressants (total n=5)
for longer than 1 year and did not take benzodiazepines on the day of the
scan (Supplementary Table 1). NAPD showed relatively low acute psychotic
symptom scores (Table 1), but did not meet the criteria for remission
according to the Positive and Negative Syndrome Scale (PANSS) criteria
(less than a score of 3 on all relevant items according to van Os et al.32). HV
were matched to NAPD with a past of minimal illicit drug use (Table 1).
Participants were recruited through regional and national media and,

additionally, NAPD were recruited through local mental health services.
The RWTH Aachen University ethics committee approved the study. PET
approval was granted by the national authority for radiation protection in
humans in Germany (Bundesamt für Strahlenschutz, BfS). Written informed
consent was obtained before participation. Inclusion criteria independent
of group: (i) age 18–60 years (ii) able to provide informed consent.
Exclusion criteria independent of group: (i) current/past use of illicit drugs
according to the Composite International Diagnostic Interview (World Health
Organization, 1990) (lifetime: 415 times cannabis, 45 times other drugs;
illicit drug use in the past year), (ii) foreign bodies precluding a magnetic
resonance imaging (MRI) scan, (iii) neurological disease, (iv) pregnancy.
NAPD-specific inclusion criterion: diagnosis of non-affective psychotic
disorder according to the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) criteria. HV-specific exclusion criteria: lifetime history of
psychiatric illness according to DSM-IV criteria and lifetime neuroleptic use.
On the day of scanning, a urine screening was performed to exclude current
drug use and pregnancy.

Psychosocial stress paradigm
Psychosocial stress was induced using the MIST.2 The MIST is a mental
arithmetic task with an evaluative psychosocial component and has been
prescribed in detail before.1,2,5,33 Psychosocial feedback during the MIST
was scripted. All participants were exposed to identical feedback by an
investigator who was previously unknown to them. Time and difficulty
were automatically adjusted during the experimental condition using a
computer algorithm preventing users from exceeding 60–70% correct
answers. The MIST training version was practised for 15min at least 2 h
before scan. Participants completed 10 6-min blocks of MIST control and
experimental version. Control and experimental sessions were separated
by a break (Figure 1).

Table 1. Sample demographics

HV NAPD Statistics (P-value, test statistic)

Gender (1, 0a)
Male 8 8
Female 4 4

Age 48.08 (9.94) 44.67 (11.24) (0.44, − 0.79b)
Educationc 5.83 (1.4) 5.33 (1.44) (0.4, 0.86a)
Smoking (0.38, 0.54a)
Nonsmoker 11 10
Smoker 1 2

Cannabis lifetimed 0.23 (0.83) 0.67 (1.23) (0.31, 1.04)
Other drugs lifetimed,e 0 (0) 0.01 (0.04) (0.31, 1.04)
Injected radioligand (MBq) 189.83 (8.2) 187.92 (10.86) (0.4, − 0.85b)
Specific activity (GBq) 2611.42 (872.96) 2146.25 (1198.6) (0.98, − 0.03b)
Current symptomsf — 11.83 (3.93) —

Years off AP — 7.09 (4.96) —

Cumulative haloperidol equivalentsg — 4303.07 (12 280.64) —

Abbreviations: AP, antipsychotics; HV, healthy volunteer; NAPD, non-affective psychotic disorder. aChi2 test. bT-test. cHighest finished education, scored on a
scale ranging from 1 (primary school) to 8 (Masters degree). dLifetime use scored on a scale ranging from 1 (one to five times) to 8 (4100 times). eStimulants,
sedatives, opiates, cocaine, psychedelics, XTC, MDMA, PCP and inhalants subscales. fPositive subscale of the Positive and Negative Syndrome Subscale (PANSS).
gCumulative haloperidol equivalents were calculated by converting the weekly antipsychotics dose to haloperidol equivalents and multiplying it by the
number of weeks the antipsychotics were taken.
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Behavioral and physiological assessments
PANSS positive, negative and general symptoms34 were assessed by a
trained researcher before the scan. Subjective stress and psychotic
symptoms were briefly assessed pre-scan (n= 1), during each PET part
(n=8) and post scan (n= 1) (Figure 1). Subjective stress responses were
assessed using seven-point Likert Scale items: ‘I feel relaxed’ (reversed), ‘I
feel judged’ and ‘I do not live up to expectations’, on the basis of previous
work (α= 0.69).5,33 Psychotic symptoms (positive only) during the scan
were assessed using the following items: ‘I hear voices’, ‘I see things’ and ‘I
feel suspicious’ (α= 0.7). Plasma cortisol samples were also collected
throughout each PET part (n= 6) and post scan (n=1; Figure 1). Plasma
cortisol levels were determined using a radio immunoassay.35

Image acquisition and analyses
MRI scan. T1-weighted MRI scans were acquired on a 1.5T Philips (Philips
Medical Systems, Herrsching, Germany) machine with TE= 4.59ms,
TR = 30ms, matrix dimensions= 256× 256, slice thickness = 2mm, slice
number= 176. During the data acquisition phase, this scanner was
replaced by a Siemens 3T scanner (Siemens Healthcare, Munich, Germany).
Remaining scans (37.5%) were collected using the Magnetization Prepared
Rapid Acquisition Gradient-Echo sequence, with TE = 2.52 ms, TR = 1900
ms, matrix dimensions= 256× 256, slice thickness = 1mm, slice number =
176. A similar proportion of HV (5/12) and NAPD (4/12) MRI scans were
obtained on the second machine.

Radioligand preparation. The radiosynthesis of [18F]fallypride was a high-
yield modification of the synthesis method for [18F]desmethoxyfallypride,
described in detail previously.36,37

PET acquisition. All PET measurements were performed in the supine
position in a quiet environment. Head position was fixed using a vacuum
plastic mould to limit the head movement.38 The scans were performed in
three-dimensional mode on a Siemens ECAT EXACT HR+ scanner (Siemens-
CTY, Knoxville, TN, USA). Sixty-three slices of 2.425mm slice thickness (pixel
size = 2mm×2mm) were reconstructed per time frame by filtered back
projection (Hamm filter) after Fourier rebinning into two-dimensional
sinograms. Data sets were corrected for random coincidences, scatter
radiation and attenuation (10 min 68Ge/68Ga-transmission scan). The image
matrix was 128× 128. The PET data were smoothed (4 mm FWHM),
realigned, co-registered (transformation matrix based on first 10 realigned
frames) (PMOD v3.1 (PMOD Technologies, Zurich, Switzerland)) and
normalized (SPM 8, Wellcome Trust, London, UK). For every participant,
an attenuation-corrected average image of the first 15 min was created.
These frames were chosen because of their minimal amount of movement
and subsequent high signal-to-noise ratio.39 The remaining frames were
realigned to the 15-min mean image using squared difference sum
(dissimilarity function) and trilinear interpolation as rigid matching settings
in PMOD v3.1 and inspected frame by frame. To quantify the remaining

discrepancy between mean frame and other frames, individual data sets X,
Y, Z and pitch, roll, yaw parameters were exported from SPM 8 (realign
option with trilinear interpolation). HV and NAPD did not differ in
movement parameters (data upon request) and total sample movement
parameters were low (X, Y, Z movement all o5mm and pitch, roll, yaw all
o5°).
Data were collected in two segments, a control and experimental part, in

a single session with single bolus administration.3,33 The PET acquisition
protocol is visualized in Figure 1. Dynamic frames were collected every 60 s
for the first 6 min, after which they were collected every 120 s for the
remainder of the emission scan, in accordance with previous work.3 Break
frames typically consisted of frame 39–42 and were discarded before
preprocessing.

PET analysis. Time–activity curves were obtained for the cerebellum
(reference region) and temporal and frontal regions. Two masks were
created: one containing cerebellum only and another containing all
regions (results section). Regions were based on Brodmann definitions,
identical to previous work.5,33 Using the Automated Anatomical Labeling
mask provided by PMOD v3.1, hippocampus and amygdala were located
for all participants. Using the PMOD v3.1 crop and tailor functions,
hippocampus and amygdala were drawn and inspected slice by slice
to ensure mask coverage. All masks were custom-tailored to the
individual’s MRI, transferred to co-registered PET data in PMOD v3.1
and visually inspected for fit by two independent raters. Given that
striatal and extrastriatal regions differ in time to reach pseudo equili-
brium, stress-induced [18F]fallypride displacement in striatal regions
was not investigated; these values could not be reliably investigated with
the current design, which was optimized to detect extrastriatal DA
signaling.31

PET data were analyzed using a modified simplified reference tissue
model,40 in accordance with previous work.3,30,31,33,41–44 Stress-induced
[18F]fallypride displacement, reflecting DA release, was quantified using
time–activity curve plots and receptor kinetic parameters. The statistically
significant change in radioligand displacement was calculated for every
region of interest (ROI) as the Z-value of γ (γ/std(γ)).33,41 Here, γ is
considered an additional time-varying parameter in the simplified
reference tissue model estimating the amplitude of ligand displacement
at start of the experimental condition in a single scan session (based on
the assumption that changes in competition between DA release and
radioligand competition are reflected in the estimation of γ31). Given that
this design does not assume a physiological steady state, it is suitable to
investigate time-varying changes in DA concentrations. The Z-value of γ as
a proxy of stimulus-induced changes in DA release is highly correlated with
BPND (binding potential relative to non-displaceable radioligand)33,41 and
has been validated using [18F]fallypride.43

γ was calculated over an exponential decay function h(t) = exp(− τ(t− T)),
where t=measurement time, T= time of experimental condition initiation
and τ controls the rate at which activation effects die away (dissipation

Figure 1. Graphical overview of the single infusion design. Following the transmission scan, the radioligand was injected after which
participants always performed the control block of the MIST for 70min. After a 10-min break, participants were repositioned using the scanner
coordinate system and reference skin marks. At 100min post injection, participants performed the MIST experimental condition for 70min.
Plasma cortisol samples were collected in intervals ranging from 22 to 54min. MIST, Montreal Imaging Stress Task; PET, positron emission
tomography.
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rate, set to τ= 0.03min−1),3,31,43 yielding a γ variate estimation interval
peaking at 11min after experimental condition onset, with the peak
dissipating to 10% in 69min.
Because previous work has demonstrated that psychological paradigms

not only affect the intensity (amount) of DA release, but also the area
affected,3,33,45 the spatial extent of [18F]fallypride displacement was
calculated as the percentage of voxels in an ROI showing significant
radioligand displacement (quantified as γ) after correction (p(/number of
total voxels)). This approach requires that voxel T-values in a given ROI are
homogenously distributed for groups of interest (HV, NAPD); this
assumption was tested by calculating the decrease in number of active
voxels (that is, significant γ values) when increasing the T-value by 1
(tested for multiple T-values) in all ROIs and comparing this between
groups (data upon request). High correlations (up to r= 0.87) between ROI
ligand displacement and the spatial extent of ligand displacement (in
voxels) were observed, suggesting that the area of DA release increases
with DA release.

Analyses
Similar to previously published work investigating stress-induced [18F]
fallypride displacement6 and the spatial extent stress-induced [18F]
fallypride displacement,3 the total sample consisted of 12 matched HV
and NAPD. A priori power analyses indicated a power of 0.82 to detect a
group difference which is comparable to previous work using [18F]
fallypride.3

Multilevel regression models with subject as the within level were
applied to investigate increases in subjective stress and (positive) psychotic
symptoms from control to experimental condition. Difference scores
(stress-control condition) for subjective stress/symptoms were calculated
for follow-up analyses. The area under the curve46 was calculated for
plasma cortisol levels (nmol l− 1). The area under the curve or nmol l− 1

cortisol difference values were used for all cortisol analyses. Regions with
mean BPND o0.5 in HV were not taken into account to prevent a low
signal-to-noise ratio.
To replicate previous findings, we first investigated stress-induced mPFC

[18F]fallypride displacement and the spatial extent of stress-induced mPFC
[18F]fallypride displacement in HV. This was followed by an attempt to
discover additional extrastriatal regions involved in stress processing in HV
(Table 2 for all identified regions). For these purposes, t-tests (spatial
extent/radioligand displacement 40) were performed. The same proce-
dure was repeated for NAPD; no additional regions were identified in
NAPD. Next, group differences (HV vs NAPD) in stress-induced radioligand
displacement and its spatial extent were investigated in regions showing
significant stress-induced radioligand displacement (using analysis of
variance).
Follow-up analyses were performed using stress-induced increases in

subjective stress/psychotic symptoms, symptom scores on PANSS sub-
scales (positive, negative, general)34 and the amount of years off
antipsychotics (day of scan− last day of antipsychotics use/365) as
outcome variables. The α was set to the conventional threshold of
P= 0.05. Given the matched nature of the samples, covariates were not
included in group comparisons. When analyzing single groups, age and
gender were entered as nuisance covariates.

RESULTS
Demographics, behavioral and physiological assessments
Groups did not differ on demographic variables (Table 1; all not
significant). Recreational illicit drug use ceased long before the
scan and no included participants reported current drug use
(years since last use (M= 17.83, s.d. = 7.52)). Antipsychotics naive
NAPD (n= 4) and antipsychotics-free (currently non-medicated
41 year) participants did not differ in their PANSS score on the
positive subscale (t(1,23) = 0.25, P= 0.81). Subjective stress during
the scan increased from control to experimental condition
(b= 0.63, z(188) = 6.07, Po0.0001), regardless of group (b=− 0.24,
z(1188) =− 1.14, P= 0.26). NAPD increased in positive psychotic
symptoms from control to stress condition (b= 0.21, z(95) = 2.79,
P= 0.005). Subjective stress in the whole sample (b=− 1.24, z
(116) =− 7.93, Po0.001) and positive psychotic symptoms in
NAPD (b=− 0.26, z(58) =− 2.21, P= 0.03) significantly decreased
following a debriefing session 15min after the scan finished.Ta
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Cortisol (nmol l− 1) decreased as a function of time in HV
(b=− 0.34, t(64) =− 2.87, P= 004), but not in NAPD (b=− 0.02, z
(66) =− 0.11, P= 0.91).
There were no differences in area under the curve cortisol

between conditions (t(18) = 1.65, P= 0.12), nor were there group
differences (b= 474.42, t(1,9) = 0.21, P= 0.83) in area under the
curve cortisol difference scores or an association with subjective
stress (b= 671.38, t(18) = 0.43, P= 0.67).

Stress-induced [18F]fallypride displacement: main effects and
group differences
The average HV BPND calculated over the whole paradigm using
the simplified reference tissue model40 in the mPFC (M= 0.51,
s.d. = 0.2), temporal cortex (TC; M= 0.63, s.d. = 0.16), hippocampus
(M= 1.56, s.d. = 0.88), parahippocampal gyrus (M= 0.66, s.d. = 0.18)
and amygdala (M= 4.13, s.d. = 1.56) was higher than 0.5 These
regions were therefore included in the mask. No additional
regions with mean BPND 40.5 were identified in NAPD.
In the mPFC and TC, a significant stress-induced increase in

radioligand displacement and the spatial extent of radioligand
displacement could be observed in HV and NAPD separately
(Po0.05), but not in the hippocampus, parahippocampal gyrus or
amygdala (P40.05). No group differences in stress-induced
radioligand displacement were observed in a priori selected ROI,
the mPFC (Table 2), nor when looking at the dorso-mPFC
(b=− 0.05, t(1,23) =− 0.12, P= 0.91) or ventro-mPFC (b=− 0.09, t
(1,23) =− 0.23, P= 0.82) subregions separately. Moreover, no group
differences in stress-induced radioligand displacement were
observed in the TC (Table 2).
Similarly, no group differences were observed in the spatial

extent of stress-induced radioligand displacement in the mPFC
(Table 2), dorso-mPFC (b=− 3.11, t(1,23) =− 0.55, P= 0.59), ventro-
mPFC (b=− 6.86, t(1,23) =− 1.3, P= 0.21) or TC (Table 2) (Figures 2
and 3).

Stress-induced [18F]fallypride displacement: follow-up analyses
In the whole sample, stress-induced radioligand displacement in
mPFC (F(23) = 0.11, P= 0.74) or TC (F(23) = 0.88, P= 0.36) was not
associated with subjective stress. The association between the

spatial extent of stress-induced mPFC radioligand displacement
and subjective stress in the whole sample did not reach
significance (F(23) = 1.71, P= 0.2). When looking at mPFC sub-
regions, the association between subjective stress and the spatial
extent of stress-induced radioligand displacement in ventro-mPFC
(F(23) = 2.48, P= 0.09) and dorso-mPFC (F(23) = 0.15, P= 0.87) was
not significant (Figure 4). Further investigation revealed a
significant positive association between subjective stress and
the spatial extent of stress-induced radioligand displacement in
right ventro-mPFC (F(23) = 4, P= 0.03; Figure 4), but not left
ventro-mPFC (F(23) = 0.83, P= 0.45). Subjective stress was not
associated with the spatial extent of stress-induced radioligand
displacement in TC (F(23) = 0.63, P= 0.54; Figure 4).
The spatial extent of stress-induced radioligand displacement

(b= 1.13, t(7) = 7.75, P= 0.001), but not stress-induced radio-
ligand displacement (b=− 0.22, t(7) =− 2, P= 0.12), in ventro-
mPFC was positively associated with duration of antipsychotics-
free period.
Psychotic symptoms during the scan in NAPD were not

associated with stress-induced radioligand displacement in mPFC
(b= 1.25, t(11) =− 0.13, P= 0.9) or TC (b=− 1.42, t(11) =− 0.67,
P= 0.53), or the spatial extent of stress-induced radioligand
displacement in mPFC (b=− 3.68, t(11) = 0.51, P= 0.62) or TC
(b=− 3.24, t(11) =− 0.63, P= 0.55). PANSS positive, negative or
general symptoms in NAPD were also not associated with stress-
induced radioligand displacement or the spatial extent of stress-
induced radioligand displacement in mPFC or TC (Table 3).
Adding years off antipsychotics as a covariate did not change

the results. Moreover, antipsychotics-naive NAPD and
antipsychotics-free participants did not differ in stress-induced
radioligand displacement or the spatial extent of stress-induced
radioligand displacement in any of the identified regions (data not
shown).
Finally, cumulative haloperidol equivalents (antipsychotics in

the past) were not associated with stress-induced radioligand
displacement in mPFC (bo0.01, t(11) =− 0.47, P= 0.65) or TC
(bo0.01, t(11) = 1.05, P= 0.32), or the spatial extent of stress-
induced tracer displacement in mPFC (bo − 0.01, t(11) =− 0.61,
P= 0.55) or TC (bo − 0.01, t(11) =− 0.37, P= 0.72).

Figure 2. Group averages for the spatial extent of stress-induced [18F]fallypride displacement. NAPD did not significantly differ from HV in the
spatial extent of stress-induced [18F]fallypride displacement in any (sub)region. Ventro-mPFC (vmPFC) and dorso-mPFC (dmPFC) are mPFC
subregions. *, outlier (Cook’s distance 44 per n), removed from mean. Not significant (NS) at P= 0.05. HV, healthy volunteer; mPFC, medial
prefrontal cortex; NAPD, non-affective psychotic disorder; TC, temporal cortex.
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DISCUSSION
Using [18F]fallypride PET, the effect of psychosocial stress on
extrastriatal DA signaling was investigated in HV and NAPD. In
accordance with previous work, extrastriatal DA release6 and the
spatial extent (area/size of DA release in voxels) of DA release3,31

served as primary outcome measures of stress-related DA
signaling. We showed that psychosocial stress increases extra-
striatal DA signaling in HV: both DA release and the spatial extent
of DA release increased in mPFC and TC. Moreover, we did not
find evidence for altered stress-induced extrastriatal DA signaling
in NAPD. This is based on the observations that (i) psychological
stress increased DA signaling to a similar extent in HV and NAPD,
(ii) subjective stress and the spatial extent of stress-induced DA
release were similarly associated in HV and NAPD and (iii) stress-
related DA signaling was not associated with positive, negative or
general symptom scales of the PANSS in NAPD.34

BPND values in frontal and temporal areas were in ranges
comparable to previous studies6,28 although inter-individual
variability was observed in the hippocampus and amygdala,
which may be the result of the inherent small size of these
structures. The observation that stress increased mPFC DA
signaling in HV confirm previous data.5,6 In addition, increases in
DA signaling in TC were observed. Although stress-induced TC DA
signaling in humans has not been reported before, it is consistent
with functional magnetic resonance imaging studies using the
MIST,47,48 suggesting that these effects might be, in part, DAergic.
Contrary to expectations, differences in stress-induced frontal

and temporal DA signaling between HV and NAPD were not
observed. In combination with the absence of a correlation

between measures of stress-induced DA signaling and psychotic
symptoms (during scan or assessed with PANSS), these results
could suggest that stress-related extrastriatal DA signaling is
unaffected in NAPD. Here, we offer four explanations.
First, these results seemingly contrast with the hypothesis of

DA-mediated hypofrontality in psychosis.18,19 However, the
concept of hypofrontality is often assessed indirectly (for example,
cerebral blood flow) and in the context of cognitive
performance,18,49,50 not stress. Little in vivo evidence exists for D
2/3-mediated hypofrontality in psychotic disorder10 and a positive
association between amphetamine-induced PFC DA release
measured with [18F]fallpyride and schizotypal personality traits29

may even suggest increased cortical DA transmission in psychotic
disorder. Although inconsistent,51–53 changes at the D1 receptor
have been observed in schizophrenia. Moreover, experimental
animal work suggests an important role for PFC D1 receptors in
the stress response54 and a D1, but not D2, agonist can restore
stress-related DAergic PFC–striatum interactions.55 Altogether, this
could indicate that, although DA transmission at D2/3 during stress
may be unaltered in psychotic disorder, activity at the D1 may be
abnormal.
A second viable explanation may be that the absence of

differences between HV and NAPD could be explained by the
relatively low amount of acute psychotic symptoms (PANSS score;
Table 1). This would, however, go against evidence that increased
stress sensitivity is present in those at risk for psychotic disorder,56

non-acute psychotic disorder57 and even remitted psychotic
disorder.58 In addition, stress-induced increases in psychotic
symptoms during the scan confirmed increased stress sensitivity

Figure 3. Parametric maps showing stress-induced [18F]fallypride displacement in mPFC. Graphical representation showing stress-induced
[18F]fallypride in HV and NAPD in coronal (top row, left images), sagittal (top row, right images) and axial view (columns). Coronal image and
Montreal Neurological Insititute (MNI) z coordinates on the right depict the axial slice position. Starting position (top) was x= 0, y= 53, z= 21
(MNI). Mean t-maps per group show the stress-induced [18F]fallypride displacement throughout the mPFC. Individual t-maps were generated
using displacement parameter γ (t= γ/sd(γ)) and were averaged across all participants per group. Images are thresholded at 3.4 for
visualization purposes. HV, healthy volunteer; mPFC, medial prefrontal cortex; NAPD, non-affective psychotic disorder.
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in our sample of NAPD. We recently reported a negative
correlation between the spatial extent of mPFC DA release and
subjective stress/subclinical psychotic symptoms in healthy first-
degree relatives of individuals with psychotic disorder.3 This could
suggest functional cortical DAergic alterations in the stress
response in some, but not all, individuals across the psychosis
continuum. One way to investigate whether stress-related PFC DA
signaling is dependent on illness phase is the addition of a group
of acutely psychotic NAPD.

A third explanation may be that the use of [18F]fallypride has
contributed to the absence of group differences. Amphetamine-
induced PFC DA release quantified with fallypride has mostly
yielded negative results.25,26,28 However, three separate studies
using the MIST3,6 (including the current one), as well as a study
investigating response inhibition,59 have reported PFC DAergic
activity measured with fallypride. While the reason for this
discrepancy between stimulant- and task-based studies using
[18F]fallypride is unclear, it may be related to the different

Figure 4. Association between the spatial extent of stress-induced [18]fallypride displacement and subjective stress in the whole sample.
Subjective stress and the spatial extent of stress-induced radioligand displacement were associated in ventro-mPFC (trend, P= 0.06) and, more
specifically, right ventro-mPFC (P= 0.02) in the whole sample, but not in dorso-mPFC (P= 0.93) and TC (P= 0.33). For visualization purposes, HV
and NAPD were depicted separately. HV, healthy volunteer; mPFC, medial prefrontal cortex; NAPD, non-affective psychotic disorder; TC,
temporal cortex.

Table 3. Associations between stress-induced [18F]fallypride displacement and psychotic symptoms on the Positive and Negative Syndrome
Subscale (PANSS) in NAPD

Association between stress-induced [18F]fallypride
displacement (Z(γ)) and PANSS symptoms

Association between spatial extent of stress-induced [18F]
fallypride displacement (% voxels) and PANSS symptoms

Coefficient 95% CI T-value P-value Coefficient 95% CI T-value P-value

Positive subscale
mPFC 0.16 − 0.36 to 0.69 0.72 0.5 0.88 − 1.09 to 2.84 1.03 0.33
Temporal CTX − 0.05 − 0.68 to 0.56 − 0.22 0.84 0.9 − 0.42 to 2.21 1.57 0.16

Negative subscale
mPFC 0.29 − 0.95 to 1.53 0.54 0.61 − 0.45 − 5.26 to 4.37 − 0.21 0.84
Temporal CTX − 0.7 − 2.02 to 0.62 − 1.22 0.26 0.49 − 2.97 to 3.94 0.33 0.75

General subscale
mPFC 0.05 − 0.58 to 0.52 − 0.12 0.91 0.26 − 1.83 to 2.34 0.28 0.78
Temporal CTX − 0.16 − 0.77 to 0.45 − 0.6 0.57 0.48 −0.98 to 1.94 0.76 0.47

Abbreviations: CI, confidence interval; CTX, cortex; HV, healthy volunteer; mPFC, medial prefrontal cortex; NAPD, non-affective psychotic disorder.
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mechanisms of action task- and stimulant-induced DA release in
the cortex. Whereas psychological tasks elicit increased DA
synthesis and release, corresponding with increased cell firing,60

stimulants increase extracellular DA release through DA and
noradrenaline transporter blockade61 and decrease overall cell
firing.62 A replication study with higher affinity radioligands such
as FLB 457 (refs. 26, 63) could be useful to assess the suitability of
fallypride to detect task-induced cortical DA release, as has been
done recently for stimulants.26

A final explanation could be that the sample displayed
abnormalities in cortical neurotransmission not directly related
to the DA system. This assumption is based on the observation
that cognitive and negative symptoms in NAPD were not
associated with stress-related DA signaling. One potential
candidate neurotransmitter system could be glutamate. Gluta-
mate transmission in the cortex has an essential role in stress
processing,64 and cognitive and negative symptoms of schizo-
phrenia have been associated with altered frontal glutamate
activity,65 but not always consistently so.66 Thus, alterations in
cortical glutamate transmission could potentially account for
negative and cognitive symptoms in the sample of NAPD while
also explaining their increased stress sensitivity to the task.
Although there may be multiple explanations for the absence of

differences between NAPD and HV, stress-induced mPFC DA
release6 and the spatial extent of mPFC DA release3 are associated
with physiological and behavioral parameters. This suggests that
PFC DAergic processing has a functional role in the stress
response, which is potentially unaltered in NAPD. This was
reflected in the correlation between the subjective stress response
and spatial extent of ventro-mPFC DA release in the current study.
However, an association between subjective stress and ventro-
mPFC DA release was not observed. Although high correlations
were observed between the spatial extent of DA release and DA
release, this may indicate that increases in subjective stress are
associated with a greater area of DA release without altering the
amount of DA released. This could be interpreted as a
compensatory processing mechanism, where increased resources
are necessary to obtain the same result.
The spatial extent of ventro-mPFC DA release in response to

stress increased as NAPD were longer off antipsychotics. Two
possible explanations exist for this association. First, as NAPD are
longer off antipsychotics, their DAergic stress response may
progressively approximate that of HV. This is in line with an
association between D1 receptor density and drug-free interval67

and could suggest that DA receptor density may normalize
following prolonged exposure to antipsychotics. The association
between time off antipsychotics and the spatial extent of stress-
related DA release may reflect gradual homeostatic downregula-
tion of PFC D2/3 receptors, previously upregulated through
extended antipsychotics blockade, although such upregulations
are dependent on mode of antipsychotics administration.68,69

An alternative explanation may be that as acute psychotic
symptoms decrease, DAergic abnormalities normalize. This is in
line with work showing that striatal DA function of remitted
schizophrenia patients70 and antipsychotics-treated schizophrenia
patients71 is more similar to HV. However, this explanation goes
against alterations in stress sensitivity that persist beyond acute
psychotic disorder58 and the observation that the MIST increased
psychotic symptoms in NAPD. Here, again, an acutely psychotic
group of NAPD could be of added value.

Strengths and limitations
The current findings need to be interpreted in light of strengths,
limitations and sample size.
Strengths of the study include minimal past drug use in the

sample, thereby excluding substance-induced NAPD and asso-
ciated confounds in the DA system. Given that, in particular,

cannabis use is associated with psychotic symptoms72 and DA
function,73–75 this may have increased our sensitivity to investi-
gate stress-related DA function. Moreover, the single infusion
paradigm limited within-subjection variation, further decreasing
measurement error. Finally, the direction and location of task
effects in HV were similar to a previous study using an identical
design, which suggest a degree of stability.5

Some limitations of the study need to be addressed. A general
limitation is that the single infusion protocol with fallypride used
in the current study has not been associated with measures
directly related to DA activity, hence use of the term ‘DA signaling’.
Moreover, striatal DA signaling could not be reliably investigated;
actual and simulated data31 indicate that the current design
would produce unreliable estimates for the striatum, given the
slow time course of radioligand binding. Future [18F]fallypride
studies could increase scan duration or, in the case of a single
infusion paradigm, prolong the control condition to investigate
striatal and extrastriatal DA signaling simultaneously.
Because of model assumptions and to limit stress exposure to

the scanning period, the task order was fixed to control–
experimental, similar to previous work.5,14 Although this may
have introduced order effects, a recent study demonstrated stress-
induced DA release independent of the order of conditions.6 This
makes it unlikely that order effects had a major effect on our
outcome measures.
In addition, benzamide binding is affected by cerebral blood

flow.76 However, in response to behavioral challenges43 and in
low-binding areas,77 regional cerebral blood flow effects are rather
small and are not expected to explain the presented results. Other
studies with a single infusion paradigm have discussed this issue
in greater detail.5,30,33,45

In the absence of a task-induced effect on plasma cortisol levels,
our results could reflect socially desirable behavior or increased
effort in the stress condition. The association between subjective
stress and the spatial extent of ventro-mPFC DA release does,
however, suggest an effect of the stressor. This is also confirmed
from by data from one HV who was scanned in a control–control
sequence (data upon request); changes in subjective stress or [18F]
fallypride displacement were not observed.
Rather, the absence of cortisol effects may be related to time of

day; a significant association between sampling time and cortisol
(nmol l− 1) in HV was observed. Both the current study as well as
another recent study who failed to find an effect of the MIST on
cortisol levels6 collected PET data in the afternoon. In contrast, in a
previous study, we did find an effect of the MIST on cortisol levels,
but PET data were collected around noon. Future studies may,
therefore, want to include physiological stress parameters that are
less sensitive to time of day than cortisol.
Another observation was that MIST effects on the spatial extent

of stress-induced ventro-mPFC DA release were smaller than
previous work using an identical acquisition protocol (~25% here
vs ~ 50%).3 This may be related to different versions of the task;
the current study used an auto-adjust version (set to 70% correct
responses), whereas a manually calibrated task (aiming at 90%
correct response) was used previously. Task differences may have
affected the perceived stressfulness of the paradigm and,
correspondingly, DAergic processing. Moreover, image preproces-
sing software, scanner type and head fixation procedures may
further explain these between-study differences.
Some limitations related to the sample also need to be

addressed. Although NAPD were off antipsychotics for longer
than 1 year, past antipsychotic use may have affected DA receptor
density and thus masked subtle illness-related effects on stress-
induced DA signaling. Although this is a limitation we acknowl-
edge, repeating the analyses with time off antipsychotics as a
covariate did not affect the results described in this manuscript. A
sample of neuroleptic-naive participants could be valuable in
detecting alterations in the extrastriatal DAergic stress response, if
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present, associated with NAPD. In addition, the NAPD sample
included five individuals with brief psychotic disorder as their
main diagnosis (Supplementary Table 1); low-grade residual
symptoms in these individuals may have limited the power to
detect associations between stress-related DA signaling and
psychotic symptoms. Finally, post hoc power calculations indicated
that group differences with effect sizes (Cohen’s d) up until 0.5
may have been overlooked. To detect small-to-moderate group
differences, replication with larger sample sizes is essential.

CONCLUSIONS
Preclinical16,17 and human3 studies have previously shown that
stress affects DAergic activity in frontal cortical areas. The
preliminary evidence presented here does not suggest altered
extrastriatal DA signaling in the context of stress in NAPD. While
we have demonstrated that frontal DA signaling is functionally
relevant in the stress response, it is not clear how this is related to
the putative link between stress and psychotic disorder. Follow-up
studies in acutely psychotic and neuroleptic-naive NAPD could
provide new insights into the role of stress-related extrastriatal
DAergic processing in NAPD.
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