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Abstract

Virtually all people with Down syndrome will develop Alzheimer disease pathology

during their lifetime. As Alzheimer disease is the third leading cause of death and a sig-

nificant factor in end-of-life complications for adults with Down syndrome, identifying

interventions is a medical necessity. Calcineurin, a Ca2+/calmodulin-dependent pro-

tein phosphatase, has recently been investigated as a possible Alzheimer treatment.

This review explores the histories behind Down syndrome and Alzheimer disease,

and their intersecting pathologies. This is followed by the role that calcineurin and its

U.S. Food and Drug Administration–approved pharmacological inhibitor, tacrolimus,

may play in the prevention or treatment of Alzheimer disease. Finally, this review dis-

cusses the gap in the literature surrounding the role of calcineurin, its regulators, and

calcineurin inhibitors in the context of Down syndrome and comorbid Alzheimer dis-

ease. Future studies investigating the role that calcineurin plays in this pathology will

be essential in determining the viability of calcineurin inhibitors to treat Alzheimer

disease in people with Down syndrome.
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Highlights

∙ Calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, has become

prominent as a possible therapeutic target to treat Alzheimer disease.

∙ People with Down syndrome develop Alzheimer pathology as they age, requiring

novel therapeutics for treatment.

∙ People with Down syndrome may exhibit contraindications to calcineurin

inhibition–based therapy, as they overexpress RCAN1 and DYRK1A, regulators

of calcineurin.
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∙ There is a significant gap in the literature involving the expression of calcineurin,

RCAN1 and DYRK1A, in people with Down syndrome and Alzheimer disease,

which must be addressed to determine the efficacy and safety of newly developed

therapeutics.

1 BACKGROUND

1.1 Down syndrome

First characterized in 1866 by John Langdon Down, Down syndrome

(DS) stems from a trisomy of the 21st chromosome (Hsa21) and affects

1 of ≈750 children born in the United States.1 DS is characterized by

intellectual disability, altered brain development, and immunological

disorders.2–4 Nondisjunction during meiosis is the leading cause of DS,

accounting for around 95% of cases. Of interest, however, advances

in genetic testing reveal cases of partial trisomy in which only a seg-

ment of the triplicated Hsa21 is present in the cell.5–8 Exploration into

the areas essential for the development of DS has led to the charac-

terization of a Down syndrome critical region (DSCR), a length of 1–8

Mbwithin Hsa21, of which triplication is essential in generating theDS

phenotype.9,10

Complete trisomy of Hsa21 results in elevated expression of sev-

eral critical developmental and homeostatic genes, including Amyloid

precursor protein (APP), Beta-secretase 2 (BACE2),Dual specificity tyrosine

phosphorylation regulated kinase 1A (DYRK1A), Regulator of Calcineurin

1 (RCAN1), and Superoxide Dismutase 1 (SOD1).11,12 Although the gene

dosage effect would imply a 50% elevation of gene expression in DS,

manyof thesegenes, includingDYRK1A,RCAN1, and SOD1, exhibitRNA

expression above typical levels but below the high level that would be

predicted.13,14 Nonetheless, people with DS are susceptible to a num-

ber of adverse health outcomes, including autoimmune disorders, cog-

nitive impairment, hypothyroidism, and obesity.15,16 Autoimmunity is a

significant factor in DS, as people with DS have consistently increased

cytokine expression, altered CD4+ T-cell number and activation, and

atypical B-cell activation.17–19 Stemming from these autoimmune dis-

orders, Type 1 diabetes and chronic systemic inflammatory diseases

are common among people with DS.20,21

Resulting from the preceding comorbidities, the life expectancy for

someone with DS before 1980 was below 25 years of age.22,23 With

advancements in modern medicine and, perhaps more importantly, a

shift in mental health perspectives that prioritize care, socialization,

and activity, people with DS now have an average life expectancy into

their 60s.23,24 However, increasing age is a risk factor for Alzheimer

disease (AD). Furthermore, the overexpression of the precursor pro-

tein to amyloid beta (Aβ) on Hsa21, results in people with DS devel-

oping AD neuropathology by age 40 years.25,26 Currently, AD is third

among the leading causes of death for adults with DS.27,28 However,

studies imply that this is a gross underestimation and may account for

amuch higher percentage than currently reported.27

1.2 Alzheimer disease

Named after Alois Alzheimer, AD was first characterized in 1906 as

a “severe disease process of the cerebral cortex.”29 Clinically, AD

presents as a progressive cognitive impairment involving memory loss,

poor judgment, a loss of orientation, and personality changes, with a

diagnosis requiring two or more of these symptoms.30,31 On a cellular

level, AD is characterized by Aβ plaques, neurofibrillary tangles (NFTs)
containing phosphorylated tau (p-tau), neuronal loss, and elevated

neuroinflammation.32–34 AD and clinical dementia are also associ-

ated with several comorbid pathologies, with pure AD remaining an

uncommonoccurrence; vascular pathology, amyloid and tau load, Lewy

bodies, and hippocampal sclerosis cumulatively account for much of

the risk of AD and dementia.35,36 Clinical confirmation of neuronal

loss (brain atrophy) or the presence of Aβ and tau can be through

neuroimaging (magnetic resonance imaging [MRI] imaging or positron

emission tomography [PET] scans, respectively).

Aβ has long been studied in AD due to its ubiquity in the dis-

ease. In healthy adults, APP protein is cleaved by α-secretase and

then cleaved by γ-secretase to form P3 and APP intracellular domain

(AICD), which are readily cleared from the cell.37 In amyloidogenic

conditions, APP is cleaved by β-secretase, followed by γ-secretase,
yielding AICD and Aβ.37 Aβ begins as a soluble protein, cleared in the

early stages of AD; however, it accumulates with aging, transitioning

from soluble proteins to insoluble aggregates, which attract additional

Aβ accumulation in a seeding process.38,39 This accumulation pro-

gresses through the brain in a well-characterized pathway known as

Thal phases, beginning in the prefrontal cortex before progressing into

the hippocampus, post-cingulate gyrus, medulla oblongata, and, finally,

the cerebellum.40,41 The presence of Aβ plaques drives microglial acti-

vation, inducing neuroinflammation that worsens as plaque formation

continues.42,43

Alongside Aβ accumulation, AD also involves the accumulation of

NFTs formed fromphosphorylated p-tau. Expressedmainly in neuronal

axons, tau promotes microtubule assembly.44,45 Phosphorylation of

tau causes decreased interaction with microtubules, perhaps acting as

an inhibitory mechanism, but hyperphosphorylation results in misfold-

ing and tangle aggregation.45–48 NFTs operate in a mechanism similar

to that of Aβ, spreading progressively through the brain, termed Braak

staging, and initiating neuroinflammation and neuronal cell death as

aggregates prevent axonal trafficking.49–51 Together, Aβ plaques and

NFTs exert significant pressure on the aging brain, resulting in rampant

neuroinflammation, synaptic dysregulation and loss, and neuronal cell

death, resulting in the clinical presentation of AD.
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1.3 Alzheimer disease in people with Down
syndrome

As mentioned previously, due to the increase in APP production, peo-

ple with DS develop Aβ pathology at an early age.52,53 Children with

DS as young as 3 years can exhibit small diffuse accumulations of Aβ.54

Diffuse Aβ plaques systematically begin to form in the 20s and 30s of

people with DS; the extent of plaques increases exponentially after the

40s, with Aβ pathology typically progressing into clinically relevant AD
diagnoses.52,55,56 By age 40 years, most people with DS are classified

as Thal Stage 5, with plaques found in the cerebellum and cognitive

decline tending to begin in earnest at ≈53–54 years of age.57,58 Com-

pared with the general population, which experiences lower rates of

ADpathology andanaverage age at onset around70years, peoplewith

DS deal with increased risk and early progression of the disease.

Neuroimaging studies also reveal early progression of Aβ and tau

tangle accumulation in people with DS. As mentioned in Section 1.2,

PET scans are commonly used to determine the brain’s Aβ load, tau

load, and metabolic activity. Aβ pathology, determined through Pitts-

burghCompoundB (PiB) labeling on PET scans, is seen by the age of 40

in people with DS, although sparse accumulation is occasionally seen

earlier.59 Of interest, Aβ pathology begins in the striatum before pro-

gressing to the prefrontal cortex, suggesting an alternate initiation of

amyloidopathy in people with DS compared to sporadic AD cases.60,61

Tauopathy, determined through 18F-AV-1451 tracer PET scans, is simi-

lar in cerebral distribution to sporadic AD.62 However, in people with

DS, the onset of tau tangles is only 2.5–5 years after the onset of

Aβ pathology, much faster than the estimated 5–10 years in sporadic

AD.63,64 Together, these findings indicate an earlier and faster progres-

sion of AD pathology in people with AD, which must be addressed in

conjunction with other DS-related comorbidities.

Elevated levels of Aβ results in neurovascular deposits is known

as cerebral amyloid angiopathy (CAA).65 CAA is a leading cause of

microhemorrhages in AD, elevating neuroinflammation and positively

correlating with increased cognitive decline.66,67 Although reporting

criteria for CAA are varied, recent estimates place the incidence rate

at ≈50%–75% in people with AD.68,69 Not surprisingly, given the over-

production of APP, people with DS have a roughly 85% incidence rate

of CAA, significantly higher than that of the general population.68 Gen-

eral vascular pathologies, including microbleeds and infarcts, are also

prevalent in people with DS, with the onset occurring in the early

to mid-30s.70 Of interest, these early microbleeds and infarcts occur

before significant amyloid deposition and CAA development, suggest-

ing a role in the early development of AD rather than late-stage devel-

opment. Thus, vascular pathologies, including CAA, microbleeds, and

infarcts, are increasingly noted as an essential factor in AD progres-

sion and the development of clinical dementia; therefore, it is crucial

to consider the contributions of vascular disease when discussing AD

in people with DS.

Disrupted sleep and poor sleep quality may enhance the risk of and

can also be a consequence of progressive AD.71,72 Poor sleep qual-

ity, caused by sleep disturbances, dysregulated sleep/wake cycles, and

obstructive sleep apnea (OSA), increases the risk of cognitive impair-

ment and hinders memory formation.73–75 Severe sleep disruptions

RESEARCH INCONTEXT

1. Systematic review: This article utilizedPubmed to review

the literature surrounding the utilization of calcineurin

inhibitors as a therapy for Alzheimer disease in people

with Down syndrome. Calcineurin inhibitors have gained

prominence as a possible therapeutics for Alzheimer dis-

ease in the general public. However, people with Down

syndrome demonstrate possible contraindications.

2. Interpretation: Our findings reveal a lack of conclusive

information on the role calcineurin plays in the devel-

opment of Alzheimer disease in people with Down syn-

drome. The expression of calcineurin, calcineurin regula-

tors, and the activity of calcineurin-induced inflammatory

pathways is poorly characterized in people with Down

syndrome and Alzheimer disease.

3. Future directions: Investigations into the expression

of calcineurin, its regulators, and the activation of

calcineurin-induced inflammatory pathways in people

withDownsyndromeareneeded to elucidate the role cal-

cineurin inhibitorsmayplay in the treatment ofAlzheimer

disease in people with Down syndrome.

and OSA are highly prevalent in DS.76 Over 50% of children under age

10 with DS show evidence of OSA, and nearly 80% showed abnormal

sleep scores, reflecting a lifelong struggle with restful sleep that likely

contributes to the prevalence of AD later in life.77

There is a need for new treatments and therapies for AD to pre-

vent and combat its progression. For people with DS, this is even more

pressing, as recent studies suggest that the current life-limiting fac-

tor for people with DS is AD.58 Indeed, DS has been considered to

be the most common form of genetic AD, and people with DS have

mortality rates that coincide with autosomal dominant AD.25,58 Cur-

rently, several U.S. Food and Drug Administration (FDA)–approved

pharmaceuticals, including donepezil and galantamine, and two newer

treatments, lecanemab and donanemab, show promise in treating

the symptoms and slowing AD progression, respectively.78–80 How-

ever, some treatments may address the symptoms of the disease and

not the etiology (e.g., donepezil). Others may slow progression but

have significant side effects, thereby limiting their effectiveness for all

patients with AD (lecanemab, donanemab). Therefore, new targets are

being explored in search of a therapeutic that can successfully stop

or prevent AD progression. Of these targets, calcineurin has shown

great promise in its ability to influence AD progression and is worth

investigating in depth.

2 CALCINEURIN

Calcineurin (CN) is a heterodimeric Ca2+/calmodulin-dependent pro-

tein phosphatase expressed ubiquitously throughout the body and
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in neurons and reactive astrocytes.81,82 Calcineurin A (CaNA) is the

catalytic subunit of the CN heterodimer, containing an N-terminal cat-

alytic domain, which is essential for CN’s phosphatase activity.83 In

addition, CaNA contains a calcineurin B (CaNB) binding domain, a

calmodulin (CaM)bindingdomain, andanautoinhibitorydomain,which

restricts the CN active site in the absence of CaM.84,85

CaNB is generally described as a regulatory subunit with four

helix-loop-helix EF-hand Ca2+ binding domains that sense variable

Ca2+ concentrations within the cell. The pair of C-terminal EF-hands

are exquisitely sensitive to Ca2+, with dissociation constants (Kds)

between 50 and 150 nM.83,86,87 The N-terminal hands are less sensi-

tive to Ca2+ concentrations; their Kds range from 1 to 1.7 µM.87 Point

mutation studies on each EF-hand have demonstrated that the highly

sensitive C-terminal hands are likely structural; in contrast, the less

sensitive N-terminal hands contribute to sensing Ca2+ levels and sta-

bilize the protein during its interaction with CaNA.88 Notably, Ca2+

binding is cooperative, with a loss of any Ca2+ molecule from one

EF-hand increasing the dissociation rate for all other hands, and vice

versa.88 CN is sensitive to Ca2+ due to the ability of CaNB to sense and

act upon minuscule variations in Ca2+ concentration within the cell.

This distinguishes CN from other Ca2+ sensing enzymes, which gen-

erally have lower sensitivity or slower kinetics. This may also explain

why CN is so acutely sensitive to the Ca2+ dysregulation so often

seen in aging. Of interest, elevated calcium levels alone cannot fully

activate CN; only about 10%of the activity is observed at calcium satu-

ration, with CaM and another divalent cation required to activate the

phosphatase fully.89 Upon binding with CaM, the CN-CaM complex

regulates cellular events throughout the body. CN can also be perma-

nently and irreversibly activated through its interaction with calpain,

which cleaves the auto-inhibitory domain and CaM-binding domain of

CN; this cleaved version is typically denoted asΔCN.90,91

Important for this review, one of the main targets of the CN-CaM

complex is the nuclear factor of activated T cells (NFAT) pathway. The

NFAT family consists of five transcription factors, NFAT 1–5, of which

calcium concentrations and CN dephosphorylation regulate NFAT 1–

4.92 The NFAT family of proteins contains several highly conserved

domains, including an N-terminal regulatory domain and a C-terminal

DNA-binding domain.93 The N-terminal regulatory domain is essen-

tial for CN to interact with and dephosphorylate the NFAT family. The

NFAT PxIxIT and LxVPmotifs are well conserved across the family and

have a high affinity for CN binding, with CaNA and CaNB able to bind

these motifs at similar rates.94,95 The binding of CN to the PxIxIT and

LxVP sites forms a loop containing the serine-rich region and serine-

proline-rich boxes where NFAT phosphorylation occurs, allowing for

enhanced dephosphorylation by CN.93,94 Dephosphorylation of NFAT

by CN initiates nuclear translocation of the NFAT protein, where it

functions as a transcription factor.96 NFAT activation can result in

the expression of a plethora of genes, including cytokines, surface

receptors, apoptotic genes, transcription factors, and genes involved in

calcium signaling and regulation.97,98

CN is perhaps the most studied in its interaction with the periph-

eral immune system as a T-cell activator.92,99 In brief, the binding of

T-cell receptors triggers a cascade of interactions that flood the cell

with calcium by releasing intracellular calcium and opening calcium

channels to influx extracellular calcium.100 This elevated calcium con-

centration activates CN and generates the CN-CaM complex, which

activates NFAT translocation to the nucleus. As the NFAT signaling

cascade takes effect, T cells activate, initiating cytokine release, lytic

enzyme release, and replication (illustrated in Figure 1).101 This inte-

gral role of CN in T-cell activation and immune response hasmade it an

appealing target for immune therapies, including preventing transplant

rejection and alleviating autoimmune disorders. CN’s activity within

the brain and neuronal landscape is less known, which is the focus of

this review.

2.1 Calcineurin’s neuronal interactions

2.1.1 The neuronal cytoskeleton

CN is expressed in neurons and plays varied and significant roleswithin

the neuronal landscape, as demonstrated in Figure 2. There is evidence

that CN can directly dephosphorylate microtubules, with Goto et al.

finding a 22%decrease in tubulin phosphorylationwhen placed in solu-

tion with CN; of interest, CN-catalyzed tubulin dephosphorylation is

dependent upon CaNB, which binds directly to tubulin.102,103 Perhaps

more importantly, CN interacts with several microtubule-binding pro-

teins (MTBPs), including Microtubule-Associated Protein 2 (MAP2),

neuromodulin (NM), and tau.102,104–106

MTBPs are a broad classification of proteins, performing tasks such

as regulating microtubule assembly, enabling tubule crosslinking, inte-

grating new cytoskeletal elements, and assisting with intracellular

transport along microtubules.107 MAP2 is expressed mainly in mam-

malian neurons and binds to the sides of microtubules to promote

stability and rigidity.108–111 The binding of MAP2 to microtubules

is regulated by several microtubule-binding KXGS motifs, which

becomeactivewhenphosphorylated.108 Thus,CN’s phosphatase activ-

ity improves MAP2’s ability to bind microtubules and is essential for

dendrite and synapse formation.112–116

NM acts similarly to MAP2, interacting with actin microtubules in

axon terminals, especially during synaptogenesis.117–119 Four closely

related factors regulate NM: phosphorylation status by protein kinase

C (PKC), Ca2+ concentration, CaM binding, and CN dephosphoryla-

tion. At low Ca2+ concentrations, NM is dephosphorylated and bound

to CaM, acting as a barbed end-capping protein for actin, preventing

cytoskeletal polymerization.120,121 However, at high Ca2+ concentra-

tions, PKC becomes activated, phosphorylating NM and causing the

loss of CaM.117 Phosphorylated NM binds and facilitates stable actin

polymerization, promoting neuronal axonal growth. Elevated Ca2+

concentration and free CaM are the perfect recipe for CN activa-

tion; CN dephosphorylates NM directly, which may regulate NM/CaM

interactions.122,123 Therefore, it seems that, at high Ca2+ concentra-

tion, CN acts as a limiter to NM activation, ensuring that growth

remains controlled. CN aggregates into axonal and dendritic growth

cones during the first 7 days of culture in developing rat cerebellar

cultures.113 Aggregation shifts to the neurite shaft in the next 7 days,
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F IGURE 1 The Calcineurin pathway and regulation of NFAT. Following elevated cellular calcium levels, either from external influx or internal
storage release, CaNB binds calcium in its four EF-hand domains. This prompts complexing with CaNA and CaM, activating the CN complex. CN
then dephosphorylates NFAT, allowing nuclear translocation and transcriptional activation. CaM, calmodulin; CaNA, calcineurin A; CaNB,
calcineurin B; CN, calcineurin; NFAT, nuclear factor of activated T cells.

F IGURE 2 Calcineurin’s activity in the brain. CN is a regulatory component in several key neurological processes, as described in Section 2.1.
CN, calcineurin.



6 of 20 DOHL ET AL.

suggesting a role in axonal elongation. Indeed, inhibition of CN through

cyclosporin A prevents axonal formation.113,124

Perhaps the most interesting MTBP in AD is tau, given its role in

microtubule regulation and as a neuroinflammatory factor through the

formation of NFTs. Although CN can dephosphorylate tau directly, it

accounts for less than 10%of tau dephosphorylationwithin the cell.125

CN directly activates glycogen synthase kinase-3 β (GSK-3β) through
dephosphorylation of GSK-3β Ser-9.126,127 GSK-3β is a proline-

directed serine/threonine kinase that phosphorylates tau at several

sites, inducing NFT aggregation and accelerating fibrilization.128–130

In addition, the upregulation and overactivation of GSK-3β have

been linked to Aβ accumulation and microglial activation, driving AD

progression.131,132 Thus, CN accelerates NFT pathology by activating

GSK-3β. Indeed, there is evidence that elevated CN activity increases

tau tangle pathology.91,133 This supports the hypothesis that overex-

pression and elevated activity of CN is detrimental to the aging brain

rather than acting as a guard against tau hyper-phosphorylation and

NFT formation.

2.1.2 Neuronal regulation of ion channels and
synapses

Neuronal function is essential to a healthy brain, and CN is impli-

cated in the effectiveness of neuronal signaling. As Ca2+ signaling is

essential for neuronal depolarization, tight control of Ca2+ concen-

trations is necessary for proper neuronal activity.134 CN is typically

assumed to act as negative feedback to elevated neuronal activity

and Ca2+ influx.90 For instance, the M channels are vital for neuronal

excitability, and their activation suppresses the likelihood of action

potentials.135 Through the NFAT pathway, CN can upregulate M-type

K+ channels following Ca2+ influx related to depolarization, indicat-

ing a possible negative feedback loop to protect against neuronal

hyper-excitability.136 Patch-clamped bullfrog neurons incubated with

and without CN demonstrate a decrease in M current activity, imply-

ing that CN can inhibit the M current directly.137 CN also regulates

L-type Ca2+ channel activity following Ca2+ influx, controlling Ca2+

levels within neurons.138 Although CN is noted primarily for its asso-

ciation with and regulation of Ca2+ channels, there are instances of

CN associating with the channels of other ions. CN dephosphorylates

voltage-sensitive sodium channels in rat neurons, with cyclosporin A

inhibition of CN increasing phosphorylation levels by 40%.139

CN also plays a pivotal role in regulating synaptic activity and plas-

ticity. CN decreases the opening time of the N-methyl-D-aspartate

(NMDA) glutamate receptor, inhibiting excitation, and influences

the slow and rapid endocytosis of synapses, regulating receptor

turnover.90,140 GluA1 and 2, which can assemble into α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate

receptors (AMPARs) that regulate glutaminergic synaptic transmis-

sion, are dephosphorylated byCN; inhibition of CN in Sprague–Dawley

rats increases the prevalence of postsynaptic AMPARs, which allows

for elevated Ca2+ levels within the cell, disrupting regular neuronal

firing.141–144 CN can modify synaptic plasticity by regulating retinoic

acid (RA) levels.145 RA is synthesized following diminished synaptic

activity, resulting in a signal cascade that increases excitatory synap-

tic strength.146,147 Arendt et al. determined that the reduced synaptic

activity in neurons resulted in diminished Ca2+ concentrations, inac-

tivating CN and allowing RA-induced synaptic plasticity; inhibition of

CN in active neurons led to the same synaptic plasticity as inactive

neurons.145

Long-term potentiation (LTP) is a potent form of synaptic plasticity

that underlies memory and learning.148,149 The cyclic AMP response

element-binding protein (CREB) transcription factor is essential in LTP

and memory formation, with CREB knockout mice consistently show-

ing deficiencies in long-term memory.150–154 CREB activity depends

upon prolonged Ser113 phosphorylation and the recruitment of cofac-

tors, including CREB Binding Protein.155–157 CN regulates LTP and

memory formation by regulating CREB activity, with CN overactivity

being associated with CREB dephosphorylation and preventing CREB-

induced gene expression.158–163 The dephosphorylation of CREB by

CN has been studied as a possible regulatory mechanism, but studies

suggest that CN is not dephosphorylating CREB directly, as seen by

Naqvi et al. in 2013.157,159 Protein phosphatase 1 (PP1), a target of CN,

may be the driving force behind CREB dephosphorylation, although

further investigation is warranted.164 Of interest, there is evidence

thatCREBpromotes thedegradationofRCAN1 throughubiquitination

and subsequent proteasomal degradation.165 This suggests a negative

feedback loop, with CREB activation degrading RCAN1, activating CN

to inhibit CREB signaling.

CN inhibition can result in chronic calcineurin inhibitor–induced

pain syndrome, seen in patients treated with CN-targeting immuno-

suppressant drugs.166–168 This syndrome is thought to stem from

the dysregulation of synaptic firing and neuroprotective M channel

expression.90,169 Therefore, any chronic treatment with CN inhibitors

must be weighed against the possibility of inducing a chronic pain

syndrome.

2.1.3 Glial regulation

It is also essential to understand the role of CN in glial cells, as

the support of the many glial cells within the brain dictates neu-

ronal and cognitive well-being. Microglia are the brain’s resident

immune cells and regulate inflammatory and regenerative processes.

CN inhibition significantly decreases microglial activation.170 Stud-

ies in murine cell lines show that CN and NFAT signaling mediate

microglial activation.171–173 Perhaps unsurprisingly, CN is a driver in

neuroinflammatory processes much like in the rest of the body; how-

ever, some studies show a role for CN in promoting neuroprotective

microglial activation. Ting et al. found that primary rat cortical neu-

rons subjected to excitatory stress released interleukin (IL)-4, which

polarized microglia toward a restorative phenotype.174 Neurons sub-

jected to CN inhibition showed no IL-4 expression, implying a role for

CN-mediated cytokine expression in this pathway. Therefore, the asso-

ciation between CN and microglia must be considered contextually

despite the generally understood role of CN as “pro-inflammatory.”175
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Astrocytes perform many homeostatic tasks, including stabilizing

neuronal activity,maintaining the blood–brain barrier (BBB), andmedi-

ating immune responses.176,177 Many of these mechanisms are par-

tially regulated by carefully controlled Ca2+ signaling pathways, which

can become dysregulated with aging.178–180 The connection between

reactive astrocytes, aberrant Ca2+ regulation, and CN activity sug-

gests a critical role in the regulation of astrocytic neuroinflammation.

CN is associated with reactive astrocytes, overexpressed and hyperac-

tive in Aβ-adjacent human astrocytes, which increases with age; these

Aβ-adjacent astrocytes often contain the hyperactive calpain-cleaved

ΔCN.181–183 In addition, IL-1β, an integral signaling molecule in neu-

roinflammation, recruits CN and activates theNFAT pathway in rat pri-

mary cortical neurons.184 Applying CN directly onto astrocyte culture

prompts the activation of the NFAT pathway and stimulates secondary

astrocytes, suggesting a communal reactivity to the activation of the

CN/NFAT pathway.184 Perhaps most important for AD, the inhibition

of the CN/NFAT pathway in the astrocytes of ADmouse models bene-

fits several key markers of AD pathology, including improved cognitive

function, decreased Aβ levels, improved astrocytic dendrite morphol-

ogy and synaptic strength, and reduced glial activation.185,186 Similar

benefits are noted inmousemodels of traumatic brain injury (TBI), with

CN/NFAT inhibition decreasing injury-related loss of synaptic activ-

ity and susceptibility to depression.187 These data elucidate a key role

for CN signaling in maintaining the neuronal cytoskeleton, neuronal

activity, and the induction of glial reactivity.

3 CALCINEURIN AS A THERAPEUTIC TARGET
FOR ALZHEIMER DISEASE

Ca2+ and CN regulation play an integral role in maintaining neuronal

homeostasis. However, aberrant Ca2+ regulation within the brain is

prevalent as aging progresses, with Ca2+ influx outpacing removal in

aging neurons.188–191 In AD, Aβ can form pores in the cell membrane,

allowing Ca2+ influx into the cell.192,193 CN is exquisitely sensitive

to Ca2+ fluctuations within the cell; thus, it is adversely affected by

these aging processes early and dramatically. CN is implicated dur-

ing the early stages of cognitive decline in AD, suggesting a preclinical

role in the disease, which worsens in conjunction with increasing AD

pathology.194,195 CN activity is elevated, often hyperactive, in cells

near Aβ plaques.181–183 CN can also exacerbate Ca2+ dysregulation

through its interactions with L-type Ca2+ channels, causing a posi-

tive feedback loop to elevate Ca2+ levels to pathological levels.196–198

CN also drives neuronal cell death through the Bcl-2-associated death

promoter (BAD).199,200 Overactive CN facilitates the dephosphoryla-

tion of BAD and its translocation to the mitochondria, which initiates

caspase-3-mediated apoptosis.201–203

Perhaps themost striking evidence for CN being a significant player

in neuroinflammatory progression is that numerous studies show that

modulation of CN results in altered aging and AD phenotypes. CN

overexpression leads to an exacerbation of cognitive decline, glial reac-

tivity, and neuronal atrophy.183,204–207 Conversely, CN suppression

decreases neuronal degradation, prevents synaptic loss, reduces neu-

roinflammation, and even extends the lifespan in a murine model of

tauopathy.185,186,208–211 Thus, investigating CN inhibition as a possible

therapeutic forAD in the general population is essential.Oneof the sig-

nificant early breakthroughs in this area has been Giulio Taglialatela’s

research into tacrolimus (TAC) and its effect on AD prevalence.

3.1 Tacrolimus

TAC, or FK506, is an FDA-approved CN inhibitor permeable to

the BBB.212 In 1987, TAC was initially isolated from Streptomyces

tsukubaensis derived from Fujisawa soil; it was approved for human

use in 1994.213 As an immunosuppressant, TAC operates by complex-

ing with FKBP12.214,215 This FKBP12-TAC complex binds to the CN

complex, occluding the active dephosphorylation site and preventing

NFAT interactions.216 Despite a wide-ranging bioavailability, from 5%

to 90% but averaging around 25%, and a narrow therapeutic window,

TAC benefits many transplant recipients.217,218 Since its introduction

as a liver transplant immunosuppressant, TAC has becomewidely used

to treat heart, lung, liver, and kidney transplant recipients.219–222 TAC

has also been investigated as a treatment for autoimmune disease and

has been approved in South Korea for treating rheumatoid arthritis,

lupus nephritis, andmyasthenia gravis.223

Notably, for this review, a series of groundbreaking studies byGiulio

Taglialatela on the incidence of dementia in people prescribed TAC

found that TAC provided robust protection from clinical dementia. The

incidence of dementia in the general population ≥75 years old is typ-

ically ≈10%; people taking TAC had only a 1% incidence.224 A 2023

follow-up of this work using a larger sample size and more robust sta-

tistical analysis reports that patients taking TAC were protected from

dementia anddeath compared to the general population and those tak-

ing cyclosporine, another immunosuppressant targetingCNbut unable

to cross the BBB.225

3.2 Tacrolimus in preclinical animal models of
Alzheimer disease

Preclinical studies on the effects of TAConADpathology utilize rodent

models due to their genetic and physiological similarity to humans and

well-characterized genomes.226 Scaduto et al. exposed ex vivo mouse

brains to human brain–derived tau oligomers followed by TAC; this

improved synaptic plasticity in themouse hippocampus.227 In addition,

wild-typemice exposed to exogenous tau followed by acute TAC treat-

ment demonstrated enhancedmemory and restored synaptic function,

whereas in 3xTgAD mice, chronic TAC treatment reduced hippocam-

pal tau levels.127 Together, these studies suggest a role for CN in

AD pathology; however, as rodents do not naturally develop AD, fur-

ther preclinical trials on species that spontaneously develop AD-like

pathologies are helpful.228,229

Beagles are a natural canine model of AD as they develop amy-

loid plaques, neuronal morphology changes, and cognitive deficits as a

function of age.228,230,231 Beagles share many anatomic and metabolic
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similarities with humans and provide a model for human aging, as

their lifespan and aging process more closely mimic those seen in

humans.228 In addition, canines show pharmacokinetics similar to

those of humans, making them useful for drug therapy research.231

Therefore, groundbreaking work is being performed in beagle models

of AD to determine if abnormal CN hyperactivity, a known corre-

late to Aβ plaque aggregation in humans and rodents, is conserved in

canines.195

Building on prior research, a longitudinal prevention study has

been conducted using a preclinical canine model of human aging

and AD.207,232–234 Over 5 years, 43 beagles were treated with

either a CN inhibitor TAC or an NFAT inhibitor Q134R. MRI stud-

ies revealed that twice-daily oral TAC improved brain morphology,

including improved neurite density index, decreased orientation dis-

persion index, and increased prefrontal cortex area before the onset of

cognitive decline.234 Furthermore, both TAC and Q134R slowed cog-

nitive decline, as measured by spatial learning and memory tasks.232

In addition, low-dose oral TAC reduced white matter microstructural

pathology and promoted neuronal health in the aging beagle brain.233

This work highlights the potential of CN/NFAT inhibitors for maintain-

ing cognitive and structural brain health during aging, offering valuable

insights for translation to human AD.

3.3 Tacrolimus therapy for people with Alzheimer
disease and Down syndrome

3.3.1 Clinical and translational challenges in the
use of tacrolimus for the prevention of Alzheimer
disease in people with Down syndrome

Although TAC shows promise as a therapeutic option for AD and

comorbidDownsyndromeandAlzheimerdisease (DSAD), several chal-

lenges are associated with its use in a clinical population, including

in people with DS. First, the pharmacokinetics of TAC are variable

and influenced by several factors, including the first-pass effect, inter-

personal genetics (with the cytochrome P450 [CYP] enzymes being a

primary concern), and diet.218,235,236 Of interest, polymorphisms in the

CYPenzyme family are known to contribute toADsusceptibility,which

may prove challenging in addressing AD with TAC.237–240 In addition,

high-fat diets and gastrointestinal difficulties, including constipation

and diarrhea, contribute to altered TAC processing by the body.235

People with DS have gastrointestinal difficulties at higher rates than

the general population, including chronic constipation, Hirschsprung

disease, and celiac disease, which may influence acute TAC levels and

make therapeutic dosages difficult to manage.241–243

Second, as mentioned in Section 3.1, TAC has a narrow therapeutic

window, between 5 and 15 ng/mL.244 The time in therapeutic range

(TTR) is also a notable metric for measurement with TAC, as this

contributes significantly to organ rejection rates.244–247 In TAC’s tra-

ditional role in immune suppression following transplantations, being

below this therapeutic window or having a low TTR results in high

rates of organ rejection, whereas being above the window increases

the chances of experiencing adverse effects.248–250 To address this

issue, population-based pharmacokineticmodels of TAC treatment are

in development; however, these models are limited in scope and rel-

evance to clinical settings.251–254 The significant limitations of these

models are restricted patient demographics and comorbidities, mak-

ing broader applications challenging. To date, no models have been

generated that focus on patients with DS, and there is no signifi-

cant consideration of the comorbidities of people with DS, including

diabetes and autoimmune disorders.

Finally, the adverse effects of TAC are notable when consider-

ing long-term therapeutics, especially in people with DS. The most

common side effects of TAC include nephrotoxicity, hepatotoxicity,

neurotoxicity, hypertension, and opportunistic infections.255–257 Neu-

rotoxicity is typically limited to tremors, headache, insomnia, andmood

imbalances but may result in more significant disorders, including

seizures.258,259 Alterations in neurological status when attempting to

evaluate AD and DSAD progression is a limitation that future work

should seek to address. Significant for people with DS is the ele-

vated rate of opportunistic infections, as they are at a higher risk for

pneumonia at baseline.260,261

TAC as a treatment for AD does not come without its hurdles,

including pharmacokinetics, dosages, and adverse reactions; this is

compounded in people with DS, who typically present with comor-

bidities that may interfere with TAC dosages or efficacy. Despite

this, TAC remains the most prescribed post-transplantation immune

suppressant, demonstrating robust and safe usage within the clinic,

which could be adapted to new diseases.235,262 TAC has also been

used to treat people with DS for several reasons, including acute lym-

phoblastic leukemia, Graves’ disease, and alopecia areata, withminimal

adverse reactions.263–265 In addition, mounting evidence shows that

TAC may act therapeutically for AD at lower dosages than transplan-

tation necessitates; APP mice demonstrate improved cognition and

decreased neuroinflammation following low-dose TAC treatment.266

These mice showed higher levels of brain-localized TAC, 15 ng/g,

than plasma, 4.5–6.5 ng/mL, suggesting an accumulation in the brain

that may decrease the necessary peripheral dose. Aging canines

treated with TAC show similar cognitive improvement while having

plasma TAC levels averaging 2.54 ng/mL, half the trough dose for

immunosuppression.232

Should TAC prove to be an effective therapeutic for people with DS

and DSAD, it will be essential to determine biomarkers (neuroimaging

and fluids) for inclusion criteria and as outcome measures for clini-

cal trials. Several recent studies and reviews highlight that plasma or

cerebrospinal fluid (CSF) tau (p-tau181, p-tau217), neurofilament light

(NfL) protein levels, and amyloid or tau PET imaging can distinguish

people who are cognitively stable, have mild cognitive impairment, or

have dementia in DS.267–271 We can speculate that, given the mech-

anisms by which TAC may benefit brain health through astrocyte

function, plasma glial fibrillary acidic protein (GFAP) may be a poten-

tial outcome measure given that it rises prior to the development of

dementia in people with DS.269,272,273 Of interest, plasma GFAP may

mediate the progression of tau and amyloid pathology in people with

DS.274 Furthermore, plasma or tau PETmay reflect the benefits of TAC
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for tau pathway outcomes.267,268 The optimal therapeutic window for

peoplewithDS to consider TAC interventions could be preventative or

as a treatment. For example, as mentioned in Section 1.1, people with

DS show AD neuropathology by 40 years of age. Thus a prevention

study could include younger adults withDS (e.g., 20–30 years). A treat-

ment study may benefit people with DS younger than 50 years of age

prior to evidence of cognitive decline (typically observed at ≈53 years

of age). In regards to treatment studies, it will be important to consider

thatADprogression canoccur rapidly inpeoplewithDS, as recentwork

by Zammit et al. suggests that tau PET positivity occurs within 5 years

of amyloid PET accumulation.63

3.3.2 Unknowns of calcineurin inhibition in people
with Down syndrome and Alzheimer disease

Inhibition of neural CN signaling may be a novel approach for prevent-

ing or treating AD.207 This may be coupled with calpain inhibition to

prevent the formation of CN and improve outcomes. As mentioned

in Section 2, calpain irreversibly activates CN through proteolytic

cleavage of its regulatory domain.90,91 Inhibitors of calpain, including

calpeptin and calpain inhibitors I–III, bind to the active site of calpain,

preventing its proteolytic activity.275 These inhibitors have proven

beneficial in animal models of AD, suggesting that they may play a role

in future AD therapies.276–279 The potential for preventing or lower-

ing the impact of AD pathology, prevention of cognitive decline, and

minimal off-target effects is a goal of the field. However, the role of

CN, howCN inhibition interacts with ADpathology, and the benefits of

CN therapies are notably understudied in peoplewithDS. Several gene

expression alterations in DS may influence CN’s role in DSAD. They

must be studied to determine whether CN therapies may be helpful,

harmful, or ineffective in people with DS.

4 HSA21 GENES AND THEIR IMPACT ON
CALCINEURIN REGULATION

The CN gene, being on Hsa8, is not differentially expressed in people

with DS. However, the genes for several regulators of the CN protein,

including RCAN1 and DYRK1A, are encoded on Hsa21 and have ele-

vatedRNAexpression in peoplewithDS.14 Theseproteins are encoded

within the DSCR, suggesting a role in the development and pathology

of DS. Therefore, it is essential to understand how their overexpres-

sion factors into DS pathology and how that may interact with CN

expression, activity, and AD progression.

4.1 RCAN1

RCAN1 protein expression is divided into three isoforms, RCAN1-

1 L, RCAN1-1 S, and RCAN1-4, stemming from alternate splicing

patterns.280,281 RCAN1-4 is expressed primarily inmuscle tissue and is

inducible by exercise, prompting speculation that it is part of the slow-

fast muscle switching pathway along with CN.282 RCAN1-1 is found

in neurons and is expressed in a long and short form (L and S) depen-

dent upon two start codon placements within the gene.283 RCAN1-1

L is the main form of RCAN expressed in neurons and associated with

neuroinflammatory andneurodegenerative disorders and is, therefore,

the focus of this review.284

RCAN1 was initially noted for its ability to inhibit the activity of

CN within the cell; current research indicates that the RCAN1 exon

7 can interact with and competitively inhibit CN phosphatase activ-

ity directly.285,286 This prevents the activation of the NFAT pathway

and mitigates acute calcium and oxidative stresses.287 However, fur-

ther exploration has revealed that RCAN1 can facilitate CN activity

in vivo, with RCAN1 and 2 knockouts demonstrating cardiac and neu-

rological dysfunction similar to that of CN knockouts.288 In addition,

the interaction between TAB2, which recruits TAB1 and TAK1, and

RCAN1 results in the phosphorylation of RCAN1 at Ser 94 and 136,

enabling RCAN1 activation of CN signaling.289 Other phosphorylation

effects are unclear, with phosphorylation at Ser 108 and 112 being

reported to promote RCAN1 inhibition of CN by Genesca et al.290 At

the same time, Abbasi et al. found that phosphorylation of Ser 108 and

112 decreases RCAN1 binding to CN, alleviating RCAN1 inhibition.291

The dual function of RCAN1 is suggested to occur based on the con-

centration of RCAN1within the cell, with RCAN1 acting as a facilitator

when concentrations are low or as an inhibitor when concentrations

are high.292

An interesting point to note is that NFAT activation induces the

expression of RCAN1.293,294 This points to a regulatory mechanism

that can operate as a positive or negative feedback loop as the cell

requires. When RCAN1 levels are low, RCAN1 will facilitate CN acti-

vation, driving NFAT translocation and the production of additional

RCAN1, which will continue a positive feedback cycle. However, when

RCAN1 levels are high, RCAN1 will inhibit CN, preventing the tran-

scription of new RCAN1, providing negative feedback, and returning

the system to a more manageable level. RCAN1 plays a complex role

in CN’s positive and negative regulation, which has yet to be fully

elucidated.

Despite the mixed studies on RCAN1’s role in CN regulation,

RCAN1 has long been understood as a critical player in the pathol-

ogy of DS. Developmentally, RCAN1 is significantly expressed in

cardiac tissue and neurons, and overexpression of RCAN1 in a trans-

genic mouse line induced a DS-like phenotype, including decreased

hippocampal neuron number and volume and decreased long- and

short-term memory.295,296 Patel et al. developed a transgenic mouse

model of DS with decreased RCAN1 levels.297 They found an eleva-

tion in the number of sympathetic neurons and their innervation in the

nasal epithelium. Although the decrease in RCAN1 did not fully alle-

viate the DS phenotype, it provides significant evidence that RCAN1

overexpression contributes to the development of DS phenotypes.

RCAN1 is also linked to AD and its progression. Several studies link

elevated neuronal RCAN1 to AD.298,299 An overexpression of RCAN1

induces altered circadian rhythms and rest cycles, similar to those seen

in AD and DS.300 Primary cortical neurons incubated with Aβ demon-

strate increased tau phosphorylation, which is abolished with RCAN1
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F IGURE 3 Comparison of Alzheimer disease progression in the general population and people with Down syndrome. The general population
develops AD pathology around age 65, including Aβ plaques, NFTs, and elevated CN expression. People with DS develop pathologies much earlier,
with diffuse plaques beginning as young as childhood. Full clinical pathology begins around age 45, presenting similarly to the general population.
However, it is currently unknown if CN levels are increasedwith age in people with DS. Aβ, amyloid beta; AD, Alzheimer disease; CN, calcineurin;
DS, Down syndrome; NFTs, neurofibrillary tangles.

knockdown.301 RCAN1, thus, may play a role in the progression of AD

pathology.

4.2 DYRK1A

Belonging to the dual-specificity tyrosine kinase family of enzymes,

the DYRK1A protein phosphorylates a wide range of cellular tar-

gets upon its activation through autophosphorylation of tyrosine

321.302,303 Although there is little evidence that dephosphorylation

regulates DYRK1A after autophosphorylation, translational regula-

tion and protein–protein interactions significantly impact DYRK1A

activity.302,304 Cytosolic DYRK1A influences cell cycle regulation and

cytoskeletal organization; nuclear DYRK1A is less understood.305–309

However, several studies have shown that DYRK1A phosphorylates

NFAT proteins within the nucleus, inhibiting its ability to drive tran-

scriptional changes and promoting cytosolic translocation.310,311 In

addition, DYRK1A directly phosphorylates RCAN1, enhancing its

ability to inhibit CN.312 DYRK1A is upregulated by NFAT activa-

tion, generating a negative feedback loop, as DYRK1A inhibits NFAT

nuclear translocation.310 Of interest, however, NFAT-induced tran-

scription also generates MicroRNA-199b, which targets and inhibits

DYRK1Akinase activity, implying several interlocking regulatoryNFAT

mechanisms.313 It is important to note that DYRK1A and CN do not

directly interact; however, their functionswithin the cell run are oppos-

ing. Thus, therapies targeting CN and DYRK1A may achieve the same

goals regarding NFAT regulation, but off-target effects may differ.

The elevated expression of DYRK1A seen in DS has been stud-

ied extensively in mouse models to determine how it may influence

development and DS pathology. The transgenic TgDyrk1a mouse

line exhibits an overexpression of DYRK1A, similar to people with

DS.314 Developmentally, TgDyrk1a mice exhibit slower neuronal cell

cycle phases, decreased hippocampal and neocortex volume, and

reduced forebrain size.315 When exposed to a Morris Water maze,

adult TgDyrk1a mice show decreased search times compared to

wild-type (WT) mice, suggesting decreased cognitive ability.316,317 In

addition, motor development is delayed in children with DS, which

is mimicked with the TgDyrk1a mouse line; the line exhibits diffi-

culty in treadmill tests, crossing less distance and experiencing more

shocks than WT mice, and demonstrating decreased swimming profi-

ciency, stopping frequently and swimming in circles compared to WT

mice.317–319

In AD, DYRK1A plays a role in tauopathies and may contribute

to Aβ pathology, although its contribution to Aβ accumulation is less
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understood.DYRK1A influences tauopathies through twomain routes:

influencing tau splicing and directly phosphorylating tau.320 In brief,

DYRK1A influences the production of the 3R isoform of tau over the

4R isoform through phosphorylation of alternative splicing factor 1

(ASF1); the 3R isoform of tau, named for its three microtubule-binding

domains, is elevated in late AD progression.321–323 A multiple sites,

tau is also directly phosphorylated by DYRK1A, although Thr-212 is

notable as this primes tau for additional phosphorylation by GSK-

3.320,324 The linkbetweenDYRK1AandAβ is less established; however,
it is known that DYRK1A can directly phosphorylate APP, which may

induce preferential Aβ cleavage and accumulation.325

The interplay between CN, RCAN1, and DYRK1A in regulating the

NFAT pathway and the pathology of DS and AD need to be better

understood. This provides a unique opportunity to illuminate a poten-

tially significant pathway in AD progression. Ultimately, understanding

the roles of these proteins in DS and AD is essential, as it may pro-

vide an avenue for developing novel therapeutics that can improve the

quality of life for millions affected by these pathologies.

5 CONCLUSION

This review has presented evidence showing that BBB permeable CN

inhibitors may effectively prevent AD, with the studies of Taglialatela

being a notable point of interest. Although the mechanism of action

is yet to be fully elucidated, CN therapy seems promising for several

reasons. First, CN inhibition has been utilized in a medical capacity for

decades. Although side effects and contraindications accompany these

therapies, they have remained standardmedical practice for transplan-

tation and autoimmune disease patients, meaning the tolerances and

long-term effects are well understood. Second, preliminary research in

mice and dogs finds improvements in cognition and decreases in AD

pathology following CN inhibition (at low doses), hopefully paving the

way for future human clinical trials. Finally, CN therapy provides an

opportunity to prevent AD progression before it begins.

Despite this, the role of CN inhibition in DSAD pathogenesis is

still understudied and poorly understood, as shown in Figure 3. Does

the overexpression of NFAT and CN regulatory proteins RCAN1 and

DYRK1A reduce CN’s contribution to the disease? Does elevated Aβ
pathology contribute to altered calcium signaling and CN overactivity?

Because people with DS are more susceptible to autoimmune disease,

will CN inhibition, a common immunosuppressant, benefit people with

comorbid autoimmune disease? Future investigations into the impor-

tance of CN in DS, AD, and DSAD will be critical in generating the

information necessary to determine if CN inhibition is a possible target

for AD prevention in people with DS.
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