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Neural processing of speech production has been traditionally attributed to the left
hemisphere. However, it remains unclear if there are structural bases for speech
functional lateralization and if these may be partially explained by sexual dimorphism
of cortical morphology. We used a combination of high-resolution MRI and speech-
production functional MRI to examine cortical thickness of brain regions involved in
speech control in healthy males and females. We identified greater cortical thickness of
the left Heschl’s gyrus in females compared to males. Additionally, rightward asymmetry
of the supramarginal gyrus and leftward asymmetry of the precentral gyrus were found
within both male and female groups. Sexual dimorphism of the Heschl’s gyrus may
underlie known differences in auditory processing for speech production between
males and females, whereas findings of asymmetries within cortical areas involved in
speech motor execution and planning may contribute to the hemispheric localization
of functional activity and connectivity of these regions within the speech production
network. Our findings highlight the importance of consideration of sex as a biological
variable in studies on neural correlates of speech control.
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INTRODUCTION

Speech production is a complex motor behavior that requires the involvement of several brain
regions and their respective networks, which collectively support different aspects of auditory and
phonological processing, sensorimotor integration (SMG), executive function, motor planning and
execution (Simonyan and Fuertinger, 2015). Contrary to the empirical notion of left-hemispheric
lateralization of brain activity during speech production, several recent studies defined a bilateral
functional and structural distribution of the large-scale speech network (Simonyan et al., 2009;
Morillon et al., 2010; Gehrig et al., 2012; Silbert et al., 2014; Simonyan and Fuertinger, 2015;
Kumar et al., 2016). Within this network, a hemispheric lateralization of functional activity and
connectivity was found to be a feature of selected brain regions and their subnetworks. While
these studies refined our understanding of the hemispheric lateralization of speech production,
its potential physiological underpinnings remain poorly understood. A recent multimodal study
combining functional MRI (fMRI), intracranial electroencephalographic (EEG) recordings and
large-scale neural population simulations based on diffusion-weighted MRI has demonstrated a
direct modulatory role of dopaminergic neurotransmission on a functional lateralization of nigro-
striatal and nigro-motocortical pathways involved in speech production (Fuertinger et al., 2018).
Given the previous reports of sex differences in perceptual aspects of speech and language neural
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representations (Binder et al., 1995; Frost et al., 1999; Kansaku
and Kitazawa, 2001; Clements et al., 2006), it is plausible to
assume that another factor contributing to cortical hemispheric
lateralization during speech production may be rooted in sex-
specific differences of structural brain organization. Along these
lines, it has been suggested that females have a more bilateral
language representation, while language processing is mostly left-
lateralized in males (McGlone, 1980; Dorion et al., 2000; Gur
et al., 2000). For example, males show left-hemispheric activation
during phonological tasks, while females show largely bilateral
activity (Shaywitz et al., 1995). Male stroke patients have been
reported to exhibit verbal impairments more frequently after
lesions of the left hemisphere than females (McGlone, 1980;
Hier et al., 1994), although sex differences were not replicated
in other stroke studies involving unilateral lesions (Basso, 1992;
Pedersen et al., 1995, 2004). Several studies, including large
meta-analyses, have also failed to identify sex-specific differences
in brain lateralization (Binder et al., 1995; Frost et al., 1999;
Kansaku and Kitazawa, 2001; Sommer et al., 2004; Kitazawa and
Kansaku, 2005; Clements et al., 2006; Wallentin, 2009; Kong
et al., 2018). However, it should be noted that these studies
have primarily focused on perceptual and cognitive aspects
of speech and language processing and have not specifically
examined the motor aspects of speech control. Inconsistencies
in findings might also stem from high functional heterogeneity
that characterizes large atlas-based macroanatomic labels as used
in previous studies. Therefore, to circumvent these limitations
and to focus on the speech production system, we examined
the presence of sex differences in cortical thickness (CT) in
brain regions that are functionally active during real-life speech
production in healthy males and females. We hypothesized that
hemispheric lateralization of regional brain activity during speech
production may, in part, be explained by sex-specific asymmetry
in cortical morphology within the speech controlling network.

MATERIALS AND METHODS

Study Subjects
A total of 109 subjects participated in the study, including 59
healthy females (mean age 50.4 ± 10.5 years) and 50 age-
matched healthy males (mean age 51.9 ± 9.3 year). All subjects
were monolingual native English speakers, right-handed as
determined by the Edinburgh Handedness Inventory (Oldfield,
1971), had normal cognitive performance and lexical verbal
fluency as determined by the Mini-Mental State Examination
(Cummings, 1993), and had no history of speaking, hearing,
psychiatric or neurological problems. There were no differences
in mean age and the education level between the male and female
groups (p > 0.46). This study was carried out in accordance
with the recommendations of the Internal Review Board of
Massachusetts Eye and Ear Infirmary. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.

Image Acquisition
All subjects underwent high-resolution MRI on 3.0 T Philips
scanner with an 8-channel Sense head coil. An anatomical scan

was acquired in all subjects using a T1-weighted MPRAGE
sequence (flip angle = 8◦, TR = 7.5 ms, TE = 2 ms,
FOV = 210 × 210 mm2, 172 slices with an isotropic voxel size of
1 mm3). Among these, 16 females (mean age 50.9 ± 9.6 years) and
13 age-matched males (mean age 52.3 ± 9.0 years) participated in
an additional whole-brain fMRI scan using a gradient-weighted
echo planar imaging (EPI) pulse sequence and blood oxygen level
dependent (BOLD) contrast (TR = 10.6 s, including an 8.6 s
delay for listening to and production of the task and 2 s for
image acquisition, TE = 30 ms, flip angle = 90◦, 36 contiguous
slices, slice thickness = 4 mm, matrix size = 64 × 64 mm,
FOV = 240 × 240 mm2). A sparse-sampling event-related
fMRI design was used to minimize scanner noise, task-related
acoustic interferences, and orofacial motion (Gracco et al., 2005;
Blackman and Hall, 2011; Adank, 2012).

Subjects were instructed to listen to an auditory sample of
eight different English sentences (e.g., “Jack ate eight apples,”
“Tom is in the army”) delivered one at a time by the same female
native English speaker through MR-compatible headphones
within a 3.6 s period. When cued by an arrow, subjects produced
the task (i.e., repeated the sentence once) within a 5 s period,
which was followed by a 2 s whole-brain volume acquisition
(Figure 1). Rest periods without any auditory input or task
production were incorporated as a baseline condition. Each
subject completed four functional runs, consisting of 24 task and
16 resting conditions.

Image Processing
Anatomical MRI
Whole-brain T1-weighted images were analyzed using the
automated “recon-all” function implemented in FreeSurfer
software. Briefly, the processing included motion correction,
intensity normalization, skull-stripping, volumetric registration
with labeling, tissue segmentation, and gray-white interface
and pial surface delineation. Cortical parcellation was
performed using the Destrieux atlas, which assigned
neuroanatomical labels to each location on the cortical surface
while incorporating geometric information derived from the
subject’s cortical model (Fischl, 2012). All cortical parcellations
were visually inspected for accuracy and, if necessary,
corrected manually.

Functional MRI
Image analysis was performed using the standard afni_proc.py
pre-processing pipeline in AFNI software, which included
removal of spikes, registration, alignment of the EPI volume
to the anatomical scan, spatial normalization to the AFNI
standard Talairach-Tournoux space, spatially smoothed with
a 4-mm Gaussian filter, scaling of each run mean to 100
for each voxel, and motion scrubbing. A task regressor was
convolved with a canonical hemodynamic response function
and entered into a multiple regression model to predict the
observed BOLD response during speech production. Group
analysis was carried out using a two-sided one-sample t-test.
The statistical threshold was set at a voxel-wise and cluster-wise
corrected p≤ 0.001, with minimal cluster size of 100 voxels using
AFNI’s 3dClustSim.
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FIGURE 1 | Schematic illustration of the experimental fMRI design. The subject fixated on the cross and listened to the acoustically presented sentence for a 3.6-s
period. Sentences were pseudorandomized and presented one at a time. No stimulus was presented for the baseline resting condition, during which the subject
fixated on the cross. An arrow cued the subject to initiate the task production within a 5-s period, which was followed by a 2-s period of image acquisition.

Cortical Regions-of-Interest
Consistent with the previous studies of neural activity during
speech production (e.g., Tourville and Guenther, 2003; Simonyan
and Fuertinger, 2015; Simonyan et al., 2016; Basilakos et al., 2018;
Kearney and Guenther, 2019), the cortical regions-of-interest
(ROIs) included the precentral, postcentral and inferior frontal
gyri, supplementary motor area, middle cingulate cortex,
supramarginal (SMG), superior temporal (STG) and Heschl’s
gyri, and insula (Figure 2A). Following the extraction of
parcellated Destrieux atlas-based ROIs, a further delineation
of these regions included their restriction to areas activate
during speech production (Figure 2B). For this, the group mean

activity map during speech production was binarized, warped
into MNI space using AFNI’s 3dWarp, transformed from the
volumetric space to the surface space using AFNI’s 3dVol2Surf
and conjoined with atlas-based ROIs, resulting in speech-specific
cortical ROIs (Figure 2C).

In each subject, the mean CT measure was extracted from
each speech-specific cortical ROI using Freesurfer’s mri_segstats.
Multivariate analysis of covariance, accounting for age as a
covariate, was used to examine between-group differences in
CT measures within each right and left hemisphere. Separately,
within-group differences in CT measures between hemispheres
were examined using paired t-tests. Statistical significance was

FIGURE 2 | (A) Visualization of atlas-based anatomical regions-of-interest (ROIs) within the speech production network based on the Destrieux atlas parcellation,
including the precentral, postcentral and inferior frontal gyri, supplementary motor area, middle cingulate cortex, supramarginal, superior temporal and Heschl’s gyri,
and the insula. (B) Group statistical map of whole-brain activation during speech production across males and females. Color bar represents the t-score at
p ≤ 0.001. (C) Speech-specific cortical ROIs derived from conjoining the atlas-based anatomical ROIs with the binarized map of speech-related brain activity. The
ROIs are color-coded based on their anatomical affiliation and displayed on the FreeSurfer average template.
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Bonferroni-corrected by the number of ROIs used in the analysis
and set at p < 0.005.

RESULTS

Both males and females exhibited a typical pattern of cortical
activity during speech production, which involved primary
sensorimotor, premotor, inferior frontal, middle cingulate,
auditory, inferior parietal and insular regions (Figure 2A), in
agreement with other studies investigating speech production
(e.g., Tourville and Guenther, 2003; Fuertinger et al., 2015;
Simonyan et al., 2016; Basilakos et al., 2018; Kearney and
Guenther, 2019). For further analysis, this activity was restricted
to the a priori delineated cortical structural ROIs, as outlined
above and illustrated in Figure 2.

Analysis of regional CT showed that females had significantly
greater left Heschl’s gyrus compared to males (p = 0.002)
(Figure 3 and Table 1). None of other cortical regions showed
significant differences in CT between the male and female
groups (p ≥ 0.11).

However, within each group, both females and males exhibited
left-hemispheric asymmetry of precentral gyrus (p ≤ 0.001) and
right-hemispheric asymmetry of SMG (p ≤ 0.001). In addition,

males showed right-hemispheric asymmetry of STG (p = 0.004)
(Figure 3 and Table 1).

DISCUSSION

Our study demonstrated the presence of speech-specific sexual
dimorphism in CT of primary auditory cortex within the Heschl’s
gyrus. In addition, structural hemispheric asymmetry both in
males and females was identified in selected brain regions
controlling speech motor execution (precentral gyrus), auditory
processing (STG) and sensorimotor integration (SMG).

Auditory cortex within the Heschl’s gyrus is known to encode
short-latency temporal features of auditory stimuli that have
repetition rates within the range of the fundamental frequency
of human voice (Belin et al., 1998; Price, 2000; Zatorre, 2001;
Scott and Wise, 2004; Brugge et al., 2008, 2009; Warrier et al.,
2009; Chevillet et al., 2011; Nourski and Brugge, 2011; Kusmierek
et al., 2012). Distinct functional parcellations of core and non-
core auditory areas within the Heschl’s gyrus process natural
human vocalizations and pitch perturbations in the auditory
feedback (Behroozmand et al., 2016). Earlier lesion studies have
demonstrated that damage to the left auditory cortex often
results in deficits of temporal processing, manifesting as a speech

FIGURE 3 | Boxplot shows mean cortical thickness (in mm) and standard error in each speech-specific cortical region-of-interest in males and females. Asterisk (∗)
depicts statistically significant differences between males and females as well as within each male and female group.

TABLE 1 | Mean cortical thickness of speech-related regions in females (♀) and males (♂).

Regions-of-interest Mean ± Standard Error CT P

♀ ♂ Between groups
within

hemisphere

Within groups
between

hemispheres

L R L R L♂vs. L♀ R♂vs. R♀ L♀vs. R♀ L♂vs. R♂

Superior temporal gyrus 2.57 ± 0.03 2.61 ± 0.03 2.51 ± 0.03 2.57 ± 0.03 0.21 0.44 0.07 0.004

Insula 2.48 ± 0.02 2.51 ± 0.03 2.45 ± 0.03 2.46 ± 0.04 0.5 0.34 0.15 0.73

Inferior frontal gyrus 2.62 ± 0.03 2.64 ± 0.03 2.56 ± 0.04 2.60 ± 0.03 0.2 0.44 0.45 0.10

Precentral gyrus 2.29 ± 0.03 2.22 ± 0.03 2.26 ± 0.03 2.18 ± 0.03 0.44 0.37 <0.0001 <0.0001

Postcentral gyrus 2.02 ± 0.03 2.06 ± 0.03 2.00 ± 0.03 2.02 ± 0.03 0.78 0.41 0.05 0.60

Heschl’s gyrus 2.37 ± 0.03 2.39 ± 0.03 2.22 ± 0.03 2.33 ± 0.04 0.002 0.31 0.48 0.02

Supplementary motor area 2.67 ± 0.03 2.68 ± 0.03 2.68 ± 0.04 2.70 ± 0.04 0.84 0.65 0.84 0.53

Supramarginal gyrus 2.49 ± 0.03 2.66 ± 0.03 2.47 ± 0.03 2.62 ± 0.03 0.76 0.38 <0.0001 <0.0001

Middle cingulate cortex 2.60 ± 0.0 2.56 ± 0.03 2.48 ± 0.07 2.54 ± 0.03 0.14 0.76 0.23 0.31

Statistically significant differences between males and females as well as within each male and female group are shown in bold.
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disorder (Damasio and Damasio, 1980; Phillips and Farmer,
1990). Along these lines, our finding of greater CT in the left
Heschl’s gyrus in females than males suggests that structural
enhancement of this region might be associated with sex-
specific differences in processing of auditory cues during speech
production as well as contribute to increased prevalence of speech
and language developmental disorders in males (Shriberg and
Kwiatkowski, 1994; Law et al., 1998; Keating et al., 2001).

We further found between-hemispheric rightward asymmetry
of the STG in males but not females. This finding is
in line with earlier studies that suggest the influence of
genes involved in steroid hormone receptor activity in this
region. Specifically, testosterone and progesterone may exert
opposing effects on the STG structural organization by
promoting its rightward asymmetry in males and forging
its structural symmetry in females, respectively (Geschwind
and Galaburda, 2003; Guadalupe et al., 2015). This is
consistent with the hypothesis that region-specific sexual
dimorphisms might be related to factors affecting in utero
and early postnatal sexual differentiation of the neural system
(Goldstein, 2001).

In both males and females, a characteristic feature of CT
organization within the speech production network was its
rightward asymmetry of the SMG and leftward asymmetry of the
precentral gyrus, encompassing primary motor and premotor
cortical areas. The SMG is involved in higher-order processing
and plays an important role in the coordination of speech-motor
learning, sensorimotor adaptation, phonological decisions,
auditory error recognition, and speech onset monitoring
(Price et al., 1997; McDermott et al., 2003; Shum et al., 2011;
Sliwinska et al., 2012; Deschamps et al., 2014; Kort et al.,
2014; Fuertinger et al., 2015). In line with a recent study
showing involvement of the right SMG in the prosodic and
paralinguistic aspects of speech production (Lindell, 2006),
our results suggest that rightward asymmetry of this region
may be important for higher-order integration of phonological
processing in both males and females. Similarly, leftward CT
asymmetry in the precentral gyrus, specifically encompassing
its speech motor cortex, may be linked to the general left-
hemispheric dominance of this region in the fulfillment of
motor tasks in right-handed males and females. This finding
also substantiates the left-hemispheric dominance of functional
network originating from the laryngeal motor cortex (Lindell,
2006; Simonyan et al., 2009).

Putting the current findings in context with the previous
literature, it is important to note that earlier investigations
of CT asymmetry have used large atlas-based brain regions
that were not confined to speech-related brain activity. This
might have led to the mixed reports of both left- and right-
hemispheric lateralization of the precentral gyrus and STG

in both males and females (Luders et al., 2006; Guadalupe
et al., 2015; Kong et al., 2018). Additionally, some studies have
reported left-hemispheric asymmetry of CT and regional surface
area in the SMG (Lyttelton et al., 2009; Koelkebeck et al.,
2014; Plessen et al., 2014; Maingault et al., 2016), while others
have found no such differences in this region (Luders et al.,
2006; Koelkebeck et al., 2014; Kong et al., 2018). While these
inconsistencies might indicate the absence of population-level
CT asymmetries (Kong et al., 2018), they may also stem from a
failure to account for sex differences in structural organization of
the speech production network.

In summary, this study provides evidence for the existence
of sex-specific structural dimorphisms within the cortical speech
production circuitry. Our findings highlight the importance of
the inclusion of sex as a biological variable in research on neural
correlates of speech control. Furthermore, our data suggest that
examination of speech-specific cortical morphology benefits from
restricting analysis to anatomical areas that are functionally active
during this complex behavior.
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