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Abstract

Pathogen exposure to sublethal doses of fungicides may result in mutations that may repre-

sent an important and largely overlooked mechanism of introducing new genetic variation

into strictly clonal populations, including acquisition of fungicide resistance. We tested this

hypothesis using the clonal plant pathogen, Sclerotinia sclerotiorum. Nine susceptible iso-

lates were exposed independently to five commercial fungicides with different modes of

action: boscalid (respiration inhibitor), iprodione (unclear mode of action), thiophanate

methyl (inhibition of microtubulin synthesis) and azoxystrobin and pyraclostrobin (quinone

outside inhibitors). Mycelium of each isolate was inoculated onto a fungicide gradient and

sub-cultured from the 50–100% inhibition zone for 12 generations and experiment repeated.

Mutational changes were assessed for all isolates at six neutral microsatellite (SSR) loci

and for a subset of isolates using amplified fragment length polymorphisms (AFLPs). SSR

analysis showed 12 of 85 fungicide-exposed isolates had a total of 127 stepwise mutations

with 42 insertions and 85 deletions. Most stepwise deletions were in iprodione- and azoxy-

strobin-exposed isolates (n = 40/85 each). Estimated mutation rates were 1.7 to 60-fold

higher for mutated loci compared to that expected under neutral conditions. AFLP genotyp-

ing of 33 isolates (16 non-exposed control and 17 fungicide exposed) generated 602 poly-

morphic alleles. Cluster analysis with principal coordinate analysis (PCoA) and discriminant

analysis of principal components (DAPC) identified fungicide-exposed isolates as a distinct

group from non-exposed control isolates (PhiPT = 0.15, P = 0.001). Dendrograms based on

neighbor-joining also supported allelic variation associated with fungicide-exposure. Fungi-

cide sensitivity of isolates measured throughout both experiments did not show consistent

trends. For example, eight isolates exposed to boscalid had higher EC50 values at the end

of the experiment, and when repeated, only one isolate had higher EC50 while most isolates

showed no difference. Results of this support the hypothesis that sublethal fungicide stress

increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collec-

tively, this work will aid our understanding how non-lethal fungicide exposure may affect

genomic variation, which may be an important mechanism of novel trait emergence, adapta-

tion, and evolution for clonal organisms.
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Introduction

Fungicide resistance in populations of fungal plant pathogens has three phases: emergence,

selection, and adjustment [1]. Emergence involves generation of a resistance strain via

mutation, also called acquired resistance [2], and the selection phase results in an increase

of the proportion that are resistant in the population. Once the resistant population has

reached an intermediate level in the adjustment phase, a change in fungicide dose or mode

of action is needed in order to achieve disease control. Most research data are available for

the selection phase. For example, traditional fungicide efficacy studies identify fungicide

resistant strains within populations, which may represent preexisting rare mutations [3].

There is little to no published data to characterize the emergence phase for fungal plant

pathogens. Research on bacterial pathogens of humans and livestock animals suggests sub-

lethal antibiotic exposure plays an important role in antibiotic resistance emergence via

horizontal gene transfer, recombination, and both random and non-random mutations

[4,5]. In fungi, antifungal drug-induced chromosomal changes have been reported in

human fungal pathogens such as Candida albicans [6] and Cryptococcus neoformans [7].

Thus, a clear picture is emerging that exposure to sublethal fungicides may increase muta-

tion rates, a pre-requisite to resistance emergence, and may also serve as heretofore unex-

plored source of population genetic variation of importance for primarily clonal fungal

plant pathogens.

Fungal plant pathogen exposure to sublethal doses of fungicides may occur for fungicides

applied in an agricultural setting. In some cases, farmers intentionally reduce fungicide dose,

reduce the number of fungicide applications, or delay application until disease symptoms are

visible. In other cases, sublethal exposure may be caused by incomplete plant canopy penetra-

tion or dilution within plant tissues. Indirect mechanisms may also exist, including waterways

contaminated with pesticides washed off from upland agricultural areas that could create sub-

lethal conditions for plant pathogens in irrigated fields downstream [4] and environmental

conditions that degrade chemicals in situ, resulting in uneven or reduced rates.

A few studies have characterized the effects of sublethal fungicides on fungal plant patho-

gens in vitro. For example, isothiocyanates (ITCs) are natural defense-related compounds with

antifungal properties and exploited as soil biofumigants. ITCs are derived from the precursor

glucosinolate, a secondary metabolite synthesized by Brassicas. Since the mode of action of

ITCs is unknown, effects of exposure were tested in vitro on Alternaria alternata to determine

if resistance would develop [8]. Isolates from tomato and cabbage were exposed to low concen-

trations of two forms of ITC, allyl-isothiocyanate (AITC) and benzyl isothiocyanate (BITC), in

gradual increments until isolates were able to grow under selective pressure. Molecular differ-

ences between non-exposed and ITC-exposed isolates were characterized using genotyping at

five inter simple sequence repeats (ISSR). BITC-adapted isolates had more than twice as many

polymorphisms (118) compared to AITC-adapted isolates (51), where isolates from cabbage

had more polymorphisms (116) compared to isolates from tomato (53). The authors con-

cluded both chemical composition of ITC and adaptation on the host plant influenced the

number of mutations in vitro. In a similar experiment, continuous exposure to sublethal doses

of a demethylation inhibitor (DMI; SYP-Z048) and a quinone outside inhibitor (QoI; azoxy-

strobin) fungicide were tested individually and in mixture treatments on Monilinia fructicola
mycelium of four isolates [9,10]. Mutagenesis was assessed using 15 microsatellite (SSR) loci

and transposition of Mftc1, a multicopy transposable element in M. fructicola. Their analysis

showed mutagenesis at 8 SSR loci in one isolate exposed to azoxystrobin and movement of

Mftc1, which targets the upstream promoter region of MfCYP51, in isolates exposed to azoxy-

strobin (alone and mixed with SYP-Z048). Finally, contrary to studies with A. alternata and
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M. fructicola, a study carried out to assess stability of SSR loci in plant pathogen, Botrytis
cinerea, showed growth for 20 transfers with increasing concentration of antifungal antibiotic

pyrrolnitrin and fungicide iprodione did not result in mutation at nine SSR loci [11].

Results of the previous studies above suggest that more research is needed to ascertain the

affect of sublethal fungicides on mutation rates and new trait emergence. Although several

authors have speculated that plant pathogenic fungi exposed to environmental stress and/or

sublethal fungicide doses may increase mutation rates and lead to resistance [12,13], no previ-

ous studies have rigorously tested this hypothesis or used a genome-wide approach. Thus, the

goal of our current work was to elucidate the impact of sublethal fungicide exposure on geno-

mic variation, mutation rates, and fungicide sensitivity, using a model plant pathogen with a

reference genome to enable subsequent whole-genome studies. In addition to the role of muta-

tions in fungicide resistance emergence, such mutations may be a more important source of

genetic variation in haploid genome evolution, as compared to diploid or polyploid genomes

where mutations can be more complex and phenotype expression delayed [2]. Consequently,

we sought to test our hypothesis using a fungal plant pathogen with a haploid genome, high

genomic stability, and low population genetic variation. One such model organism is Scleroti-
nia sclerotiorum, which is primarily homothallic and where multiple studies have found little

evidence of sexual out-crossing [14–17]. This pathogen is a necrotrophic fungus [18] with a

host range of more than 400 plant species in 75 families [19]. Sclerotia can survive in soil for

years and produce apothecia in favorable conditions. Since most crops are either susceptible or

partially resistant to this pathogen, fungicide applications are recommended for disease man-

agement [18,20].

Sclerotinia sclerotiorum has a fully annotated and sequenced genome, with little evidence of

genomic plasticity. For example, it is known that some filamentous plant pathogens have large

genomes with high plasticity in repeat-rich, gene sparse or isochore-like regions, facilitated by

TE activity. Classic examples include obligate biotroph and hemibiotroph, Blumeria gramminis
and Phytophthora infestans, which have genomes of 120 Mbp and 240 Mbp, with TE content

exceeding 50% [21]. In comparison, S. sclerotiorum has a small haploid genome of 38 Mbp,

where TEs comprise 7% of the genome [22]. In addition, a previous study maintained continu-

ous vegetative growth of S. sclerotiorum for one year and showed no variation in seven SSR loci

and 56 AFLP alleles [23]. Collectively, these results suggest that S. sclerotiorum has a stable

genome with few endogenous mechanisms for adaptation, thus resulting in greater depen-

dence on exogenously induced genomic mutations (not mediated by TE activity) for adaptive

evolution and survivability under environmental stress.

Fungicides have different modes of action on fungal metabolism and growth, which may

have different effects in sublethal concentrations. To rigorously test our hypothesis, we selected

five commercial fungicide formulations that have different modes of action for the present

study: thiophanate methyl, azoxystrobin, pyraclostrobin, iprodione, and boscalid. Thiophanate

methyl is a benzimidazole class of fungicide, with a mode of action that inhibits assembly of

microtubules, preventing nuclear division of fungal cells [24]. Both azoxystrobin and pyraclos-

trobin are classified as strobilurin fungicides that have a mode of action to inhibit the mito-

chondrial electron transfer chain and disrupt metabolic activity that requires ATP [25].

Iprodione is classified as a dicarboximide fungicide with an unknown mode of action [26].

Boscalid is classified as a succinate dehydrogenase inhibitor (SDHI) fungicide that has a mode

of action to target succinate dehydrogenase complex in the respiration chain and inhibits fun-

gal respiration by blocking ubiquinone-binding sites in mitochondrial complex II [27].

To assess genomic variation before and after fungicide exposure, isolates were genotyped

at six simple sequence repeat (SSR) loci [28] and using three amplified fragment length poly-

morphic (AFLP) markers. These complementary genotyping techniques were selected due to
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differences in expected mutation rates, mechanisms of mutations captured, and portion of

the genome represented by each marker. SSRs are short tandem repeats, typically 2–6 bp in

length, and used extensively for population genetic studies due to high polymorphism,

codominant and quantitative nature, and assumed to represent non-coding regions that

lack selection [28–30]. Polymorphism in fragment length at SSR loci is thought to arise via

polymerase slippage that add or delete a tandem repeat in stepwise fashion [30]. Comple-

mentary to SSRs, AFLP is a multilocus marker with ability to amplify 50–100 loci in the

genome [31,32]. AFLP is a dominant marker that utilizes restriction sites to generate poly-

morphic DNA fragments up to 500-bp in length, which can vary due to insertions and dele-

tions or single nucleotide polymorphism (SNP) mutations at the restriction site [32]. AFLP

regions are amplified throughout the genome, with the majority in non-coding regions

[33,34], making them appropriate to use in population studies.

The objectives of the present study were to: (i) assess genomic variation of S. sclerotiorum
isolates exposed to long-term sublethal doses of fungicides in vitro using SSR and AFLP mark-

ers, (ii) estimate the affect of sublethal stress on mutation rates at SSR loci, and (iii) determine

in vitro trends of effective concentration of fungicides required for 50% growth inhibition

(EC50) over time in S. sclerotiorum isolates exposed to sublethal doses of fungicides.

Materials and Methods

Isolates and Experimental Design

Nine fungicide-sensitive S. sclerotiorum isolates (ID 152, 462, 467, 555, 587, 588, 594, 646, and

655) were selected from 366 isolates genotyped and phenotyped previously [35]. Isolates were

collected 1980 to 2005 from dry bean (Phaseolus vulgaris) in seven states (CA, CO, MN, ND,

NE, OR, WA; Table 1). Host cultivars were ‘Bunsi’, ‘Beryl’, ‘Pinto’, or ‘Great northern’, which

were field grown without fungicide applications. A single sclerotium of each isolate stored in

the culture collection of J. Steadman (University of Nebraska) was plated onto water agar and

hyphal tips from the leading edge of the growing culture were used to initiate each isolate in

this study. Multilocus genotypes generated previously were used to verify that each isolate was

composed of a single homokaryotic genetic profile [35].

Each of the nine selected S. sclerotiorum isolates were independently grown on a fungicide

gradient and successively sub-cultured from the 50–100% growth inhibition zone for a total

of 12 times (described below). This was performed for a total of five commercial fungicides

Table 1. Isolates of Sclerotinia sclerotiorum used in the present experiment.

Isolate ID Origin Year collected Aggressivenessa MCGb Host cultivarc

152 Nebraska 1980 3.9 4 Great Northern

462 Washington 2003 4.6 57 Bunsi

467 Colorado 1996 4.6 45 Pinto

555 Minnesota 2004 6.4 44 Bunsi

587 Oregon 2004 5.5 5 Beryl

588 Oregon 2004 5.3 4 Beryl

594 California 2004 4.6 21 Bunsi

646 Washington 2005 5.4 60 Bunsi

655 North Dakota 2005 4.0 46 Bunsi

a Aggressiveness was rated on scale of 1–9 using the straw test method with increasing numbers representing higher aggressiveness [36].
b MCG: Mycelial compatibility group.
c Common bean (Phaseolus vulgaris) cultivar.

doi:10.1371/journal.pone.0168079.t001
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labeled for white mold control, representing four modes of action: respiration inhibitor bosca-

lid (Emerald, 70% a.i. BASF Corporation, Research Triangle Park, NC), iprodione (26GT,

23.3% a.i., Bayer Crop Science LP, Montvale, NJ) with unclear mode of action, microtubulin

synthesis inhibitor thiophanate methyl (T-STORM 50WSB, 50% a.i., LESCO, Inc., Cleveland,

OH), and quinone outside inhibitors (QoI) azoxystrobin (Heritage, 8.8% a.i., Syngenta Crop

Protection, Greensboro, NC) and pyraclostrobin (Insignia SC, 23.3% a.i., BASF). Negative

controls were included for each isolate, which were simultaneously subjected to serial trans-

fers, with growth on PDA lacking fungicides. The entire experiment was repeated. Since a sin-

gle generation required four days to complete, each experiment was continuously carried out

for 48 days. Isolates were genotyped using 6 SSR loci, following which, half of the fungicide-

exposed isolates showing mutation at any SSR locus and their corresponding control isolates

were preferentially selected for AFLP genotyping. This method of selection was used because

SSR loci are considered highly variable [30] and thus were expected to be an indicator of muta-

tional change.

Each isolate was given a unique designation with isolate ID number, experiment, and treat-

ment. To distinguish isolates from the first and second experiment, ‘Exp1’ and ‘Exp2’ were

used. Each of the nine progenitor isolates was given the ‘G0’ designation and negative control

isolates at the end of the experiment were given the ‘G12’ designation and control denoted as

‘Con’. Since each of the nine G0 isolates was the progenitor to a fungicide-exposed isolate at

G12, it was unnecessary to give fungicide-exposed isolates the G12 designation. Each fungi-

cide-exposed isolate was given a designation corresponding to the fungicide it was exposed to,

with each abbreviated as follows: ‘TM’ (thiophanate methyl), ‘Bos’ (boscalid), ‘Ip’ (iprodione),

‘Az’ (azoxystrobin), and ‘Py’ (pyraclostrobin).

Fungicide Gradient

The Autoplate 5000 (Advanced Instruments, Inc. Norwood, MA) was used to deposit a stock

solution of each fungicide onto an oversized (150 mm diameter), rotating Petri plate contain-

ing solid media. This instrument has a 1 mm diameter stylus that ejects solution at a rate that

decreases as applied from center to periphery of the Petri plate, in a spiral pattern. Plates are

allowed to stand 2–4 hours prior to inoculation, which allowed permeation of solution into

media. This instrument applied fungicides with high accuracy and precision, allowing estima-

tion of fungicide concentration at a radial distance up to 0.5 mm increments.

Optimal fungicide deposition mode and starting stock solution concentration was determined

prior to beginning the experiment. Each fungicide stock solution was deposited onto solidified

PDA in oversized Petri plates, prepared by adding 50 ml of PDA and stored at least 48 hours at

room temperature to obtain a dry surface and no condensation prior to fungicide application.

Fungicide deposition was made using either the exponential or proportional mode, where the

exponential mode creates a fungicide gradient from center to periphery that is approximately to

300:1 and the proportional mode is 3:1. The ‘exponential’ mode of deposition was suitable for

most fungicides in the present study. In the case of iprodione, the ‘proportional’ mode of deposi-

tion was used because the ‘exponential’ mode resulted in a short growth-to-no growth interphase

that hindered accurate estimation of 50% growth inhibition. Fungicide concentrations used to

feed the dispensing stylus and actual deposited concentration at the center and periphery of plates

are given in Table 2. Each fungicide concentration was optimized to avoid either too little growth

or overlapping mycelial growth of adjacent replicates. PDA media used for QoI fungicide deposi-

tion were amended with 70 ppm salicylhydroxamic acid (SHAM) dissolved in acetone. SHAM

was added to inhibit the alternative respiration pathways used by fungi in vitro to avoid fungicide

toxicity and has been previously evaluated for S. sclerotiorum [37]. Fungicide-deposited Petri
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plates were set in an air recirculating biosafety cabinet for 2–4 hours to absorb chemicals before

inoculating with S. sclerotiorum isolates; plates more than 4 hours old were not used.

Sublethal Fungicide Exposure

Fungicide-deposited plates were inoculated with a uniform distribution of S. sclerotiorum
using mycelium pre-grown on 50 x 4 mm sterile filter paper strips placed perpendicular to

the fungicide gradient, as described previously [38]. To generate these pre-inoculated strips,

each S. sclerotiorum isolate was grown on a 100 mm diameter Petri plate and aerial hyphae

harvested (S. sclerotiorum does not produce conidia in culture) before mycelial growth

reached the edge of the plate. Harvested mycelium was added to 500 μl of sterile water in a

2 ml microtube with two sterile glass beads and homogenized for 20 seconds using a fixed-

speed Fastprep homogenizer (MP Biomedical, Solon, OH). Filter strips (50 x 4 mm) were

made from Whatman grade 1 paper (GE Healthcare Bio-Sciences, Pittsburg, PA) pre-cut

using a mechanical paper shredder and scissors, prior to sterilization. Filter strips were

aseptically pressed onto PDA plates and 45 μl of mycelial homogenate applied. Inoculated

strips were incubated for 40 hours at 25˚C to allow mycelial colonization of paper and trans-

ferred to fungicide deposited plates.

Four strips (two isolates per plate) were placed perpendicular to the fungicide gradient in

each Petri plate. Simultaneously, PDA in 100 mm diameter Petri plates (or PDA amended

with 70 ppm SHAM for comparison to QoI fungicide-deposited Petri plates) were used as a

negative control for each isolate, with a single inoculated filter strip placed near the periphery.

Negative controls (also used to determine maximum mycelial growth) were replicated three

times for each isolate in each generation.

Inoculated Petri plates were incubated for 38–42 hours at 25˚C, following which, myclial

growth was measured to identify 50–100% growth inhibition for each isolate grown on each

fungicide-deposited plate. First, growth on each negative control plate was measured to deter-

mine maximal growth (0% inhibition) of an isolate, which was the maximum length of myce-

lial growth perpendicular to and measured from the edge of the filter strip (Fig 1). This

distance was measured on each of three replicated negative control plates and averaged to

yield maximal growth distance, which was subsequently used to calculate 50% growth for each

isolate. Second, mycelium in the 50–100% inhibition zone in both directions from each filter

strip (Fig 1) was harvested and transferred to microtubes (as described above) for the subse-

quent generation and fungicide exposure. Each of nine isolates was repeatedly exposed to fun-

gicides for a total of 12 generations. Cultures from each generation were maintained at room

temperature for 3 weeks to allow formation of sclerotia, which were placed into microtubes,

and both plates and sclerotia were preserved at 4˚C for long-term storage.

Table 2. Concentration (ppm) of fungicide stock solutions and resultant concentration gradient when depositeda onto a 150 mm PDA plate in a

concentric spiral pattern.

Fungicide Stock Center Peripheral

Boscalid 750 9.07 0.05

Iprodione 400 2.58 0.807

Thiophanate methyl 9000 108.79 0.57

Azoxystrobin 250 2.87 0.01

Pyraclostrobin 200 2.34 0.01

a Exponential mode of deposition used for all fungicides except iprodione (proportional mode).

doi:10.1371/journal.pone.0168079.t002
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Fungicide Sensitivity Estimates

Fungicide concentration for 50% growth inhibition (EC50) was estimated in each generation.

As above, mycelial growth in both directions equivalent to 50% growth from each filter strip

on fungicide-deposited plates was identified. An average of the two measurements was used to

estimate the corresponding radial distance up to 0.5 mm accuracy and input into the Autoplate

5000 software (Spiral Gradient Endpoint, Spiral Biotech Inc., Norwood, MA) to determine the

corresponding fungicide concentration for each filter strip. Data from two experiments were

Fig 1. Method for identification of 50–100% growth inhibition zone of Sclerotinia sclerotiorum isolates grown on a fungicide

concentration gradient. Mycelial growth perpendicular to the pre-inoculated filter strip after 40 hours on three replicated control plates were used

to determine 100% growth (A), where A/2 is equal to 50% growth. At the same time point, mycelial growth on the fungicide-deposited gradient

equivalent to distance A/2 was identified in both directions perpendicular to the pre-inoculated filter strip. Mycelium was harvested from the 50–

100% inhibition zone in this experiment. To calculate the fungicide concentration at the 50% growth inhibition (EC50), an average of the two radial

distances at which 50% inhibition was observed perpendicular to the filter strips was input into the SGE software. This example in the photos shows

S. sclerotiorum growth on boscalid fungicide deposited in a concentric concentration gradient of 9.05 to 0.05 ppm from center to periphery of plate,

with EC50 estimated as 0.14 ppm.

doi:10.1371/journal.pone.0168079.g001
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analyzed separately using a Student’s t-test to determine if EC50 values of G0 and G12 of each

isolate exposed to different fungicides were significantly different at P = 0.05.

Molecular Genetic Analysis

DNA was purified from mycelium of each isolate: before exposure (G0), after growth on each

fungicide for 12 generations (TM, Bos, Ip, Az, Py), and after growth on PDA for 12 generations

(Con-G12). A DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA) was used according to instruc-

tions with 50–100 mg mycelium harvested from actively growing cultures, yielding 300–1000 ng

DNA, and stored at -20˚C until later use. DNA from each isolate was subsequently subjected to

SSR genotyping and isolates showing mutation were additionally subjected to AFLP genotyping.

Control isolates from G0 and G12 from Exp1 were genotyped to assess spontaneous mutations

at SSR and AFLP loci.

Six SSR markers for loci that were polymorphic and showed unambiguous repeat lengths

were used in the present study: 6–2, 17–3, 20–3, 55–4, 110–4, and 114–4 [28]. Three loci were

hexa-, tri-, and dinucleotide repeats (6–2, 17–3, 20–3) and three were tetranucleotide repeats

(55–4, 110–4, 114–4). Polymerase chain reaction (PCR) was carried out as described previ-

ously [28] using FAM-labeled primers. Prior to fragment analysis, amplicons were resolved in

a 1.5% agarose gel stained with ethidium bromide to ensure the product was within the

expected size range. Following amplification, 1.5 μl of each PCR product was mixed with 11 μl

Hi-Di formamide (Applied Biosystems, Warrington, UK) and 0.2 μl GeneScan™ 600 LIZ1 as

a size standard. The product mixture was denatured for 5 min at 95˚C and rapidly chilled on

ice before shipping to Ohio State University Plant-Microbe Genomics Facility for fragment

analysis on a 3730 genetic analyzer (Applied Biosystems Inc., Foster City, CA). SSR genotyping

was performed on all isolates of both experiments, with the exception of isolate 587, which was

removed from the study since fungicide-exposed isolates died during the experiment. Raw

data was processed using GeneMapper software version 4.1 (Applied Biosystems) and a geno-

type table of fragment sizes was exported for further analysis.

Prior to AFLP genotyping, a total of 12 primer pairs were evaluated using three S. sclerotiorum
isolates (Con_462_G0, Bos_587, Ip_467), which allowed identification of three primers that pro-

duced more than eight clear fragments in an agarose gel. AFLP genotyping was carried out using

non-methyl sensitive restriction enzymes, based on the method described previously [32], with

the following modifications. Pre-amplification and selective amplification primers were ordered

from Life Technologies Corporation (Grand Island, NY). AFLP1 Core Reagent Kit (Invitro-

gen™, Carlsbad, California) was used for restriction digestion and ligation steps according to

instructions. Approximately 250–400 ng of genomic DNA was digested with EcoRI and MseI.
Thereafter, digested products were ligated with EcoRI and MseI double stranded (ds) adapters

provided. After ligation, the reaction mixture was diluted ten-fold with sterile Tris-EDTA (TE)

buffer and used for pre-amplification.

Pre-amplification was carried out with EcoRI (50-GTAGACTGCGTACCAATTC-30) and

MseI (50-GACGATGAGTCCTGAGTAA-30) primers that were compatible with the respective

oligonucleotide adapters used in ligation. The pre-amplification mixture of 50 μl included 5 μl of

diluted restriction-ligation reaction, 0.1125 μM each of EcoRI and MseI primers, 1× Taq poly-

merase reaction buffer, 0.2 mM of each dNTP, and 1 U of Taq polymerase (Invitrogen™). PCR

was performed using a Mastercycler1Pro thermocycler (Eppendorf, Hamburg, Germany) with

the first cycle at 72˚C for 2 min, then initial denaturation at 94˚C for 2 min followed by 30 cycles

of 30 s at 94˚C, 1 min at 60˚C, and 2 min at 72˚C. PCR products were diluted fifteen-fold with

TE buffer and used as template DNA for selective amplification with primer pairs consisting of

EcoRI and MseI adapter sequences having 2–3 selective nucleotides each (EcoRI + AAC and
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MseI + CA, EcoRI + AAC and MseI + CC, EcoRI + TG and MseI + CA). All EcoRI selective prim-

ers were 50 labeled with fluorescent dye 6-FAM for fragment analysis. Each selective PCR mix-

ture of 20 μl included 5 μl of diluted pre-amplification product, 0.25 μM each of EcoRI and MseI
primers, 1× standard Taq polymerase reaction buffer, 0.2 mM each dNTP and 1 U of Taq poly-

merase (Invitrogen™). PCR was performed for 36 cycles with the following cycle profile. The first

twelve cycles consisted of 30 s DNA denaturation at 94˚C, 30 s annealing at 65˚C (-0.7 C/cycle),

and 1 min extension step at 72˚C. Remaining cycles consisted of 30 s at 94˚C, 30 s at 56˚C, and 1

min at 72˚C. A final extension step of 5 min at 72˚C completed the reaction.

Following AFLP amplification, 1.5 μl of each PCR product was mixed with 11 μl Hi-Di

formamide and 0.2 μl of GeneScan™ 600LIZ1 internal marker. Mixtures were denatured at

95˚ C for 5 min and placed on ice, following which, samples were sent to Ohio State University

Plant-Microbe Genomics Facility for fragment analysis. Raw data was processed using Gene-

Mapper and individual AFLP bands automatically scored as either absent (zero) or present

(one), with a binary genotype table exported for further analysis. The 600LIZ1 internal marker

was capable of accurately determining fragments in the range of 20–600 bp; fragments less

than 50 bp were ignored.

SSR Mutation Rate Calculation

A previous study estimated that an actively growing strain of S. sclerotiorum experiences 24

nuclear divisions in hyphal growth per day [23]. In the present study, it took approximately

four days to complete each generation (growth on inoculated filter strips, followed by growth

on treatment plate) and there were 12 such generations (G0 to G12) per experiment. Each iso-

late was estimated to undergo a total of ~1,200 nuclear divisions during each experiment (24

nuclear divisions per day x 4 d x 12 generations). This value was used for estimates of mutation

rates. First, the number of stepwise mutations at each locus was determined. This was as the

absolute value of the difference in the length of the allele between G12 and G0 (non-exposed),

divided by the length of the SSR repeat motif (ie. trinucleotide repeat = 3). This was then

divided by 1,200 nuclear divisions, resulting in an estimate of the observed mutation rate at

each locus for each isolate in each treatment.

Normal mutation rates for each of the S. sclerotiorum genotyped loci are not known, so we

used those estimated previously from Saccharomyces cerevisiae [39]. The average mutation rate

for SSR loci with 20–24 tandem di- tri- and tetranucleotide repeats was 1.3 x 10−5 mutations

per locus per nuclear division. This rate was used in the current study to estimate the expected

mutation rate of each locus and calculate fold-change in observed mutation rates compared to

the expected mutation rates.

AFLP Data Analysis

The binary AFLP genotype table produced by GeneMapper was used to generate a neighbor-

joining (NJ) tree with Rogers index [40] since it gave the best separation between control and

fungicide-exposed isolates. The aboot function of the R package ‘poppr’ version 2.0.2 [41] was

used for tree construction, with bootstrap values determined by resampling 1000 times. The

Con_594_G12 was not included in the above analysis since it had an overabundance of stutter

peaks, resulting in the highest number of alleles (n = 248) among all control isolates (100 alleles

more than G0). Isolate Con_594_G12 was used for clone-censored data because the process

censoring (described below) removed spurious/variable alleles.

Similarities and dissimilarities of AFLP genotypes of control and treated isolates were ana-

lyzed using principal coordinate analysis (PCoA) [42]. This was performed using Adegenet R

package version 2.0.0 [43]. PCoA uses eigenvalues derived from a distance matrix (or any
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measure of association) and produces a graphic in a low-dimensional Euclidian space. Analysis

was conducted with several similarity coefficients available with the Adegenet package, where

‘simple matching index’ [44] was selected since it gave the best separation of isolates. Significant

difference between clusters formed was tested with analysis of molecular variance (AMOVA)

using GenAlEx version 6.5 [45]. PhiPT is a haploid analogue of Wright’s FST, where a value of

0.05 or less is generally interpreted to mean differentiation between populations is weak [46,47].

Congruence of results was evaluated using a discriminant analysis of principal components

(DAPC) on AFLP data using Adegenet. DAPC is a multivariate method designed to identify

and describe clusters of genetically related individuals that maximizes separation between

groups while minimizing variation within group [48]. This method is also capable determining

probability of membership for each individual to a predefined group (ex. control and fungi-

cide-exposed). First, the find.clusters function was used to identify the optimal number of clus-

ters. This was achieved by running k-means clustering algorithm for increasing number of

groups and identifying the group number that maximized variation between groups. The

assignplot was used to visualize membership probabilities (posterior values provided by dis-

criminant analysis) after successful reassignment of individuals based on discriminant func-

tions. Large probability values indicate defined population clusters, while low values suggest

admixed groups.

Censored Data

Control isolates at the start of the experiment (G0) and at the end of the experiment (G12)

were used to assess spontaneous mutations at SSR and AFLP loci. For example, AFLP data of

control isolates from G0 and G12 showed some polymorphic alleles attributed as probable ran-

dom mutations that generated background noise in aforementioned analyses. Consequently, a

second, censored data set was generated where these polymorphic alleles were removed, such

that each control isolate from G0 and G12 had the same multilocus genotype (i.e. clones) and,

to avoid redundancy, each was reduced to a single, representative genotype in data analysis.

Since these alleles were observed to be polymorphic within the control lines, the corresponding

alleles of fungicide-challenged isolates were also removed from their respective genotypes.

This censored AFLP binary table was analyzed to construct a neighbor-joining tree and DAPC

clusters as described above.

Results

Fungicide Exposure and Sensitivity

Nine fungicide-sensitive S. sclerotiorum isolates were used in this study (ID 152, 462, 467, 555,

587, 588, 594, 646, and 655; Table 1). Since isolate 587 died early in experiment 1, there were a

total of 104 isolates at the end of this study, which consisted of eight G0, 16 G12, and 80 fungi-

cide-exposed from both experiments. Fungicide sensitivity (EC50) was estimated at each gener-

ation of the experiment, where results showed lack of a sustained trend throughout the course

of the two experiments. For example, the estimated EC50 to boscalid during the course of the

experiments is shown in Fig 2.

Comparison of EC50 of each boscalid-exposed isolate at the end of each experiment to the

corresponding negative control isolate showed all Exp1 isolates, with the exception of isolate

655, had a significantly higher EC50 (P� 0.05; S1 Table). On average, boscalid-exposed isolates

had a 1.788 fold-change in EC50 (Fig 3). Data from experiment 2 showed isolate Bos_594 had a

significantly higher EC50 and Bos_467 had a significantly lower EC50 compared to their respec-

tive negative control isolates. Other boscalid-exposed isolates did not show a significant change

from G0 (P> 0.05; �x = 0.150 fold-change). Among the other fungicides in the first experiment,
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most isolates (n = 7/8) exposed to pyraclostrobin did not show a difference in sensitivity

(P> 0.05; �x = -0.020 fold-change), whereas azoxystrobin induced an upward shift in EC50 for

four isolates (�x = 0.565 fold-change; Fig 3 and S1 Table). In experiment 2 there was increased

sensitivity for most isolates exposed to pyraclostrobin (n = 6/7; �x = -0.553 fold-change) and

azoxystrobin (n = 6/7; �x = -0.572 fold-change). In both experiments, no isolates exposed to

iprodione resulted in an increase in EC50 (�xExp1 = -0.092, �xExp2 = -0.068); five resulted in higher

sensitivity (Fig 3 and S1 Table). Thiophanate methyl-exposed isolate 152 and 646 had a higher

EC50 in both experiments, while isolate 467 had a lower EC50 for experiment 1 (S1 Table);

overall fold-change in EC50 for isolates were higher (�xExp1 = 0.447, �xExp2 = 1.461).

SSR Analysis

Each fungicide-exposed isolate (80) from both experiments, corresponding progenitor isolate

at G0 (8) and corresponding non-exposed control isolate at G12 from experiment 1 were

Fig 2. Change in EC50 values of S. sclerotiorum isolates exposed to sublethal doses of boscalid over 12 generations for experiment 1

and 2; G1 to G12 correspond to each generation.

doi:10.1371/journal.pone.0168079.g002

Fig 3. Change in fungicide sensitivity (EC50) of eight isolates after twelve generations of growth on a

fungicide gradient of the respective commercial fungicide: pyraclostrobin, iprodione, azoxystrobin,

thiophanate methyl, and boscalid. EC50 estimates were determined as the average of four replicates,

where each point above represents the relative fold change in EC50 on an individual isolate basis, calculated

as difference in EC50 at G12 and G0, divided by the EC50 at G0. Circles correspond with values from

experiment 1 and triangles correspond to experiment 2, where solid filled shapes indicate EC50 values of G12

that were significantly different to G0, determined using a Student’s t-test (P� 0.05).

doi:10.1371/journal.pone.0168079.g003
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genotyped at six SSR loci (672 genotyping reactions). Isolate 655 of Experiment 1 exposed to

thiophanate methyl (TM_655_Exp1) generated a high level of background noise at all six loci

and was therefore removed from the analysis. Isolate 462 of experiment 2 was also removed

from the analysis due to poor quality amplification. Additionally, isolate 588 exposed to thio-

phanate methyl (TM_588_Exp2) for all six loci showed poor amplification and were therefore

not included in the analysis. The final analysis was based on 234 alleles from experiment 1 and

204 alleles from experiment 2, and control alleles for G0 and G12.

Multilocus genotypes of each isolate at G0 were compared to their corresponding G12 iso-

late genotype and showed no difference after 12 generations of growth on non-fungicide-

amended PDA. Among all genotypes of fungicide-exposed isolates, however, showed 21 of 438

alleles were different than the expected progenitor (pre-exposure) genotype. These 21 muta-

tions were present in 11 of the 80 fungicide-exposed isolates genotyped. All mutations followed

a stepwise model of addition or removal of repeat units corresponding to the SSR repeat motif,

with the exception of locus 6–2, which had 2 mutations, one with a 4 bp insertion and another

with a 10 bp deletion. Among all other loci, insertions and deletions ranged from 4 bp and up

to 80 bp, wherein the majority of mutations were less than 20 bp in length. Large deletions and

insertions were observed at locus 114–4, which had a tetranucleotide repeat unit.

Collectively, mutations were comprised of 42 stepwise insertions and 85 stepwise deletions

(Table 3). Most of the stepwise deletions were generated in iprodione- and azoxystrobin-

exposed isolates (n = 40/85 each). Azoxystrobin-exposed isolate 646 in experiment 1 showed

two deletions, one with 9-steps and the other with 5-steps at the locus 55–4 (Table 3). The larg-

est total number of stepwise mutations (considering both insertions and deletions) was

Table 3. Stepwise mutations at six microsatellite loci observed in eight Sclerotinia sclerotiorum isolates independently exposed for 12 genera-

tions to sublethal doses (50–100% inhibition) of five fungicides.

Fungicide Exp. 1 Exp. 2 Total Loci Isolates Per isolate

Boscalid 6 0 6 3 3 1–4

Insertions 4 0 4 - - -

Deletions 2 0 2 - - -

Iprodione 17 27 44 5 2 1–20

Insertions 4 0 4 - - -

Deletions 13 27 40 - - -

Thiophanate methyl 9a 10 19 5 3 1–6

Insertions 6 10b 16 - - -

Deletions 3 0 3 - - -

Azoxystrobin 17c 27 44 3 2 4–20

Insertions 4 0 4 - - -

Deletions 13 27 40 - - -

Pyraclostrobin 14 0 14 2 2 4–10

Insertions 14 0 14 - - -

Deletions 0 0 0 - - -

Number of mutations from experiment 1 and 2 as well as the nature of mutations in terms of deletion or insertion are given. Non-exposed control isolates

showed no mutation in G12 compared to G0.There were 8 isolates per fungicide in Exp 1 and 7 isolates per fungicide genotyped in Exp 2, unless otherwise

noted.
a Thiophanate methyl had seven isolates.
b Thiophanate methyl had six isolates.
c One locus in isolate 646 generated a mixture of two genotypes, one a 4-step deletion and one a 9-step deletion; both are included in this estimate.

doi:10.1371/journal.pone.0168079.t003
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observed among isolates exposed to iprodione (44) and azoxystrobin (44), and the smallest

total number of stepwise mutations was observed for boscalid-exposed isolates (6).

Isolate 594 expressed the highest number of stepwise mutations (78) while the lowest (6)

was observed in isolate 462. In fact, isolate 594 expressed the highest number of stepwise muta-

tions for both experiments (n = 24 and 54, respectively for experiment 1 and 2). In experiment

1, the following loci of isolate 594 showed mutations: boscalid-exposed locus 6–2; thiophanate

methyl- and pyraclostrobin-exposed locus 17–3, iprodione-exposed loci 55–4 and 114–4. In

experiment 2, mutations of isolate 594 were observed at loci 17–3 and 114–4 that were exposed

to iprodione and azoxystrobin. Locus 20–3 did not yield mutations in either experiment, while

the average number of stepwise mutations for all other loci ranged from 1.0 to 34.0. Isolates

152, 467, and 555 did not show mutations in any loci in either experiment, and no mutations

in isolate 655 of experiment 1. The only isolates that had SSR mutations in experiment 2 were

isolates 594 and 655.

SSR genotyping showed all fungicides induced mutations for each locus of the fungicide-

exposed isolates, except at locus 20–3 that did not yield mutation. Locus 114–4 recorded the

highest cumulative number of stepwise mutations (n = 68) while loci 6–2 and 110–4 resulted

the lowest cumulative number of mutations (n = 2) at the end of both experiments. Therefore,

among all fungicide treatments, the average number of mutations per isolate ranged from

0.026 to 0.906 per locus. Using known SSR mutation rates estimated for S. cerevisiae [39], it

was expected that there would be a random mutation at a single locus after 76,923 nuclear divi-

sions. Isolates in the present study underwent an estimated 1,200 nuclear divisions; therefore,

the expected number of random mutations was 0.0156 per locus (1,200/76,923). In compari-

son, loci that mutated during fungicide-exposure in the present study had a mutation rate 1.7-

to 60-fold higher than expected and, on average, 22-fold higher. Among the five fungicide-

exposed isolates with mutations, the mutation rate per locus (excluding non-mutated loci) was

34-fold higher than expected under neutral conditions; one isolate (594) had an average

104-fold increase in mutation rate in both experiments.

AFLP Analysis

A total of 33 S. sclerotiorum isolates were selected for AFLP genotyping, which included the 7

of the 12 isolates that had a SSR mutation in the fungicide-exposed treatment. Specifically,

there were 16 isolates not exposed to fungicides (G0 and G12 from experiment 1) and 17 iso-

lates that were exposed to fungicides. Among fungicide-exposed isolates, there were 10 TM-

exposed isolates that originated from isolates 152, 555, 646 (two isolates each; from Exp1 and

Exp2), 462, 588 (from Exp1), 467, and 655 (from Exp2), wherein isolates 462 and 655 exhibited

SSR mutations. Also included were seven isolates from experiment 1 exposed to four fungi-

cides (Az_646, Bos_646, Bos_555, Ip_467, Ip_594, Py_594 and Py_588,), among which, 5 of

those isolates (Bos_646, Az_646, Ip_594, Py_594, and Py_588) had SSR mutations.

Three AFLP primers resulted in a total of 602 polymorphic alleles among all fungicide-

exposed and negative control isolates in this study; on average control isolates had 162 alleles/

isolate, while fungicide-exposed isolates had an observed 223 alleles/isolate (Fig 4). There were

no clonal genotypes. Genetic distance was calculated using Roger’s similarity coefficient and

used to construct a NJ tree with two clusters that separated most fungicide-exposed and con-

trol isolates (Fig 5). The first cluster had a bootstrap value of 58% and contained 12 of 17 fungi-

cide-exposed isolates and two control isolates (Con_462_G12 and Con_467_G0), and the

second cluster contained 9 of 15 control isolates with bootstrap value of 52.6%.

Results of the PCoA showed the first three dimensions explained 37.64% of variation in the

AFLP data, where each dimension represented 20.68%, 9.71%, and 6.27% of variation,
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Fig 4. Number of AFLP alleles detected in Sclerotinia sclerotiorum isolates exposed to sublethal doses of fungicides as well as non-exposed

controls. Isolates were exposed to fungicides for 12 generations before molecular characterization. Control isolates were characterized at the beginning
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respectively. The scatter plot of eigenvalues for axes one and three better separated fungicide-

exposed and control isolates (Fig 6) than other combinations in two-dimensional space. PCoA

results corroborated the topology of NJ tree of uncensored data (Fig 5). Fungicide-exposed and

control groups were found to be significantly different with AMOVA (PhiPT = 0.15; P = 0.001).

Discriminant analysis (DAPC) indicated two and three clusters as the optimal number of

groups. Membership probabilities for assignment of each sample into two groups were con-

gruent in 29 of 32 cases with isolates being assigned to either fungicide-exposed or non-

exposed control groups (Fig 7A). Only three isolates had less than 90% probability of member-

ship in their respective treatment group: Az_646_Exp1, Ip_467_Exp1, and Con_467_G0.

When isolates were assigned to three clusters, 10 fungicide-exposed isolates and two control

isolates grouped in one cluster while seven fungicide-exposed and control isolates each

grouped in a separate cluster and a third cluster had six control isolates (results not shown).

It was expected that some alleles within the control isolates would vary from G0 to G12 due

to the genome-wide, restriction enzyme based method of AFLP amplification. A second data

set was constructed with alleles that varied within each control G0 to G12 were censored for

the entire data set. The resultant data set consisted of eight controls (G0 and G12 represented

by a single genotype) and 17 fungicide-exposed isolates. After loci in isolates were censored as

explained above, the data contained 95 cumulative polymorphic alleles across all isolates, with

an average of 2 alleles per control isolate and 11 per fungicide-exposed isolate (Fig 4). Seven

out of 10 thiophanate methyl exposed isolates had more alleles than other fungicide-exposed

isolates. Thiophanate methyl exposed isolates had an average of 16 alleles as compared to 5 for

all other fungicide-exposed isolates.

There were 95 cumulative polymorphic alleles in the censored data used to construct the NJ

tree (Fig 5B). The majority of isolates (n = 7/10) exposed to thiophanate methyl clustered

together and away from control isolates, with a bootstrap value of 40%. Discriminate analysis

did not identify a single solution for the optimal number of clusters and instead resulted in a

range of 5 to 10 clusters as the optimal. Therefore, isolates were grouped into increasing num-

ber of clusters, starting at 3, and membership probabilities estimated. Using four clusters

resulted in 100% membership probability for each isolate and was retained as the best fit (Fig

7B). Cluster 1 was the largest and contained all control isolates and nine fungicide-exposed iso-

lates. The other three clusters contained 7 of 10 thiophanate methyl-exposed isolates, zero con-

trol isolates, and one pyraclostrobin-exposed isolate (Py_588_Exp1 in cluster 4). All fungicide-

exposed isolates that clustered with control isolates in Fig 7B had fewer than eight alleles

(Con_588_G0 to Py_594_Exp1 in Fig 4A).

Results from both experiments showed mutations are independent of isolates. For example,

thiophanate methyl-exposed isolate 646 of Exp1 grouped outside of control isolates while the

same isolate exposed to thiophanate methyl in Exp2 grouped with control isolates (Fig 7B).

Similarly, thiophanate methyl-exposed isolates 152 and 555 of Exp1 and 2 clustered in different

groups. Contributions of non-censored AFLP alleles that were most informative in separating

control from fungicide-exposed isolates were identified. Nine of the 10 most informative

alleles were generated by primer pair EcoRI + AAC and MseI + CA. Alleles with greatest contri-

butions were 24, 90, 115, 129 and 141 are the best candidate markers to test whether observed

(G0) of the experiment as well as after transferring for 12 generations (G12) on PDA without fungicide. Fungicides included boscalid (Bos), iprodione (Ip),

thiophanate methyl (TM), azoxystrobin (Az), and pyraclostrobin (Py). Naming convention for each fungicide-exposed isolate is the fungicide used, isolate

identification number, and experiment number; the experiment was repeated. All control isolates were from the first experiment and depicted as ‘Con’

followed by isolate name and generation (G0 or G12). 4A) Original number of alleles detected for each isolate. 4B) Number of alleles present after censoring

AFLP data by removing loci polymorphic from G0 to G12 in the control for each isolate, resulting in the same multilocus genotype for the non-exposed

control of each isolate.

doi:10.1371/journal.pone.0168079.g004
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mutations were adaptive or random in future studies using S. sclerotiorum isolates. The range

of these alleles observed in fungicide-exposed isolates varied from 16/17 to 11/ 17 and absent

in 16/16 to 12/16 control isolates.

Discussion

This experiment characterized the effects of sublethal fungicide stress on genetic variation,

mutation rates, and fungicide sensitivity using S. sclerotiorum as a model system. This organ-

ism was selected because a previous study showed isolates grown continuously for one year on

PDA had no mutations at SSR and AFLP loci, which was considered indicative of genomic sta-

bility [23]. Our results were similar and showed no variation at 6 SSR loci and no variation at

13 AFLP loci in isolates genotyped after 12 generations of growth on PDA (non-amended con-

trol). Fungicide exposure, however, generated SSR mutations and generated additional AFLP

loci that were absent in the respective control isolates.

All observed SSR mutations in the present study were of fragment sizes consistent with that

expected based on the locus repeat motif, suggesting mutations followed the stepwise mutation

model and were a product of polymerase slippage during replication [30]. One exception was

Fig 5. Neighbor joining (NJ) tree constructed from AFLP data of Sclerotinia sclerotiorum isolates exposed to sublethal doses of fungicides

and non-exposed controls. Roger’s similarity coefficient was used to calculate pairwise distances between isolates. Isolates prior to fungicide-

exposure at the beginning (G0) of the experiment and after fungicide exposure for 12 generations (G12) were genotyped using AFLP markers. Non-

exposed, negative control isolates were simultaneously grown for 12 generations and included in the analysis; the experiment was repeated. Eight

isolates were independently exposed to four fungicides: boscalid (Bos), iprodione (Ip), thiophanate methyl (TM), azoxystrobin (Az), and pyraclostrobin

(Py). Fungicide used, isolate identification number, and experiment number are given for each taxon. Control isolates are depicted as Con followed by

isolates name and their generation (either G0 or G12). All control isolates were used from the first experiment. Bootstrap values above 50% are shown

at the beginning of clusters. A) NJ tree for uncensored data. B) NJ tree constructed from censored AFLP data, where loci polymorphic from G0 and

G12 in control isolates were removed and corresponding loci of fungicide-exposed isolates also removed (see Fig 4).

doi:10.1371/journal.pone.0168079.g005

Fig 6. Principal coordinate analysis (PCoA) of AFLP fragments of Sclerotinia sclerotiorum isolates

before and after exposure to sublethal doses of fungicides. Control isolates (both G0 and G12) are

shown with a ‘C’ and fungicide-exposed isolates are denoted ‘T’ at the center of the respective groups, with

each circle representing 95% of the variation associated with each group. Isolates Ip_467_Exp1,

Az_646_Exp1, and Con_467_G0 have less than 90% membership probability to their respective treatment

group; also shown in Fig 7.

doi:10.1371/journal.pone.0168079.g006
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locus 6–2 that, according to [28], has a hexanucleotide repeat unit, yet termed a “polymorphic

locus”, suggesting it may not be a true SSR locus. The number of stepwise mutations at each

mutated locus was, in some cases, related to the number of repeats at the locus, which is consis-

tent with previous studies that have shown mutation rates decrease for loci with fewer repeats

[39,49]. For example, locus 114–4 had the most repeats (18) and yielded the greatest number

of mutations in our present study, whereas locus 6–2 had the fewest repeats (5) and fewest

mutations. In other cases there were SSR loci with many repeats and no observed mutations

and vice-versa. For example, dinucleotide locus 20–3 contained 12 repeats and did not show

mutation, whereas loci 17–3 and 110–4 (both with 9 repeats) that had 29 and 2 mutations.

These results suggest that some SSR loci may be more vulnerable to mutation than others.

Variation at SSR loci was used to estimate the fold-change in mutation rates. Under normal

conditions (without fungicide), we expected less than one mutation at each locus during the

course of this experiment (0.0156 mutations per locus after 1,200 nuclear divisions). Our

results showed mutated loci of fungicide-exposed isolates had an average 22-fold higher muta-

tion rate. The number of tandem SSR repeats at the S. sclerotiorum loci used in our study ran-

ged from 5 to 18 [28], which is considered typical of fungal genomes [39,50]. Our calculations,

however, used the expected mutation rate for loci with 20–24 tandem repeat units, meaning

fold-change in mutation rates we estimated for mutated loci of fungicide-exposed isolates in

our study are likely underestimations. This is striking considering that one locus had a 60-fold

higher mutation rate and one isolate (594) had an average 104-fold higher mutation rate in

both experiments.

Our results corroborate findings of previous studies that showed different antifungal com-

pounds induced mutations at SSR and ISSR loci in fungal pathogens M. fructicola and A. alter-
nata [8–10]. Prolonged in vitro exposure of four M. fructicola isolates to sublethal doses of

azoxystrobin fungicide yielded mutation at 8 of 15 SSR loci [10]. However, a DMI fungicide

did not induce mutations at these loci. In a separate study, B. cinerea did not show SSR muta-

tion in the presence of antifungal compounds pyrrolnitrin and iprodione [11]. It is interesting

to point out that these three fungal species are closely related and belong to the same family,

Sclerotinaceae. Despite the relative stability of the S. sclerotiorum genome and demonstrated

stability of SSR loci, results of our study support findings of these previous studies showing

SSR loci can mutate after exposure to sublethal fungicide stress in vitro.

One disadvantage to SSR genotyping is that these loci represent small fraction of the

genome (typically less than 250 bp per locus), which is the reason AFLP genotyping was used

as a complementary approach to survey mutations over a larger portion of the genome and

assess different types of mutations. For example, AFLP mutations can occur when single-base

mutations occur at the restriction site or at selective nucleotides immediately adjacent the site

[51]. Such mutations result in loss of AFLP fragment amplification or may introduce a restric-

tion site, thus generating AFLP fragments [51,52]. AFLP fragments may also vary in size due

to insertions and deletions or other rearrangements within the amplified region.

AFLP genotyping showed fungicide-exposed isolates (12 of 17) accumulated mutations to

group them as a separate group from control isolates in Neighbor-Joining analysis, with

Fig 7. Heatmap of membership probabilities of Sclerotinia sclerotiorum isolates belonging to

fungicide-exposed and non-exposed control clusters as shown in Fig 6. Probability of 100% is shown in

red and 0% probability is white. Blue crosses represent the prior cluster assignment for isolates. 4A)

Membership of isolates pre-assigned to fungicide-exposed and non-exposed control groups, where isolates

Az_646_Exp1, Con_467_G0, and Ip_467 had membership probability <90% to their respective group. 4B)

Membership probabilities of isolates after censoring AFLP data by removing loci polymorphic from G0 to G12

in the control isolates to result in the same multilocus genotype for each non-exposed control isolate; all

isolates show 100% membership probability.

doi:10.1371/journal.pone.0168079.g007
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relatively high bootstrap support throughout the fungicide-exposed cluster. Two types of k-

means clustering approaches (PCoA and DAPC) also supported fungicide-exposed isolates as

a new and distinct group. This is significant because it was determined prior to initiating our

experiment that the eight isolates used as progenitors for this study were genetically distinct

[35]. Thus, results of NJ, PCoA, and DAPC analyses showed that the non-exposed isolates

were more genetically similar to each other than they were to their fungicide-exposed counter-

parts. Furthermore, the variation that is detected by AFLP genotyping of fungicide-exposed

isolates suggests that not all mutations were random. In the case of a DAPC, completely ran-

dom mutations would lead to treatment groups that are unresolved from the progenitor geno-

types, whereas our results showed clustering into two groups where membership probabilities

correctly assigned 29 of 32 isolates with greater than 90% confidence into their respective treat-

ment groups (fungicide-exposed or control) and was supported by AMOVA (PhiPT = 0.15;

P = 0.001). These results suggest mutations detected in AFLP genotyping are directionally

driven by fungicide exposure.

Clone-censoring the AFLP data (removing alleles that were variable in negative control

isolates) showed seven thiophanate methyl-exposed isolates retained the greatest number of

alleles (Fig 4B), suggesting evidence that some mutations are fungicide-specific. For instance, a

similar experiment conducted on Monilinia fructicola resulted in more TE movement (Mfc1)

in isolates exposed to azoxystrobin than DMI fungicides, with no such TE movement observed

in non-exposed controls [9]. This type of mutagen-specific mutation is not unexpected based

on previous research in animal genetics that have shown mutagens yield both random (non-

informative) and canonical mutations that are specific to the mutagen [53]. However, as

shown in our AFLP data, mutagens that cause stress will yield a set of canonical mutations that

are the same and a set that are unique canonical mutations, the genomic signature of a muta-

gen. Previous research on antifungals such as amphotericin B (azole group antifungal agent)

and strobilurins showed these antifungals result in production of reactive oxygen species

(ROS) downstream of their cellular targets [54–56]. ROS, such as hydroxyl radicals, damage

DNA by formation of DNA strand breaks and modification of guanine bases in the pathogen

genome [55,57–59]. Thus, it is likely that thiophanate-methyl specific mutations are detected

in the present study due to the greater number of thiophanate-methyl-exposed isolates used in

the AFLP analysis and it is likely other fungicide-specific mutations would have been detected

if more isolates were genotyped using this approach. However, given the lack of sequence data

corresponding to the AFLP fragments, further analysis should use whole genome sequencing.

Fungal pathogens exposed to stress may exhibit loss of heterozygocity (LOH) and aneu-

ploidy [6,60], wherein both chromosomal changes and SNP mutagenesis can lead to acquired

antimicrobial resistance. In our study, nearly all of the boscalid-exposed isolates in experiment

1 had a significantly higher tolerance at the end of the experiment compared to the negative

controls (P� 0.05). Approximately half of all isolates exposed to azoxystrobin and thiophanate

methyl in the first experiment also had a significantly higher tolerance. Overall, however, there

was not a clear trend of sublethal fungicide exposure leading to increased tolerance. To deter-

mine if presence of mutations was associated with fungicide sensitivity, regression analysis was

performed but showed no significant association (P>0.05) between change in EC50 and muta-

tion at either AFLP or SSR loci, suggesting many mutations were non-adaptive to growth with

fungicide. However, these results do not rule out sublethal fungicide exposure as a mechanism

for emergence of fungicide resistant phenotypes because our method selected mycelial growth

that was 50–100% inhibited. Thus, we would not have selected mycelial growth exhibiting dra-

matic shifts in fungicide tolerance. We also did not subculture from these regions because

such regions may have represented errors in fungicide deposition, which should necessarily be
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avoided. These results are a common feature of previous research on this topic using filamen-

tous fungal plant pathogens [8–10].

As a survival mechanism, microorganisms react to damaged DNA by activating DNA dam-

age repair pathways, however, this process may allow non-lethal mutations into the genome

that may have unintended phenotypes. Although many mutations within genes would not

have an obvious phenotype, some phenotypic changes were observed during our experimental

study. For example, in both fungicide-exposed and control groups that exhibited slow growth

and even death during the continuous transfer process. Isolate 587 was removed from the

experiment since all treated and control isolates either died or experienced reduced and erratic

growth by midway in the experiment, possibly due to expression of deleterious mutations. Iso-

lates exposed to azoxystrobin and pyraclostrobin showed more aerial mycelia than control iso-

lates, and isolates exposed to iprodione showed mycelial growth that was thinner than control

isolates. Isolates exposed to boscalid produced sclerotia faster than control isolates with no

other morphological changes, which is the opposite that was reported previously for boscalid-

induced resistant isolates that lacked the ability to produce sclerotia [61].

Our results suggest that the majority of mutations observed in SSRs and AFLPs of S. sclero-
tiorum isolates were non-adaptive response to environmental stress, which is why regression

analysis of the number of mutations, for either SSR or AFLP, with fold-change in EC50 did not

have a significant relationship. When a population is under stress, including fungicide stress,

mutations may serve as a mechanism for rapid adaptation to the environment, which may also

introduce many random mutations not specific to adaptive resistance. Since only nine isolates

were used in this study, it remains possible that a larger pool of isolates would result in fungi-

cide-resistant isolates. In addition, our selection process did not target sections of mycelia with

fungicide resistance by sectoring and slow shifts in fungicide sensitivity within portions of the

mycelium may have been overshadowed once mixed with replicates in each generation.

Indeed, when SSRs were characterized, isolate 646 gave two peaks for locus 55–4, which were

distinct and high enough in amplitude to be considered true heterokaryotic or mixed-genotype

peaks. To verify, these were re-amplified and results were the same.

Overall, results of this work conclusively demonstrate that sublethal fungicide exposure

results in increased mutation rates in a fungus that is not known to evolve rapidly. Such stress

may play a role under field conditions in generation of genotypic diversity in the S. sclero-
tiorum genome, which may be important for adaptation. In field conditions, large populations

with more isolates may be affected by sublethal doses in the field through processes such as

post-infection fungicide applications, elimination of early season sprays, increased application

intervals, and low-rate fungicide applications. These processes may also play a more important

role in the S. sclerotiorum pathosystems because primary infection by ascospores of senescing

flowers are the target of fungicide applications, wherein mutations in the genome of a spore

may play a more important role in pathogen evolution and resistance emergence. Indeed, such

management practices have been speculated as a possible underlying mechanism of resistance

emergence in field populations of the apple scab fungal pathogen Venturia inaequalis [13].

Results of the current study conclusively show in vitro sublethal fungicide stress induces muta-

tions in the S. sclerotiorum genome, where future studies using whole-genome sequencing may

shed more light on genomic damage specific to each class of fungicide and used to examine

fungicide-resistant isolates for evidence of such mutagen exposure. Collectively, this informa-

tion will be used to determine whether sublethal fungicide exposure plays a role in fungicide

resistance or diversification in field populations of fungal plant pathogens, an important con-

sideration for long-term sustainability of fungicides for disease control.
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