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The tumorigenesis of skin cutaneous melanoma (SKCM) remains unclear. The tumor
microenvironment (TME) is well known to play a vital role in the onset and progression
of SKCM. However, the dynamic mechanisms of immune regulation are insufficient. We
conducted a comprehensive analysis of immune cell infiltration in the TME. Based on the
differentially expressed genes (DEGs) in clusters grouped by immune infiltration status, a
set of hub genes related to the clinical prognosis of SKCM and tumor immune infiltration
was explored.

Methods: We analyzed immune cell infiltration in two independent cohorts and
assessed the relationship between the internal pattern of immune cell infiltration
and SKCM characteristics, including clinicopathological features, potential biological
pathways, and gene mutations. Genes related to the infiltration pattern of TME immune
cells were determined. Furthermore, the unsupervised clustering method (k-means)
was used to divide samples into three different categories according to TME, which
were defined as TME cluster-A, -B, and -C. DEGs among three groups of samples
were analyzed as signature genes. We further distinguished common DEGs between
three groups of samples according to whether differences were significant and divided
DEGs into the Signature gene-A group with significant differences and the Signature
gene-B group with insignificant differences. The Signature gene-A gene set mainly
had exon skipping in SKCM, while the Signature gene-B gene set had no obvious
alternative splicing form. Subsequently, we analyzed genetic variations of the two
signatures and constructed a competing endogenous RNA (ceRNA) regulatory network.
LASSO Cox regression was used to determine the immune infiltration signature and
risk score of SKCM. Finally, we obtained 13 hub genes and calculated the risk score
based on the coefficient of each gene to explore the impact of the high- and low-
risk scores on biologically related functions and prognosis of SKCM patients further.
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The correlation between the risk score and clinicopathological characteristics of SKCM
patients indicated that a low-risk score was associated with TME cluster-A classification
(p < 0.001) and metastatic SKCM (p < 0.001). Thirteen hub genes also showed different
prognostic effects in pan-cancer. The results of univariate and multivariate Cox analyses
revealed that risk score could be used as an independent risk factor for predicting
the prognosis of SKCM patients. The nomogram that integrated clinicopathological
characteristics and immune characteristics to predict survival probability was based
on multivariate Cox regression. Finally, 13 hub genes that showed different prognostic
effects in pan-cancers were obtained. According to immunohistochemistry staining
results, Ube2L6, SRPX2, and IFIT2 were expressed at higher levels, while CLEC4E,
END3, and KIR2DL4 were expressed at lower levels in 25 melanoma specimens.

Conclusion: We performed a comprehensive assessment of the immune-associated
TME. To elucidate the potential development of immune-genomic features in SKCM,
we constructed an unprecedented set of immune characteristic genes (EDN3, CLEC4E,
SRPX2, KIR2DL4, UBE2L6, and IFIT2) related to the immune landscape of TME. These
genes are related to different prognoses and drug responses of SKCM. The immune
gene signature constructed can be used as a robust prognostic biomarker of SKCM
and a predictor of an immunotherapy effect.

Keywords: skin cutaneous melanoma, prognostic biomarker, tumor microenvironment, gene signature, immuno-
genomic landscape, clinicopathological characteristics

INTRODUCTION

Skin cutaneous melanoma (SKCM) is currently one of the
most lethal human malignancies. As the deadliest form of skin
cancer, it accounts for almost 75% of skin cancer lethality (Siegel
et al., 2021). Although the 5-year survival of early stage SKCM
patients exceeds 95% (Thompson et al., 2009), the reported
survival time for advanced-stage melanoma barely exceeds 1 year
(Fecher et al., 2007). Currently, patients with primary melanoma
require surgical resection as a first-line therapy. However,
advanced melanoma is highly aggressive, making it insensitive
to radiotherapy and chemotherapy (Goodson and Grossman,
2009). The emergence of immune checkpoint inhibitors, such as
ipilimumab (Jameson-Lee and Luke, 2021) and nivolumab (Zhao
et al., 2020), for melanoma has revolutionized the treatment of
SKCM and offers new hope for patients. However, approximately
50% of patients do not benefit from immune checkpoint
inhibitors (Hodi et al., 2010; Topalian et al., 2012).

Recently, growing evidence has demonstrated that tumor
microenvironment (TME) plays an important role in SKCM
progression (Hanahan and Weinberg, 2011; Quezada et al., 2011).
TME influences tumorigenesis and metastasis through various
biological processes. In contrast to this, TME heterogeneity is
also an important cause of alterations in prognosis and sensitivity
to immunotherapy in various cancers (Koikawa et al., 2021).

Abbreviations: TME, tumor microenvironment; AUC, area under the curve;
TMB, tumor mutation burden; SKCM, skin cutaneous melanoma; ICI, immune
checkpoint inhibitors; GEO, gene expression omnibus; TCGA, the cancer genome
atlas; GSVA, gene set variation analysis; GSEA, gene set enrichment analysis; OS,
overall survival; PCA, principal component analysis.

Notably, it may regulate the immune response through a variety
of mechanisms, thereby affecting the inner metabolism process
and immunosuppressive state. Among these, tumor-infiltrating
immune cells (TIICs) exhibit tumor-promoting effects according
to the tumor type. In most cancers, CD8+ T cells play crucial
roles in TME, inhibiting the proliferation and invasion of
malignant cells. T cell-mediated immune responses to melanoma
antigens have been extensively documented (Marron et al., 2021).
Furthermore, immunosuppression may act as an additional
tumor burden that fosters tumor growth or immune escape in
TME. Hence, a comprehensive understanding of TME is urgently
needed to improve the efficacy of immunotherapies.

Considering the positive effect of immunotherapy in
SKCM patients, understanding the molecular composition and
function of TME is important to facilitate effective diagnosis,
prognosis, mitigation, and immunotherapeutic responsiveness
of SKCM patients.

We integrated The Cancer Genome Atlas (TCGA)-SKCM-
independent cohort and validated the predictive model in
four additional independent cohorts (GSE8401, GSE35640,
GSE15605, and GSE46517) from Gene Expression Omnibus
(GEO) datasets, to develop and verify a new set of personalized
immune signature models. We also analyzed clinical and
pathological characteristics of all existing SKCM patients,
including somatic cell copy number variation (CNV), tumor
mutation burden (TMB), and gene variable splicing. Several
bioinformatics methods were employed to estimate the
abundance of immune cell infiltration in SKCM patients, and
the correlation between genomic characteristics of the immune
landscape and pathological characteristics and prognosis of
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SKCM was determined. Therefore, in the present study, we
sought to develop and evaluate the risk-based model of six
novel immune-related genes (EDN3, CLEC4E, SRPX2, KIR2DL4,
Ube2L6, and IFIT2). In addition, immunohistochemistry (IHC)
staining and qRT-PCR were used to verify the difference in the
expression level of the novel 6-gene signature in 25 frozen SKCM
tissue samples and normal tissues. Notably, gene signatures that
affect the immune landscape may be closely related to different
prognosis and treatment responses of SKCM. Accordingly, we
established an unprecedented set of immune signatures that can
be used as robust prognostic biomarkers and predictors of the
immunotherapy effects in SKCM patients.

MATERIALS AND METHODS

Acquisition and Preprocessing of the
SKCM Expression Datasets
Data from two publicly available datasets were included in the
study. RNA-seq data were extracted for 471 patients, in addition
to clinical features, from TCGA-SKCM cohort (Tomczak et al.,
2015). Clinical data were downloaded from the University of
California Santa Cruz Xena browser1. Somatic CNV data and
TMB were downloaded from the Genomic Data Commons Data
Portal (Grossman et al., 2016). Data on alternative splicing events
were downloaded from TCGASpliceSeq database. “RCircos”
(Zhang et al., 2013) package was used to generate a map for
the genome-wide CNV analysis of SKCM patients using 23
pairs of chromosomes. Somatic mutation data were downloaded
in mutation annotation format, and the maftools package
(Mayakonda et al., 2018) was used for visualization. We obtained
SKCM microarray data from two GeneChips (GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
and GPL96-57554 [HG-U133A] Affymetrix Human Genome
U133A Array) in GSE84014 (Xu et al., 2008), GSE356405 (Dreno
et al., 2018), GSE156056 (Raskin et al., 2013), and GSE46517
(He et al., 2020) from GEO1 as validation sets. The limma
package (Ritchie et al., 2015) in R was used for gene expression
normalization, while the sva (Leek et al., 2012) package (3.20) was
used to correct for plate batch effects.

TIICs Analysis and Clustering of Samples
CIBERORT (Newman et al., 2015), an algorithm that quantifies
the proportion of TIICs with 547 signature genes to infer
the representation in bulk tumor transcriptomes, was used
to evaluate the cell components of TIICs. The proportions
of 22 types of TIICs in the cohort from TCGA were
estimated. Cluster analysis was performed using an unsupervised
hierarchical clustering method, an algorithmic approach that
groups individuals with similar observations based on the
Euclidean distance method. Three immune microenvironment
subtypes were defined using the ConsensusClusterPlus package
(Wilkerson and Hayes, 2010). The procedure was repeated 1,000
times to stabilize the stratification.

1http://www.ncbi.nlm.nih.gov/geo

Differential Gene Expression Pattern
Clustering Analysis
To determine genes associated with TME cell infiltration
patterns, we divided patients into three different pattern types
according to TME; these types were defined as TME cluster-
A, -B, and -C. We further analyzed common differentially
expressed genes (DEGs) between the three groups of samples
and, based on the significance of the differential expression
changes of the specific genes, divided the samples into two
groups of signature genes: A and B. Signature gene-A was
an immune-related specific gene with a significant difference,
and Signature gene-B was an insignificantly different part of
an immune-related specific gene. The limma package was
used to analyze DEGs between these three groups of SKCM
patients, and the significant DEGs were defined as genes with
an absolute log value of fold-change >1 and FDR <0.05. The
overlapping DEGs among the three groups were further analyzed
as specific genes using the VennDiagram (Venn diagram)
package (Chen and Boutros, 2011). The k-means clustering
algorithm, which is an unsupervised clustering method, was
used to cluster these specific genes into meaningful groups
in the GEO datasets according to the expression of specific
genes in TME cluster-A, -B, and -C. Meanwhile, based
on changes in gene expression, specific genes were divided
into two groups: Signature gene-A and -B. Among them,
Signature gene-A and Signature gene-B were obtained by cluster
analysis of the three subtypes, where Signature gene-A was
highly expressed in cluster A and relatively less expressed in
clusters B and C.

RNA Sequence Expression Analysis in
Gene Expression Profiling Interactive
Analysis
Gene Expression Profiling Interactive Analysis (GEPIA)2 is
an online data processing webpage containing RNA sequence
expression information of 9,736 tumors and 8,587 normal tissue
samples (Tang et al., 2019). The differential expression of hub
genes between tumor and normal tissues, correlations, and
survival prediction was determined using the GEPIA database.
Student’s t-test was used to analyze the correlation between
the expression and clinicopathological features. Statistical
significance was set at p < 0.05.

Gene Set Enrichment Analysis
Gene Ontology (GO) analysis was performed to illustrate the
unique biological significance of gene expression of signature
genes. Gene functions were categorized into three series: cellular
components, molecular functions, and biological processes (BPs).
Crucial pathways were identified using Kyoto Encyclopedia of
Genes and Genomes pathway analysis. GO annotations were
visualized using the R package clusterProfiler (Yu et al., 2012).
Gene Set Enrichment Analysis (GSEA; Subramanian et al.,
2005) is a calculation method for identifying the potential
biological mechanisms between two biological states. GSEA was

2http://gepia.cancer-pku.cn/index.html
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conducted in the Molecular Signatures Database (MSigDB)3,
which provided hallmark gene sets to predict BPs between normal
and SKCM samples.

Evaluation of Patient Biological
Characteristics
We further analyzed correlations between different groups and
some biologically related processes. Gene sets for storing genes
related to certain BPs, including immune checkpoints, antigen
processing, CD8+ T cells, and epithelial–mesenchymal transition
(EMT) markers, such as EMT1, EMT2, and EMT3, angiogenesis
characteristics, pan-fibroblast TGF-β response characteristics,
WNT characteristics, DNA damage repair, mismatch repair,
nucleotide excision repair, DNA replication, and antigen
processing and presentation, were collected.

Establishment of the Immune
Characteristic Model and Clinical
Prediction Model
We adopted a two-step method to establish a signature-based
risk score. First, univariate Cox regression was used to analyze
the impact of signature genes on the prognosis of SKCM patients
according to the cutoff, with p < 0.05. The most commonly used
model to establish clinical prognosis and survival-related models
is the Cox proportional hazards model owing to its flexibility
and relative robustness. The Cox grade-scoring test was used
for repeated prediction and prognostic analyses. The Cox grade-
scoring test was robust to outliers. Accordingly, outliers were
removed for the sensitivity analysis. The potential prognostic
hub genes were validated to enhance risk profiling after surgery
and to define new targets in the prediction models for SKCM
patients. To prove the significance of risk score combined with
clinicopathological characteristics for a personalized evaluation
of patient prognosis, we first tested the expression correlation
of hub genes in different tumors in TCGA database and
the predictive ability of the risk score for the prognosis of
patients with different tumors. Multiple regression was the
main analysis method for building immune prediction models.
Multiple regressions were performed using standard statistical
methods. In addition, we fitted the multivariate Cox regression
model using the least absolute contraction and selection operator
(LASSO). LASSO regression is a regularized approach commonly
used for high-dimensional predictor selection. A system of risk
score was established using the LASSO Cox proportional hazards
model to identify gene signatures for predicting the overall
survival (OS) of SKCM. A predictive score was developed using
the weighted sum of genes, with the coefficients of the LASSO
regularization.

riskScore =
∑

Coefficient (hub genei) ∗ mRNA Expression (hub genei)

Factors related to OS and clinical pathological characteristics
were evaluated using univariate and multivariate analyses with

3http://software.broadinstitute.org/gsea/index.jsp

Cox and logistic regression, respectively. Variables with a value
of p < 0.05 in the multivariate analysis were included in the
prognostic model. The performance and discriminative ability
were assessed using Harrell’s concordance index. Nomograms
were constructed to predict the 3-year, 5-year, and 10-
year survival rates of SKCM patients based on predictive
models with identified prognostic factors. Calibration is defined
as a prediction from the nomogram compared with the
observed outcomes.

IHC Validation
Tumor tissues were collected from 25 melanoma patients in
the Han Chinese group from 2015 to 2020. Informed consent
was obtained from patients, and the study was approved
by the First People’s Hospital of the Foshan Subject Review
Board. Paraffin-embedded tissues were sectioned to be 4 µm
thick for IHC analysis. Antigen retrieval was performed by
incubating the samples in citrate buffer (pH 6.0) for 15 min
at 100◦C in a microwave oven. After blocking with a mixture
of methanol and 0.75% hydrogen peroxide, sections were
incubated overnight with appropriate dilutions of primary
antibodies (CLEC4E, 1:500, Sigma; END3, 1:500, Sangon Biotech;
IFIT2, 1:500, Proteintech; SRPX2, 1:600, Proteintech; Ube2L6,
1:500, Abcam; KIR2DL4, 1:500, Abcam), followed by incubation
with a secondary antibody conjugated with HRP (goat anti-
rabbit, 1:500, Cell Signaling Technology). The sections were
washed three times with phosphate buffer saline and incubated
with AEC (ZSGB-BIO). All specimens were examined by
the cross-product (H score) of the percentage of tumor cell
staining at each of three staining intensities. The intensity
of immunopositivity was scored as follows: none, 0; weak, 1;
moderate, 2; and strong, 3. For example, a particular tumor
may have 50% cell staining at an intensity of 1 and 50% of cell
staining at an intensity of 3, for a combined H score of 200
[(50 × 1) + (50 × 3) = 200], which yields a range from 0 to
300. The final score was graded by the H score as follows: low,
H score 0–100; moderate, H score 101–200; and high, H score
201–300.

Statistical Analysis
All statistical analyses were performed using R version 3.6.2.
Differences in continuous variables between the two groups were
estimated by independent Student’s t-test, and the differences
between non-normally distributed variables were analyzed
using the Mann–Whitney U rank-sum test. If the normality
test failed, Kruskal–Wallis One Way ANOVA on Ranks was
performed. Pearson’s χ2 test or Fisher’s exact test was used to
compare qualitative variables. p-Values and hazard ratios were
obtained from univariate Cox proportional hazards regression
models using the R package, survival (Zeng et al., 2019).
The log-rank test was used to evaluate the significance of the
difference in survival time between the two groups. Receiver
operating characteristic curve analysis was conducted using the
pROC package (Robin et al., 2011) to evaluate the prognostic
capabilities of different risk models and the time-dependent
AUC values. Univariate and multivariate Cox analyses were
used to determine independent prognostic factors. All statistical
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TABLE 1 | Baseline data of SKCM patients in TCGA database.

Variables All (n = 422) Low risk (n = 205) High risk (n = 217) p-value

Gender 0.02*

—Male 264 (62.6%) 117 (57.1%) 147 (67.7%)

—Female 158 (37.4%) 88 (42.9%) 70 (32.3%)

Age 0.68

—<60 220 (52.1%) 109 (53.2%) 111 (51.2%)

—≥60 202 (47.9%) 96 (46.8%) 106 (48.8%)

T stage <0.001***

—T1 & T2 147 (34.8%) 91 (44.4%) 56 (25.8%)

—T3 & T4 236 (55.9%) 93 (45.4%) 143 (65.9%)

N stage 0.85

—N0 218 (51.7%) 108 (52.7%) 110 (50.7%)

—N1 72 (17.1%) 37 (18.0%) 35 (16.1%)

—N2 47 (11.1%) 24 (11.7%) 23 (10.6%)

—N3 55 (13.0%) 32 (15.6%) 23 (10.6%)

M stage 0.836

—M0 392 (92.9%) 192 (93.7%) 200 (92.2%)

—M1 23 (5.5%) 10 (4.9%) 13 (6.0%)

Pathologic stage 0.03*

—I 83 (19.7%) 54 (26.3%) 29 (13.4%)

—II 146 (34.6%) 58 (28.3%) 88 (40.6%)

—III 170 (40.3%) 83 (40.5%) 87 (40.1%)

—IV 23 (5.5%) 10 (4.9%) 13 (6.0%)

Type <0.001***

—Primary 97 (23.0%) 28 (13.7%) 69 (31.8%)

—Metastatic 325 (77.0%) 177 (86.3%) 148 (68.2%)

Status <0.001***

—Alive 232 (55.0%) 139 (67.8%) 93 (42.9%)

—Dead 190 (45.0%) 66 (32.2%) 124 (57.1%)

*p < 0.05; ***p < 0.001; ns, no significance.

tests were two-sided, and statistical significance was set at
p < 0.05.

RESULTS

Immune Infiltration Analysis Related to
SKCM Patients
We obtained the gene expression data of SKCM patients
from TCGA database(Table 1) and analyzed 22 different
immune cell infiltrations in each sample using the CIBERSORT
algorithm (Newman et al., 2015; Figure 1A). The TME cell
network depicted interactions between tumor immune cells
(Supplementary Figure 1). The comprehensive status of the cell
lineage and its impact on the overall survival of patients with
SKCM were also analyzed (Figure 1B). The TME cell network
demonstrated that cell clusters B, C, and D were positively
correlated with each other, including CD8+ T cells, naïve B cells,
plasma cells, CD4 naïve T cells, activated NK cells, monocytes,
resting dendritic cells, regulatory T cells, monocytes, and CD4
memory activated T cells. Moreover, there was a significant
positive correlation among immune cells in cluster A, such as
between gamma delta T cells, resting NK cells, neutrophils,

activated mast cells, M0 macrophages, eosinophils, and activated
dendritic cells. Meanwhile, M0 macrophages, activated CD4
memory T cells, and monocytes showed a significant negative
correlation. NK cell resting and NK cell activation showed the
same significant negative correlation. An exploratory analysis was
also performed to measure survival benefits and potential risks.
Results showed that CD4+ T cells, CD8+ T cells, activated NK
cells, regulatory T cells, dendritic cells, and M1 macrophages
were associated with shortened OS, while resting NK cells,
neutrophils, M0 macrophages, and dendritic cells were activated
and associated with prolonged OS. To construct the best clusters
and classification, we used the ConsensusClusterPlus package
to assess the stability of the clustering structure and divided
SKCM patients into TME cluster-A, -B, and -C. Unsupervised
hierarchical clustering was used to analyze the normalized
immune cell fractions. The heatmap showed correlation between
the infiltration abundance of 22 types of immune cells and
immune scores in the three groups (Figure 1C). Results showed
that patients with TME cluster-A had higher immune scores,
whereas patients with TME cluster-B and -C mainly had
tumor purity and stromal scores. In addition, the principal
component analysis results showed that based on the expression
data of SKCM patients, the three TME cluster groups could

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 October 2021 | Volume 9 | Article 739594

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-739594 September 27, 2021 Time: 15:51 # 6

Zhou et al. Tumor Microenvironment Signatures in SKCM

be significantly distinguished (Figure 1D). Survival analysis
related to the TME phenotype showed that TME cluster-C
(N = 92) was associated with a better prognosis (log-rank test,
p < 0.001) (Figure 1E).

We selected and analyzed the gene expression profile data and
immune cell infiltration abundance of SKCM samples from the
GEO database. The ConsensusClusterPlus package was used to
evaluate the stability of the clustering (Figure 2A). Subsequently,
the heatmap showed that patients with TME cluster-A had higher
immune scores (Figure 2B), which was consistent with the results
in TCGA database. This finding also aligned with that of previous
studies that have reported melanoma being a highly immune-
dependent malignant tumor.

Construction of the TME-Related
Signature Gene in SKCM Patients
TME has a crucial impact on tumor epigenetics, metastasis, and
immune escape. We used the limma package to analyze the
486 DEGs among the three groups of TME cluster in TCGA
database to determine the potential biological characteristics of
different TME phenotypes. Similarly, 330 DEGs were analyzed
in the GEO datasets (Figure 3A). Unsupervised clustering using
these DEGs provided three distinct clusters: TME cluster-A, -B,
and -C (Figure 3B). Simultaneously, according to the differential
expression of DEGs in different clusters, genes were further
divided into Signature gene-A and -B. GO enrichment analysis
showed that Signature gene-A and -B had different unique
BPs. Signature gene-A was associated with the overexpression
of immune-activated genes (Figure 3C), while Signature gene-
B showed upregulation of genes related to stromal and
transmembrane receptors (Figure 3D). There were significant
differences in the infiltration of TME cells (Figure 3E) and the
enrichment of related biological pathways (Figure 3F) between
the three GeneClusters, which was consistent with our functional
enrichment results.

CeRNA Regulatory Network
Construction and Signature Gene
Expression in SKAM Patients
To further analyze differences between Signature gene-A and
-B gene sets and determine whether these differences have a
profound impact on cancer genetics, we analyzed genetic levels
of single nucleotide polymorphisms. CNV and SNP analyses
showed that there were obvious mutations in both gene sets.
Notably, somatic SPTA1 mutations were more frequent in TME
cluster-A (Figure 4A). TNN was the most frequently observed
somatic mutation in TME cluster-B (Figure 4B). Moreover, the
examination of this frequency change in CNV revealed that
CNV changes were common in both groups and most were
concentrated on the amplification of copy numbers. We then
elucidated positions of these CNV changes on the chromosome
(Figures 4C,D). In the AS analysis, Signature gene-A mainly
had exon skipping (ES) in SKCM patients (Figure 4E), while
Signature gene-B had no obvious AS forms (Figure 4F). In
addition, Signature gene-A and -B gene sets may have a certain
significance for the prognosis of SKCM. Further research is

necessary for the interaction between immune-related molecules.
Based on the gene expression of Signature gene-A and -B, we
screened out lncRNAs that may be related to immunity using
correlation coefficients >0.4 and p< 0.05. The starBase database4

was used to obtain targeted differentially expressed miRNAs to
construct the regulatory ceRNA network of the mRNA–miRNA–
LncRNA interaction (Figure 4G).

Construction of the Immune-Related
Prognostic Gene Signature
To predict the impact of immune characteristics on the prognosis
of patients better, we constructed a new prognostic-related risk
scoring system. The Signature gene-A and-B were incorporated
into univariate Cox analyses, and 233 genes related to prognosis
were obtained (p < 0.05). The LASSO Cox analyses were further
used for dimensionality reduction and model construction, and
finally, a total of 16 hub genes were included in the risk
scoring model (Figure 5A). A risk score (RS) formula was
established by including individual normalized gene expression
values weighted by their LASSO Cox coefficients. The risk score
for each SKCM patient was calculated according to the locking
of the coefficients in each gene signature. The high- and low-
risk groups were divided according to the median risk score.
Kaplan–Meier analysis showed that patients with high-risk scores
had a relatively poor prognosis (Figure 5B). The time-dependent
receiver operating characteristic curve analysis also showed that
the risk score had a good predictive ability for OS (Figure 5C).
The area under the curve (AUC) of 1-year, 3-year, and 5-year OS
was 0.713, 0.694, and 0.734, respectively. The distribution of each
patient’s risk score, survival status, and gene expression map is
shown in Figure 5D.

GSEA
We analyzed the impact of the high- and low-risk groups on
the biologically relevant functions of SKCM patients. GSEA
revealed that pathways related to metabolism and oxidative
phosphorylation were mainly enriched in the high-risk group
(Figures 6A,C), while pathways related to immune response,
including cytokine signaling pathway, JAK–STAT signaling
pathway, and natural killer cell-mediated cytotoxicity, were
significantly enriched in low-risk patients (Figures 6B,D). At
the same time, expression levels of TME cells (Figure 6E), as
well as some other pathways, such as angiogenesis, mismatch-
related features, and stromal-related features (Figure 6F), were
significantly different between the high- and low-risk groups of
SKCM patients (p < 0.05).

Correlation Analysis of the Risk Score
and Clinicopathological Characteristics
We assessed the correlation between the risk score and the
clinicopathological characteristics of SKCM. The analysis results
showed that the low-risk score was correlated with TME cluster-
A classification (p < 0.001; Figure 7A) and metastatic SKCM
(p < 0.001; Figure 7B). In addition, the low-risk score was

4http://starbase.sysu.edu.cn/
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FIGURE 1 | Immune cellprotect infiltration in TCGA-SKCM database. (A) Histogram showing the infiltration of 22 different specific immune cells in each sample
CIBERSORT. Different colors indicate different tumor-infiltrating immune cells. (B) The interaction between immune cells in TME in TCGA-SKCM. Cell cluster-A, red;
Cell cluster-B, blue; Cell cluster-C, brown; Cell cluster-D, purple. The size of the circle represents the impact of each TME cell type on survival, and the log-rank test
was used for analysis. The green part in the center of the circle indicates that the cell protects against overall survival, and the black indicates the risk to overall
survival. The lines connecting TME cells represent cell interactions. The thickness of the line represents the correlation strength estimated by Spearman correlation
analysis, in which positive correlation is represented by red and negative correlation is represented by blue. (C) Heatmap showing the infiltration of TIICs in 471
SKCM patients in TCGA database combined with the immune score. Unsupervised clustering grouping the samples into three major clusters. (D) The PCA of the
gene expression profile distinguishes patients in the TME cluster-A, -B, and -C groups in TCGA-SKCM. The results can distinguish three different immune infiltration
pattern samples (TME cluster-A: blue, TME cluster-B: yellow, TME cluster-C: green). (E) The Kaplan–Meier curve of the patient’s overall survival (OS) shows that TME
infiltration is significantly related to the overall survival (Log-rank test, p = 0.014).

correlated with gender (p = 0.031; Figure 7E), and significantly
correlated with pathological stage (p = 0.0027; Figure 7F) and T
stage (p< 0.001; Figure 7G). There was no significant correlation
between the risk score and TMB, age, M stage, and N stage
(p > 0.05; Figures 7C,D,H,I and Table 2).

Evaluation and Validation of the
Prognostic Signature
Correlation analysis revealed that the expression of 13 hub genes
in different tumors was significantly correlated (Figure 8A). The
heterogeneity between tumors caused the risk score to have
different prognostic effects on different cancers (Figure 8B).
Univariate and multivariate Cox analyses showed that the risk
score was an independent risk factor for predicting the prognosis
of patients with SKCM (Figure 8C). We included the index
of p < 0.05 in the multivariate Cox model to construct a
nomogram to predict the 1-, 2-, and 3-year survival probability
of SKCM patients. The C-indexes [0.732 (95% CI: 0.697–0.767)]

of the nomogram were used to calculate the discriminative ability
of the nomogram, showing a high degree of discrimination
(Figure 8D). The calibration also showed a great agreement
between the 1-year, 2-year, and 3-year OS estimates and the actual
observed values of SKCM patients through a comparison to the
nomogram (Figure 8E).

Prognostic Value of Hub Genes in SKCM
Patients
We focused on the potential prognostic value of EDN3, CLEC4E,
SRPX2, KIR2DL4, UBE2L6, and IFIT2 as immune scores for
melanoma patients. In the group of novel hub genes, low
expression levels of UBE2L6, KIR2DL4, IFIT2, and CLEC4E were
observed in tumor cells, while high expression levels of SRPX2
and EDN3 were found in SKCM. However, only UBE2L6 and
IFIT2 showed significant expression differences in TCGA-SKCM
cohort. A larger sample size may be required to verify the
differential expression of these molecules in SKCM. The open
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FIGURE 2 | Three types of SKCM patients in the GEO database based on TIICs infiltration. (A) Hierarchical clustering determined the number of clusters of the
immune cell infiltration patterns of 310 SKCM patients in the GEO database (GSE8401, GSE35640, GSE15605, and GSE46517) and repeats 1,000 times to ensure
the stability of the classification. (B) Heatmap displaying the expression of tumor-infiltrating immune cells in SKCM patients from GEO database was reviewed.

online tool, GEPIA, was used to analyze the prognostic value
of these novel hub genes. We found that the low expressions
of UBE2L6, KIR2DL4, IFIT2, and CLEC4E were significantly
associated with poor prognosis in SKCM.

Preliminary IHC Validation in Melanoma
Specimens
We evaluated the expression of six novel genes in melanoma
tissues. The IHC staining results showed that Ube2L6, SRPX2,
and IFIT2 were expressed at higher levels, while CLEC4E, END3,
and KIR2DL4 were expressed at lower levels in 25 melanoma
specimens (Figure 9).

DISCUSSION

The incidence of SKCM continues to increase annually. The
recurrence and metastasis of SKCM caused by functional
variations in TME markedly contribute to the extremely poor
prognosis of SKCM. TME plays a key role in the response to

immunotherapy. Several treatments have improved the survival
rate of patients with advanced diseases, such as radiotherapy,
chemotherapy, and immunotherapy (Wagner et al., 2019).
In particular, the application of immunotherapy in SKCM
has enabled remarkable breakthroughs (Mitchell et al., 2018).
However, there are still many patients who exhibit resistance
to cancer immunotherapy and adoptive cell therapy due to
the immunosuppressive barriers that exist in TME (Hu et al.,
2020). Therefore, there is an urgent need to determine more
therapeutic targets and prognostic biomarkers based on TME.
In this study, we conducted a comprehensive assessment of
immune cell infiltration in TME, identified novel tumor immune
subtypes, and assessed the prognostic value of immune cells in
SKCM patients. The prognostic characteristics proposed herein
are reliable for predicting the survival of patients with SKCM.

To verify the key role of immune cell-infiltrated TME in
SKCM, we performed independent microarray data analysis
on four datasets in the GEO database. Notably, cross-platform
research increased the reliability of our novel prognosis model.
We used the CIBERSORT algorithm to evaluate the immune
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FIGURE 3 | Construction and functional annotation of TME-related characteristic genes. (A) The Venn diagram showing the DEGs between the three TME clusters in
TCGA database. (B) Based on the gene expression profile of SKCM patients in the GEO database, unsupervised analysis and hierarchical clustering of DEGs were
carried out, divided into GeneCluster-A, -B, and -C. According to their expression changes, DEGs were classified into Signature gene-A and -B. (C,D) Gene
Ontology (GO) enrichment analysis of Signature gene-A (C) and -B (D) gene sets. (E) The expression of cells in the three GeneCluster groups. (F) The enrichment of
different pathway characteristics (immune-related features, mismatch-related features, and matrix-related features) in three different GeneCluster groups (∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001).

cell infiltration status of the SKCM cohort transcriptome data
in TGCA database comprehensively and obtained 22 different
immune cell infiltration abundances in each patient. We depicted
the tumor immune cell interaction network, including the overall
situation of the cell lineage and its impact on the overall survival
of SKCM patients, which was reviewed and verified in the SKCM
patient cohort from the GEO database. To evaluate the tumor
heterogeneity and interaction with TME that can guide better

and earlier targeted treatments better, we hierarchically clustered
tumor samples based on essential differences in immune cell
infiltration patterns. Principal component analysis (PCA) based
on the expression profile data of SKCM patients could distinguish
the three TME cluster groups well. Thus, we proceeded to analyze
the immune-related scores of three groups, tumor purity, and
matrix scores. Patients with TME cluster-A had higher immune
scores, whereas patients with TME cluster-B and -C mainly
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FIGURE 4 | The genetic variation and ceRNA network of Signature gene-A and -B in SKCM patients. (A,B) The mutation maps of Signature gene-A and -B,
respectively, in SKCM patients. The mutation information of each gene was displayed in the waterfall chart, and various colors indicated different mutation types; the
upper section of the legend showed the mutation load. (C,D) Signature gene-A and -B are, respectively, on 23 chromosomes of SKCM patients. The CNV difference
and its position on the above. (E,F) UpSet diagram showing the variable splicing of Signature gene-A and -B in SKCM patients. (G) Based on the expression of
Signature gene-A and -B in SKCM patients. To construct a ceRNA regulatory network of mRNA–miRNA–LncRNA and summarize the complex relationship between
Signature gene-A and -B (red dots), immune-related LncRNA (blue dots), and miRNA targeting LncRNA (green dots).

had tumor purity and matrix scores. In the GEO database, the
GSE8401, GSE35640, GSE15605, and GSE46517 datasets verified
the gene expression profile data and immune cell infiltration
of SKCM patients and revealed consistent clustering results. To
gain a new understanding of the relationship between the above
grouping and TME phenotype, we conducted a series of survival
analyses and found that TME cluster-C (n = 92) was associated
with a better prognosis among the three clusters.

We explored the potential biological characteristics of the
different TME phenotypes and performed a different analysis
on the three TME clusters and displayed the intersection
of 486 DEGs using a Venn diagram. Based on the above
differential genes, we finally obtained 330 repeated DEGs from

the four datasets in the GEO database. We used unsupervised
clustering to divide SKCM patients into three different subtypes
based on the expression of DEGs, namely GeneCluster-A, -
B, and -C. According to the expression of DEGs in the
different groups, they were divided into Signature gene-A
and -B. We confirmed that the expression of these genes
was quite different between the two clusters due to various
tumor heterogeneities. These clusters were also clearly associated
with different mutational patterns. GO enrichment analysis
showed that Signature genes-A and -B had different unique
BPs. Immune-activating genes are associated with the activation
of immune surveillance and immune activation during tumor
immunization; Signature gene-A involves the overexpression
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FIGURE 5 | Construction of gene-based risk prediction model. (A) LASSO Cox regression analysis identified 13 hub genes closely related to OS of TCGA-SKCM.
(B) Kaplan–Meier plots assessed the impact of risk scores on the OS of SKCM patients in TCGA. (C) Time-dependent ROC curve analysis of the risk score. (D) The
distribution of risk scores, the expression values of the 13 hub genes, and the survival status of SKCM patients ranked according to the risk scores.
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FIGURE 6 | The regulation of risk score on tumor gene expression and biological processes. (A,B) GSEA revealed the most significant hallmarks with high- and
low-risk clusters. (C,D) Enrichment of representative pathways between high- and low-risk patients in GSEA analysis. (E) TIICs in the high- and low-risk groups.
(F) The enrichment of different pathway characteristics (immune-related characteristics, mismatch-related characteristics, and matrix-related characteristics) in high-
and low-risk patients (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).

of immune-activated genes, and the gene set overexpressing
Signature gene-B is mainly demonstrated by upregulation of
genes related to the matrix and transmembrane receptors.
Such finding suggests that the Signature gene-A gene set
may have an impact on the immunophenotypic landscape of
TME. In addition, the analysis results showed that there were
significant differences in the expression of TME cells and the
enrichment of some related biological pathways among the three
GeneCluster groups.

To explore causes of tumor immune microenvironment
heterogeneity more deeply, we analyzed the tumor mutation-
related characteristics of patients. The CNV information of
SKCM was downloaded in addition to the somatic mutation
data and TMB of each patient in Signature gene-A and -B. We
also explored SNPs and CNVs in SKCM patients. The gene
variable splicing information of SKCM patients in TCGA was
also obtained from TCGA Spliceseq website. The results of SNP
analysis revealed that there were obvious mutations in both gene
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FIGURE 7 | Correlation analysis of risk score and clinicopathological characteristics of SKCM patients in TCGA. (A–C) Correlation analysis between risk score and
different patient types showed that risk score was related to TME cluster grouping (p < 0.001) (A) and tumor type (p < 0.001) (B). There was no significant
correlation with the patient’s tumor mutation burden (TMB) (p = 0.6). (D–I) The correlation analysis between the risk score and different clinicopathological
characteristics of SKCM patients showed that the risk score and gender (p = 0.01) (D), stage (p = 0.0027) (E), and T stage (p < 0.001) (F) are related, but there is
no significant correlation between the patient’s age (G), M stage (H), and N stage (I).

TABLE 2 | Univariate and multivariate Cox analyses of patients’ OS prediction based on risk score in TCGA database.

Variables Univariate Cox analysis Multivariate Cox analysis

HR (95% CI) p-Value HR (95% CI) p-value

Age (≥ 60 vs.<60) 1.47(1.09− 1.98) 0.009** 1.44(1.07− 1.94) 0.02*

Gender (male vs. female) 1.04(0.77− 1.42) 0.78 0.97(0.71− 1.32) 0.84

Stage (III + IV vs. I + II) 1.76(1.31− 2.37) <0.001*** 1.96(1.45− 2.64) <0.001***

Type (Metastatic vs. primary) 0.36(0.22− 0.59) <0.001*** 0.47(0.29− 0.76) 0.002**

riskScore (high vs. low) 11.49(6.10− 21.64) <0.001*** 11.10(5.89− 20.92) <0.001***

*p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.

sets, and most of the changes in CNV were concentrated on
the amplification of copy number. The variable splicing analysis
showed that the Signature gene-A set mainly had ES in SKCM
patients, while the Signature gene-B set had no obvious form
of variable splicing. This result highlighted the influence of the

Signature gene-A set on the immune landscape. According to
the expression of Signature gene-A and -B sets, we screened
out the more relevant lncRNAs as immune-related lncRNAs and
constructed a ceRNA regulatory network of mRNA–miRNA–
LncRNA interaction.
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FIGURE 8 | The predictive power of genetic risk score on the prognosis of pan-cancer. (A) Correlation analysis between the expressions of 13 hub genes in
pan-cancer. (B) Subgroup analysis of the prognostic value of the risk score in pan-cancer in TCGA dataset. (C) Multivariate Cox regression analysis of risk score
combined with clinicopathological characteristics. (D) Nomogram prediction of the 1-, 2-, and 3-year survival probability. (E) The calibration curve of the nomogram
showed that the prediction model had a good predictive value for the prognosis of SKCM patients at 1, 2, and 3 years.

To create a better clinical prediction model for different
SKCM patients, a novel prognostic-related risk scoring system
was developed. First, we incorporated Signature gene-A and
-B sets into the univariate Cox model and obtained 233
prognostic-related genes. A subsequent LASSO Cox analysis was
performed for dimensionality reduction and model construction,
and finally, 13 hub genes were obtained. This novel scoring
system had good predictive ability for OS. The AUC of 1-
year, 3-year, and 5-year OS was 0.713, 0.694, and 0.734,
respectively. Furthermore, GSEA was employed to evaluate

the correlation between the high- and low-risk groups and
biological characteristics. Pathways, such as metabolism-related
pathways and oxidative phosphorylation, were mainly enriched
in the high-risk group, while immune response-related pathways,
including cytokine signaling pathway, JAK–STAT signaling
pathway, and natural killer cell-mediated cytotoxicity, were
significantly enriched in low-risk patients. This finding is
consistent with a previous report (Hu et al., 2020). Moreover,
the expression of TME cells, as well as some other pathways,
such as angiogenesis, mismatch-related characteristics, and
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FIGURE 9 | (A) Pictures of inmunohistochemical staining of Ube2L6, SRPX2,
IFIT2, END3, CLEC4E, and KIR2DL4. (B) Higher expressions of Ube2L6,
SRPX2, and IFIT2 were presented, while lower expressions of CLEC4E, END3,
and KIR2DL4 were shown in melanoma tissues (n = 25) by IHC staining.

matrix-related characteristics, was significantly different between
the high- and low-risk groups. Finally, we assessed the correlation
between the risk score and the clinical classification and
pathological characteristics of SKCM patients and found that
low-risk scores were often associated with patients’ TME cluster-
A classification and metastatic SKCM. In different tumors, 13
hub genes showed different prognostic effects. Furthermore,
the results of univariate and multivariate Cox analyses showed
that risk scores could be identified as independent risk factors
for predicting the prognosis of patients with SKCM. We
subsequently selected statistically significant clinical indicators
in the multivariate Cox model to construct a nomogram to
predict the OS of patients with SKCM. The C-index indicates
that the model had a high degree of discrimination. Validation
of the calibration curve also revealed good concordance
between the estimated values and the actual probability. To
our knowledge, this is the first study to explore factors that
directly alter the TME in SKCM. Thus, our immune model is

more predictable for facilitating treatment than TMB and other
predictive factors.

Among the six prognostic signatures, Ubiquitin/ISG15-
conjugating enzyme E2 L6 (Ube2L6) has been reported to
promote insulin resistance and hepatic steatosis and is related
to cisplatin resistance (Murakami et al., 2020; Wei et al.,
2021). SRPX2 is invasive by upregulating the FAK/SRC/ERK
pathway and can lead to pancreatic cancer drug resistance in
PI3K/AKT in lung cancer. Additionally, the NFATc3/SRPX2
axis participates in human embryonic stem cell differentiation,
indicating that SRPX2 plays a critical role in pan-cancers
(Gao et al., 2020; Li et al., 2020; Chen et al., 2021).
SRPX2 is a component of the extracellular matrix, which is
important for regulating tumor formation, as demonstrated
in diverse tumors, such as colorectal cancer (Øster et al.,
2013), gastrointestinal cancer (Tanaka et al., 2012), prostate
cancer (Zhang et al., 2018), and pancreatic cancer (Gao
et al., 2015). Interferon-induced protein with tetratricopeptide
repeats protein may be a new therapeutic target for cancer
therapy and can be used as a prognostic marker for cancers,
such as glioblastoma and pancreatic cancer (Pidugu et al.,
2019). In previous studies, CLEC4E was found to be related
to tuberculosis and could be used to constrain tuberculosis
through autophagy against drug-resistant strains (Kabuye
et al., 2019; Pahari et al., 2020). Killer cell immunoglobulin-
like receptor 2DL4 (KIR2DL4) is expressed by NK cells.
According to some reports, KIR2DL4 may be an intervention
for cancer immunotherapy (Attia et al., 2020). In our IHC
analysis, some of these relationships were verified in SKCM
patients. Only few studies have examined the relationship
between SKCM and these hub genes. Thus, our study
revealed their underlying relationships and found a novel
important signature.

Therefore, the novel six-gene signature, which was developed
to evaluate the comprehensiveness of TME in SKCM, is a reliably
developed gene classifier that can be used to predict prognosis
and guide more accurate molecular therapy.

CONCLUSION

In conclusion, we have developed and verified an unprecedented
set of effective prognostic markers based on immune infiltrating
cells, which have certain potential application value in predicting
the clinical prognosis of patients with SKCM and the benefit of
immunotherapy. This study provides a systematic view of the
immune-related characteristics in SKCM and suggests their good
prognostic performance.
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Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The Cancer Genome
Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.)
19, A68–A77. doi: 10.5114/wo.2014.47136

Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C.,
McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of
anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454. doi: 10.1056/
NEJMoa1200690

Wagner, N. B., Weide, B., Gries, M., Reith, M., Tarnanidis, K., Schuermans, V., et al.
(2019). Tumor microenvironment-derived S100A8/A9 is a novel prognostic
biomarker for advanced melanoma patients and during immunotherapy with
anti-PD-1 antibodies. J. Immunother. Cancer 7:343. doi: 10.1186/s40425-019-
0828-1

Wei, W., Li, Y., Li, Y., and Li, D. (2021). Adipose-specific knockout of ubiquitin-
conjugating enzyme E2L6 (Ube2l6) reduces diet-induced obesity, insulin
resistance, and hepatic steatosis. J. Pharmacol. Sci. 145, 327–334. doi: 10.1016/j.
jphs.2020.12.008

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: a class discovery
tool with confidence assessments and item tracking. Bioinformatics 26, 1572–
1573. doi: 10.1093/bioinformatics/btq170

Xu, L., Shen, S. S., Hoshida, Y., Subramanian, A., Ross, K., Brunet, J. P., et al.
(2008). Gene expression changes in an animal melanoma model correlate with
aggressiveness of human melanoma metastases. Mol. Cancer Res. 6, 760–769.
doi: 10.1158/1541-7786.Mcr-07-0344

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16, 284–287.
doi: 10.1089/omi.2011.0118

Zeng, L., Fan, X., Wang, X., Deng, H., Zhang, K., Zhang, X., et al. (2019).
Bioinformatics analysis based on multiple databases identifies hub genes
associated with hepatocellular carcinoma. Curr. Genomics 20, 349–361. doi:
10.2174/1389202920666191011092410

Zhang, H., Meltzer, P., and Davis, S. (2013). RCircos: an R package for Circos 2D
track plots. BMC Bioinformatics 14:244. doi: 10.1186/1471-2105-14-244

Zhang, M., Li, X., Fan, Z., Zhao, J., Liu, S., Zhang, M., et al. (2018). High SRPX2
protein expression predicts unfavorable clinical outcome in patients with
prostate cancer. Onco. Targets Ther. 11, 3149–3157. doi: 10.2147/ott.S158820

Zhao, X., Shen, J., Ivaturi, V., Gopalakrishnan, M., Feng, Y., Schmidt, B. J., et al.
(2020). Model-based evaluation of the efficacy and safety of nivolumab once
every 4 weeks across multiple tumor types. Ann. Oncol. 31, 302–309. doi:
10.1016/j.annonc.2019.10.015

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhou, Sun, Chen, Wang, He, Lyu, Shen, Chen and Yang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 17 October 2021 | Volume 9 | Article 739594

https://doi.org/10.3389/fmolb.2019.00148
https://doi.org/10.1111/j.1600-065X.2011.01007.x
https://doi.org/10.1111/j.1600-065X.2011.01007.x
https://doi.org/10.1038/jid.2013.197
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.3322/caac.21654
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1371/journal.pone.0027922
https://doi.org/10.1371/journal.pone.0027922
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.1016/s0140-6736(09)61397-0
https://doi.org/10.1016/s0140-6736(09)61397-0
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1186/s40425-019-0828-1
https://doi.org/10.1186/s40425-019-0828-1
https://doi.org/10.1016/j.jphs.2020.12.008
https://doi.org/10.1016/j.jphs.2020.12.008
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1158/1541-7786.Mcr-07-0344
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.2174/1389202920666191011092410
https://doi.org/10.2174/1389202920666191011092410
https://doi.org/10.1186/1471-2105-14-244
https://doi.org/10.2147/ott.S158820
https://doi.org/10.1016/j.annonc.2019.10.015
https://doi.org/10.1016/j.annonc.2019.10.015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	The Landscape of the Tumor Microenvironment in Skin Cutaneous Melanoma Reveals a Prognostic and Immunotherapeutically Relevant Gene Signature
	Introduction
	Materials and Methods
	Acquisition and Preprocessing of the SKCM Expression Datasets
	TIICs Analysis and Clustering of Samples
	Differential Gene Expression Pattern Clustering Analysis
	RNA Sequence Expression Analysis in Gene Expression Profiling Interactive Analysis
	Gene Set Enrichment Analysis
	Evaluation of Patient Biological Characteristics
	Establishment of the Immune Characteristic Model and Clinical Prediction Model
	IHC Validation
	Statistical Analysis

	Results
	Immune Infiltration Analysis Related to SKCM Patients
	Construction of the TME-Related Signature Gene in SKCM Patients
	CeRNA Regulatory Network Construction and Signature Gene Expression in SKAM Patients
	Construction of the Immune-Related Prognostic Gene Signature
	GSEA
	Correlation Analysis of the Risk Score and Clinicopathological Characteristics
	Evaluation and Validation of the Prognostic Signature
	Prognostic Value of Hub Genes in SKCM Patients
	Preliminary IHC Validation in Melanoma Specimens

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


