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A B S T R A C T

Functional connectivity of the resting-state (RS) brain is a vehicle to study brain dysconnectivity aspects of
diseases such as schizophrenia and bipolar. Methods that are developed to measure functional connectivity are
based on the underlying hypotheses regarding the actual nature of RS-connectivity including evidence of tem-
porally dynamic versus static RS-connectivity and evidence of frequency-specific versus hemodynamically-
driven connectivity over a wide frequency range. This study is derived by these observations of variation of RS-
connectivity in temporal and frequency domains and evaluates such characteristics of RS-connectivity in clinical
population and jointly in temporal and frequency domains (the spectro-temporal domain). We base this study on
the hypothesis that by studying functional connectivity of schizophrenia patients and comparing it to the one of
healthy controls in the spectro-temporal domain we might be able to make new observations regarding the
differences and similarities between diseased and healthy brain connectivity and such observations could be
obscured by studies which investigate such characteristics separately.

Interestingly, our results include, but are not limited to, a spectrally localized (mostly mid-range frequencies)
modular dynamic connectivity pattern in which sensory motor networks are anti-correlated with visual, auditory
and sub-cortical networks in schizophrenia, as well as evidence of lagged dependence between default-mode and
sensory networks in schizophrenia. These observations are unique to the proposed augmented domain of con-
nectivity analysis. We conclude this study by arguing not only resting-state connectivity has structured spectro-
temporal variability, but also that studying properties of connectivity in this joint domain reveals distinctive
group-based differences and similarities between clinical and healthy populations.

1. Introduction

Schizophrenia is a complex psychiatric illness with estimated oc-
currence rate of 1% (Bhugra, 2005) in global population. The main
objective of early studies of this disorder had been definition and di-
agnosis via symptoms, later moving toward a search for biomarkers
rather than relying exclusively on observed or self-reported sympto-
mology (Keshavan et al., 2013). Although there is additional com-
plexity emerging regarding the validity of current state of classification
and diagnostic criteria for complex mental disorders (Cheniaux et al.,
2008; Kotov et al., 2013) we cannot ignore the power of biological

markers from genomics and brain imaging in refining diagnostic cri-
teria.

Functional magnetic resonance imaging (fMRI), as a non-invasive
method to capture hemodynamic mediated activity of brain regions due
to the function of the brain at the given time, is an appealing tool for
studying schizophrenia; a brain disorder that leads to disturbances of
thought, cognition and emotion (Schultz and Andreasen, 1999;
Andreasen and Flaum, 1991). Functional connectivity with fMRI has
been widely used to study schizophrenia (Garrity, 2007; Calhoun et al.,
2011) due to the fact that the disease is recognized as a dysconnectivity
disorder (Pettersson-Yeo et al., 2011; Fornito et al., 2012; Friston,
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1998).
Evidence of anomalies in brain connectivity of patients goes back to

early studies (Wernicke, 1906) in which psychosis was associated with
disruption of association fiber tracts in the brain. Since then, extensive
work in identifying changes in structural and functional connectivity
has been performed. Between the two, functional analyses has ad-
vantages which allows to view the “living” brain while it performs
experimental or internally-driven tasks.

Functional connectivity during the resting-state, compared to task-
based designs, is shown to span a broader range of frequencies in
neurophysiological activation (Xiong et al., 1999) as well as engaging
more functional networks(Smith et al., 2009; Damaraju et al., 2014a;
Gusnard et al., 2001). Identified networks include default mode (DM)
networks, which have been associated with self-reflection and self-
monitoring (Flashman et al., 2004) and networks connected with au-
ditory hallucination and paranoid ideation (Friston and Frith, 1995).

Observations of resting-state functional connectivity of schizo-
phrenia include both increased/hyper and decreased/hypo connectivity
compared to healthy-controls between various brain regions, though
predominantly the latter. For example there are many studies have
reported significant weaker whole-brain connectivity in schizophrenia
patients compared to health controls(Argyelan et al., 2014; Lynall et al.,
2010) although hyper-connectivity is also observed in-between default
mode networks and between default-mode and networks associated to
cognitive demands appearing as increasing anti-correlation(Zhou et al.,
2007). However, results are not always consistent between studies. For
example, both hyper and hypo connectivity have been reported be-
tween DM networks in schizophrenia (Fornito et al., 2012; Whitfield-
Gabrieli et al., 2009). Such differences in findings can be due to un-
controlled sources of variations among subjects, which may affect the
final estimation of connectivity (such as motion artefact as one of ex-
tensively studied artefact (Van Dijk et al., 2012), or can be due to the
fact than the chosen method for the estimation of connectivity is not
capturing all aspects of brain connectivity. An example for the latter is
transition from temporally stationary estimation of connectivity toward
a temporally dynamic connectivity based on overwhelming evidences
that whole-brain resting-state connectivity is in fact temporally dy-
namic(Calhoun et al., 2014). Sliding-window approaches have been the
most commonly used to capture such time-varying connectivity(Allen
et al., 2014) also it has been used to study schizophrenia in the context
of transient states of connectivity (Damaraju et al., 2014a) extending
observation of static hypo-connectivity in schizophrenia to spending
more time in a hypo-connected state.

Common studies of dynamic functional connectivity have been fo-
cused on the dynamics of the degree of dependence by measuring co-
activation, which is limited to observing the changes between positive,
negative or weak co-activation. However, based on recent studies of
frequency profiles of functional connectivity, evidence of dynamics
along the frequency dimension have also been shown. This includes
observing differences in the frequency of activation and co-activation
between different regions or functional networks of the brain(Calhoun
et al., 2011; Yu et al., 2014; Meda et al., 2015; Hoptman et al., 2010)
and also, more recently, it includes observation in the temporal dy-
namic changes of the frequency of co-activation between the same pair
of regions or networks(Chang and Glover, 2010; Yaesoubi et al., 2015).
The former observations have shown that evaluations of frequency
specific activation and co-activation enable us to capture significant
differences between groups of patients and healthy controls (Miller
et al., 2016) as it is shown to carry useful information related to the
underlying neurophysiological processes. For example, the default-
mode network has been shown to exhibit significantly more high fre-
quency fluctuations in patients and significantly less low frequency
fluctuations in controls, perhaps related to decreased cognitive effi-
ciency (Garrity, 2007).

A common hypothesis derived from both groups of observations is
that observed activation in a given brain region may originate from

various neurophysiological sources of fluctuations with unique spectral
properties (Penttonen, 2003; Buzsaki and Draguhn, 2004) which also
extends to the frequency variation in the measured co-activation. Here,
motivated by both groups of studies, we leverage a more general fra-
mework to simultaneously investigating temporally dynamic and fre-
quency-specific functional connectivity during resting-state fMRI.

Our proposed joint analysis has been enabled by recent studies that
have developed methods to simultaneously capture temporal behavior
as well as frequency and phase profiles associated with each state. Such
studies leverage a time-frequency decomposition to capture functional
connectivity between a few selected ROIs in the joint domains (Chang
and Glover, 2010) (Yaesoubi et al., 2015). An important advantage of
the proposed framework is that the connectivity state of the brain at
given time-point can be studied as a superposition of multiple fre-
quency-specific connectivity states. Additionally, the phase information
encoded in the frequency domain enables us to capture a delayed cor-
relation; similar in concept to a study that identifies delayed correlation
between relatively shifted time-courses among multiple brain networks
(Jafri et al., 2008).

In this work we investigated the above proposed pipeline (Jafri
et al., 2008) for capturing the spectro-temporal whole-brain con-
nectivity patterns characterized jointly by time, frequency and phase
(lagged dependence) in healthy controls and schizophrenia patients. We
show that such decomposition enables us to observe significantly dif-
ferent characterization of connectivity between the two groups. We also
observe that when transient connectivity states are defined at the group
level, shared between both groups, occupancy rates and dwell times for
the group-level differ significantly between patients and controls.

2. Materials and method

2.1. Participants, image acquisition and pre-processing

Subjects include 163 healthy controls (46 females) with average age
of 36.9 and 151 (37 females) patients diagnosed with schizophrenia
with average age of 37.8. In accordance with the internal review boards
of corresponding institutes, informed consent was obtained from all the
subjects. Details on the image acquisition and the pre-processing are
provided in Supplementary Material A.

2.1.1. Group-ICA and post-processing
We study connectivity between anatomically and functionally

meaningful regions in the brain. We choose group spatial independent
component analysis (gsICA) as the data-driven approach to define these
regions with no need for prior knowledge of the regions or a task-de-
sign. It is achieved by linearly decomposing voxel-level time series into
maximally independent spatial maps with corresponding time-courses
per-subject (Calhoun et al., 2001; Calhoun and Adali, 2012). The GIFT
toolbox implementation of gsICA is used. More details on im-
plementation of gsICA in GIFT are provided in Supplementary Material
B.

2.2. Temporally-dynamic and frequency-specific connectivity states

To estimate connectivity, in the spectro-temporal domain, we first,
decompose each subject-specific network time-courses into a time-fre-
quency domain by leveraging a wavelet decomposition by convolving
each time-course with complex Morlet wavelet as our choice of wavelet
kernel. The complex Morlet kernel has the following formulation,
which has both real and imaginary parts:

× −

π σ
e e1

2
πif t t σ2 2c

2 2

(1)

The kernel has a Gaussian-shaped frequency spectrum whose fc is
center frequency, and σ is standard deviation. σ is set to 0.02 Hz
throughout the study.
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Each input time-course is convolved with 5 different Morlet kernels
each centered equally in the interval of 0.01 and 0.25 Hz which when
stacked, it would result into the time-frequency representation of the
input time-course (Fig. 1A).

Next we use wavelet transform coherence (WTC) for the estimation
of dependence in this joint domain. WTC is defined as follows:

=
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Wxy represents element-wise conjugate multiplication of wavelet
transforms of input signals x and y which are represented as Wx and Wy.
S and S′ are the smoothing parameters. Details on the WTC and its
formulation are provided in Yaesoubi et al. (Yaesoubi et al., 2015).

WTC is used to measure dependence between all pairs of time-fre-
quency representation of network time-courses. Such dependence is
what we call “dynamic coherence”. Dynamic coherence has a complex
value with both real and imaginary parts. Its magnitude measures the
degree of the dependence within a given frequency band between two
time-series at a given point in time, with phase capturing the lag at
which maximum correlation is achieved.

Fig. 1B Right, explains this property as well as the color-coding that
is used through out of this work to present our complexed-value dy-
namic coherence. The lightness of the colormap represents the magni-
tude of the measurement and phase is encoded with the selected cir-
cular colormap.

Following procedure proposed by Yaesoubi et al.(Yaesoubi et al.,
2015) to estimate spectro-temporal connectivity states, estimations of
dynamic coherence for all pairs of networks are concatenated along
time, frequency and subjects followed by a clustering analysis to sum-
marize it into finite number of states. We use k-means clustering and k

is set to ‘5’ (Fig. 1C).

3. Results

The results in the paper are organized into two sets. In the first set,
we estimate spectro-temporal connectivity states in the time-frequency
domain separately for healthy controls and patients. This allows us to
inspect differences in the connectivity patterns and frequency and
phase profiles of the states between patients and controls. In the second
set, we estimate connectivity states shared among all subjects. This
allows us to investigate differences between the two groups with re-
spect to their occupancy rates (amount of time subjects live at a specific
state during the course of the scan) as well as their tendency to stay in
each state.

In Fig. 2A,C we show group-specific (healthy controls and schizo-
phrenia patients) spectro-temporal connectivity states along with the
corresponding phase and frequency. States are sorted based on their
occurrence rates during the course of the scan.

Correlation between connectivity patterns of pair of states each
belonging to a different group of subjects (Fig. 2B) shows that most
commonly occurring state (state 1) is shared among the groups and has
a high frequency range (frequency profiles being left-skewed peaking at
maximum possible frequency of 0.25 Hz). HC state 3 has maximum
correlation (r = 0.8856) with SZ state 2, and states share similar fre-
quency profiles. Finally, the connectivity pattern of SZ state 4 maps to
both of the HC states 2 and 4 (r= 0.7971, 0.9038 respectively); how-
ever, the frequency profile of SZ state 4 only matches the frequency
profile of HC state 4 (Fig. 2B). Furthermore, SZ state 3 and HC state 5
share similar frequency profiles, but both have unique connectivity
patterns which are minimally correlated with any other states of each

Fig. 1. Pipeline to capture connectivity states in a joint
time and frequency domain.
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group. Note that many of these states are only identifiable in the joint
time-frequency domain. If temporally dynamic whole-brain con-
nectivity states were estimated on full-spectrum (Damaraju et al.,
2014a; Allen et al., 2014), states with different frequency profiles might
have been merged and the patterns would have been blurred across
states. This would also be true if whole-brain connectivity was esti-
mated on full time-courses as in coherence analysis. For example, SZ

state 3 with a unique connectivity patterns, specifically a pronounced
anti-correlation between somatomotor and visual/auditory/sub-cor-
tical networks would not have been distinguished from state 1 due to
the similar frequency profile.

We also investigated differences between amplitude and phase of
the dynamic coherence of the connectivity states that are maximally
correlated between HCs and SZs. This enables us to compare

Fig. 2. (A) Connectivity states of healthy controls defined in the time-frequency domain and similarly in (C) for schizophrenia patients. A detailed description of the networks on the rows
and columns of the each state is provided in Appendix B Fig. S1. (B) Maximally correlated connectivity states between SZs and HCs. (D) Plot showing overall stronger connectivity in HCs
compared to SZs.
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connectivity level of each group at each state as a notion of relative
hyper or hypo connectivity. The details on how we performed this
contrast analysis is provided in Supplementary Material C but in sum-
mary, we estimate the degree of difference between median of network-
pairs' dynamic coherence (performed separately for amplitude and
phase) of each state between the two groups.

Fig. 3 summarizes this analysis between maximally correlated states
(Fig. 2B). Yellow means HCs have significantly higher median of am-
plitude of dynamic coherence in the corresponding network pair and
red means the reverse (second column). Same color map is used for
difference in the phase (third column). Gray also means no significant
differences. We clearly see that both phase and amplitude contribute in
the difference between HCs and SZs for given component pairs.

Moreover, we investigated the correlation of age and gender of
subjects of each group and including symptom scores (positive, nega-
tive and general psychopathology scales) and medication score (chlor-
promazine equivalency (CPZ) scores) of only patient group to the es-
timate to the average of connectivity corresponding to each state of
each subject. The analysis was performed very similarly as the above
analysis (similarly it was performed separately for amplitude and phase
of the averaged connectivity). However we did not observe any strong
effect of age, gender, symptom or CPZ scores to either phase or am-
plitude of subject-wise and per-state averaged connectivity.

In second set of the results, we investigate differences between
groups by studying the occupancy rates and tendency to stay in a given
state (dwell time) for patients and controls. We perform k-means clus-
tering on all the subjects (regardless of the diagnosis) and identify 5
spectro-temporal connectivity states as in Fig. 4 accompanied by phase
and frequency profiles. There are evident similarities between these
states and the connectivity patterns in Figs. 3–4.

Next, we measure occupancy rates of each subject in each state by
counting the number of time-frequency points which were assigned to a
given state during the scan. This is followed by group difference ana-
lysis on the distribution of occupancy rates between HCs and SZs.
Interestingly, in all states except state 4, we observed significant dif-
ferences (FDDR adjusted p-value< 0.01) between the two groups
(Kolmogorov-Smirnov test for difference in medians). Schizophrenia
patients were more likely to occupy state 1 (low global coherence,

higher frequency profile) and state 2 (negative DMN-to-other co-
herence, otherwise high global coherence with relatively lower fre-
quency profile). On the other hand, healthy controls had a greater
tendency to occupy state 3 (high coherence between sensory networks
and negative coherence between subcortical and sensory networks and
also diminished DMN-to-other coherence with low frequency profile)
and state 5 (extremely modularized coherence structure, very high
intra-domain coherence for all domains plus high subcortical-to-DMN,
cognitive control and cerebellum, and very low frequency profile).
Group-wise distribution of occupancy rates is represented in column 5
of Fig. 5. We also assessed the tendency of subjects to linger in a given
state by counting number of consecutive occurrences of each state (this
is done separately for each frequency band). We then take the median
of these measurements for each subject as our measure of state-specific
dwell time. As with the occupancy rate, we find patients have sig-
nificantly higher dwell-times in states 1 and 2 as shown in column 6 of
Fig. 7. As before, we regressed out variation due to the other subject-
variables (age, gender, site and motion parameters) from both measures
before conducting these tests.

Similar to the results in Fig. 3 differences of amplitude and phase of
dynamic coherence between HCs and SZs is analyzed as represented on
column 3 (differences in amplitude) and column 4 (difference in phase)
of Fig. 5.

4. Discussion

In this study, we investigated whole-brain resting-state connectivity
differences between schizophrenia patients and healthy controls in a
framework that smoothly integrates frequency domain characteristics
with temporal dynamics of connectivity, phenomena that have pre-
viously been explored separately, but not combined.

When we separately estimated spectro-temporal connectivity states
for patients and controls, we identified connectivity states shared by
both groups as well as connectivity states unique to each group. An
interesting observation based on this result is that the most similar
connectivity states between the patient and control groups involve
state-pairs that either both have very high frequency profiles (HC state
1 and SZ state 1) or low frequency profiles (States 2 and 4 of HCs and

Fig. 3. Identification of component pairs with significant differences in either amplitude or phase of the dynamic coherence between maximally correlated states. Column 2 shows SZ
states which are maximally correlated to the HC states on column 1. Column 3 shows difference in amplitude of component-pair dynamic coherence between HC and SZ which reject the
null hypothesis. Gray entries show the ones which did not reject the null. Column 4 shows difference in phase with similar analysis.
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state 4 of SZs). Consequently, most of the group differences occur in
connectivity states with relatively middle range frequency profiles, e.g.
HC state 5 whose a frequency profile peaks at around ~0.17 Hz and is
minimally correlated with any SZ states, and also SZ states 3 and 5,
which together cover a range of middle frequencies between 0.07 Hz to
0.17 Hz. There is recognizable unique modularity in these states. For

example, in SZ state 2 we clearly observe relatively strong and positive
correlation between all the subcortical (SC), auditory (AUD), and visual
(VIS) networks. At the same time, however, uniquely among all of the
SZ and HC-specific states, SZ state 2 features negative correlations be-
tween somatomotor (SM) networks and the SC, AUD and VIS networks.
To the best of our knowledge, this is the first evidence for this particular

Fig. 4. Connectivity states defined in time-frequency domain over all subjects regardless of the diagnosis.

Fig. 5. Differences in amplitude or phase of dynamic coherence of components belonging to the same state but different group. Column 3: difference in amplitude, column 4: difference in
the phase of the dynamic coherence. Column 5: histogram of occupancy measure of HCs and SZs subjects, column 6: histogram of dwell times.
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pattern of connectivity in schizophrenia patients, and it is only identi-
fiable when connectivity is analyzed jointly in time and frequency.
Among the HC states, state 5 exhibits the most similar modular pat-
terning to SZ state 2 but with a different connectivity pattern between
SC and AUD/VIS networks (anti-correlated in HC state 5, positively
correlated in SZ state 2) and between SM and AUD/VIS (positively
correlated in HC state 5, anti-correlated in SZ state2). Previous studies
(Woodward et al., 2012; Anticevic et al., 2014) have reported hyper-
connectivity between the thalamic and sensory networks in schizo-
phrenia patients, which here appears as a positive connectivity between
all subcortical and sensory networks compared to negative connectivity
in HCs between the same networks. Again such modularity only exists
in the joint domain since: first, this modularity occurs in states with a
unique frequency profiles (having a mid to high frequency range) and
could not be captured when states were estimated over all frequencies
(as is the case in conventional dynamic connectivity studies); and
second, it is different from some other states with which it has an
overlapping frequency profile. In fact, if we had studied connectivity
only along frequency dimension, states 1 and 2 of SZ would have
blurred along temporal domain and we were unable to observe such
pronounced modularity unique to SZ.

Another observation is that HC states tend to have more dispersion
with regard to phase of dynamic coherence representing lagged de-
pendence rather than clearly positive or negative (anti) correlation.
This can be observed from the phase/amplitude histograms of states 2,
4 and 5 of HCs but is only seen in states 4 and 5 of SZs.

Moreover, we observe that HC states have an overall stronger con-
nectivity compared to SZs.

For this, we first estimate the amplitude distribution of each state as
well as the subject-wise occupancy rates of the states. Then, from these
two, we estimate subject-wise amplitude distribution uniformly quan-
tized in 20 bins covering a range of 0 to the maximum amplitude of all
states. Fig. 2D shows log of the median of these distributions at each bin
separately for HCs and SZs and we observe as amplitude increases, al-
though the log of the median of both groups decreases, for SZs it decay
faster. This observation is in line with studies reporting decreased
connectivity of SZs between wider range of networks or ROIs (Bluhm
et al., 2007; Liang et al., 2006; Meda et al., 2012).

Meanwhile, although HCs showed an overall stronger connectivity
than SZs, the dynamic nature of connectivity does not necessarily
follow this overall observation. By revisiting rows 2 and 4 of Fig. 3, we
observe although SZ state 4 has maximum correlation to both states 2
and 4 of HCs, the directionality of the difference in amplitudes changes
when SZ state 4 and HC state 2 are compared versus when SZ state 4
and HC state 4 are compared (SZ > HC coded as red, HC > SZ is
coded as yellow). This shows that HCs experience both higher and
lower amplitude of dynamic coherence in similar connectivity patterns
but in different states (2 and 4) in comparison to SZs having less var-
iation in amplitude in a similar state (only in state 4).

In the second set of the results, by following Damaraju et al.
(Damaraju et al., 2014b), we explicitly compare differences in the dy-
namic behavior of the subjects with respect to occupancy rates of each
state as well as tendency to stay in a given state for a period of time
(dwell time). Note that in this set, states are shared among all subjects.
Our analysis shows significant differences between the groups based on
both measurements. Core observations from this set of results is that
first, we see that patients have higher occupancy rates and longer dwell
times in state 1, a hypoconnected state associated with mid and high
range frequency profile. The significant association of patients with this
state pulls together two disparate and consistent findings from previous
studies: First, patient network time-courses have more high frequency
content than controls (Turner et al., 2013; Calhoun et al., 2008) and
second, patients' networks tend to be more weakly (hypo) connected
than those of controls(Bluhm et al., 2007; Liang et al., 2006; Meda
et al., 2012). We also see that healthy and patients have different oc-
cupancy rates in states 2 and 5 which are observed at the lowest

frequencies and exhibiting similar modular patterning – except for the
valency of subcortical connections to Aud/Vis/SM (negative for state 5,
positive for state 2). State 5 with a narrower frequency profile and a
sharper modularization and a stronger connections between SC and
Aud/Vis/SM, as compared to state 2, is more occupied by HCs while
state 2 is more occupied by SZs. Similarly, state 3 with a mid-range
frequencies profile, is more occupied by HCs. State 3 looks like a wa-
shed out version of state 5 but having a broader frequency profile while
sharing the negative SC-to-Aud/Vis/SM connectivity which however is
more sharply exhibited by state 5. We can interpret these group dif-
ferences as extensions of previously reported results on schizophrenia
and both dysconnectivity and altered frequency-domain characteristics
(Whitfield-Gabrieli et al., 2009; Liang et al., 2006; Damaraju et al.,
2014b) to the spectro-temporal expansion of connectivity.

Furthermore, consistent with the contrast analysis of phase and
amplitude for the group-specific connectivity states of the first set of the
results (Fig. 3), we also observe amplitude and phase differences be-
tween patients and controls in states from the second set of results. The
clustering and states were drawn from the entire population, but clearly
are not only occupied differentially by patients and controls, but also
within a given cluster the observations from patients and controls are
exhibiting significant differences in their phase and amplitude proper-
ties.

5. Limitations and future works

There are limitations related to both theoretical aspects of dynamic
coherence and its implementation in this work. Dynamic coherence is
not able to measure dependence across frequency consequently, we are
not able to study cross-frequency connectivity of the brain. Possible
future work would be investigating cross-frequency connectivity in the
similar framework by possibly leveraging the phase information of
dynamic coherence similar to studies of phase-synchronization.

Next, for summarization of dynamic coherence estimations into fi-
nite number of states, we used k-means analysis. Although our ob-
servation was that the captured connectivity states, represented by
centroids of the k-means clusters, explain most of the variation of the
dynamic coherence among subjects, we believe there is still room for
investigating other summarization approached with different under-
lying assumptions which might complement the given states.

6. Conclusion

In this work, resting-state connectivity is studied in a joint domain
of time and frequency. Our results provide strong evidence for sys-
tematic variation of connectivity that is characterized jointly in both
domains, and also reveal novel differences and similarities between
diseased and healthy subjects. The observations are unique to con-
nectivity characterized jointly in the time and frequency domain and c
thus have been obscured in previous studies of resting-state con-
nectivity and schizophrenia.

Acknowledgment

We need to thank investigators who collected the data. The Authors
have declared that there are no conflicts of interest in relation to the
subject of this study. This work was supported by National Institutes of
Health grants: P20GM103472, 1R01EB006841, R01EB020407, and
National Science Foundation #1539067.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.06.023.

M. Yaesoubi et al. NeuroImage: Clinical 15 (2017) 761–768

767

http://dx.doi.org/10.1016/j.nicl.2017.06.023
http://dx.doi.org/10.1016/j.nicl.2017.06.023


References

Allen, E.A., et al., 2014. Tracking whole-brain connectivity dynamics in the resting state.
Cereb. Cortex 24 (3), 663–676.

Andreasen, N.C., Flaum, M., 1991. Schizophrenia: the characteristic symptoms.
Schizophr. Bull. 17 (1), 27–49.

Anticevic, A., et al., 2014. Characterizing thalamo-cortical disturbances in schizophrenia
and bipolar illness. Cereb. Cortex 24 (12), 3116–3130.

Argyelan, M., et al., 2014. Resting-state fMRI connectivity impairment in schizophrenia
and bipolar disorder. Schizophr. Bull. 40 (1), 100–110.

Bhugra, D., 2005. The global prevalence of schizophrenia. PLoS Med. 2 (5) (p. e151; quiz
e175).

Bluhm, R.L., et al., 2007. Spontaneous low-frequency fluctuations in the BOLD signal in
schizophrenic patients: anomalies in the default network. Schizophr. Bull. 33 (4),
1004–1012.

Buzsaki, G., Draguhn, A., 2004. Neuronal oscillations in cortical networks. Science 304
(5679), 1926–1929.

Calhoun, V.D., Adali, T., 2012. Multisubject independent component analysis of fMRI: a
decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev.
Biomed. Eng. 5, 60–73.

Calhoun, V.D., et al., 2001. A method for making group inferences from functional MRI
data using independent component analysis. Hum. Brain Mapp. 14 (3), 140–151.

Calhoun, V.D., Kiehl, K.A., Pearlson, G.D., 2008. Modulation of temporally coherent brain
networks estimated using ICA at rest and during cognitive tasks. Hum. Brain Mapp.
29 (7), 828–838.

Calhoun, V.D., et al., 2011. Exploring the psychosis functional connectome: aberrant
intrinsic networks in schizophrenia and bipolar disorder. Front. Psych. 2, 75.

Calhoun, Vince D., et al., 2014. The chronnectome: time-varying connectivity networks as
the next frontier in fMRI data discovery. Neuron 84 (2), 262–274.

Chang, C., Glover, G.H., 2010. Time-frequency dynamics of resting-state brain con-
nectivity measured with fMRI. NeuroImage 50 (1), 81–98.

Cheniaux, E., et al., 2008. Does schizoaffective disorder really exist? A systematic review
of the studies that compared schizoaffective disorder with schizophrenia or mood
disorders. J. Affect. Disord. 106 (3), 209–217.

Damaraju, E., et al., 2014a. Dynamic functional connectivity analysis reveals transient
states of dysconnectivity in schizophrenia. Neuroimage Clin (In Press).

Damaraju, E., et al., 2014b. Dynamic functional connectivity analysis reveals transient
states of dysconnectivity in schizophrenia. Neuroimage Clin. 5, 298–308.

Disorders of insight, self-awareness, and attribution in schizophrenia. In: Flashman, L.A.,
Beitman, B.D., Nair, J. (Eds.), Self-Awareness Deficits in Psychiatric Patients:
Neurobiology, Assessment, and Treatment. W.W. Norton & Co, New York.

Fornito, A., et al., 2012. Schizophrenia, neuroimaging and connectomics. NeuroImage 62
(4), 2296–2314.

Friston, K.J., 1998. The disconnection hypothesis. Schizophr. Res. 30 (2), 115–125.
Friston, K.J., Frith, C.D., 1995. Schizophrenia: a disconnection syndrome? Clin. Neurosci.

3 (2), 89–97.
Garrity, 2007. Aberrant 'default mode' functional connectivity in schizophrenia. (pg 450)

Am. J. Psychiatry 164 (7) (1123–1123).
Gusnard, D.A., et al., 2001. Medial prefrontal cortex and self-referential mental activity:

relation to a default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98 (7),
4259–4264.

Hoptman, M.J., et al., 2010. Amplitude of low-frequency oscillations in schizophrenia: a
resting state fMRI study. Schizophr. Res. 117 (1), 13–20.

Jafri, M.J., et al., 2008. A method for functional network connectivity among spatially
independent resting-state components in schizophrenia. NeuroImage 39 (4),
1666–1681.

Keshavan, M.S., et al., 2013. Reimagining psychoses: an agnostic approach to diagnosis.
Schizophr. Res. 146 (1–3), 10–16.

Kotov, R., et al., 2013. Boundaries of schizoaffective disorder revisiting Kraepelin. JAMA
Psychiatry 70 (12), 1276–1286.

Liang, M., et al., 2006. Widespread functional disconnectivity in schizophrenia with
resting-state functional magnetic resonance imaging. Neuroreport 17 (2), 209–213.

Lynall, M.E., et al., 2010. Functional connectivity and brain networks in schizophrenia. J.
Neurosci. 30 (28), 9477–9487.

Meda, S.A., et al., 2012. Differences in resting-state functional magnetic resonance ima-
ging functional network connectivity between schizophrenia and psychotic bipolar
probands and their unaffected first-degree relatives. Biol. Psychiatry 71 (10),
881–889.

Meda, S.A., et al., 2015. Frequency-specific neural signatures of spontaneous low-fre-
quency resting state fluctuations in psychosis: evidence from bipolar-schizophrenia
network on intermediate phenotypes (B-SNIP) consortium. Schizophr. Bull. 41 (6),
1336–1348.

Miller, R.L., Yaesoubi, M., Calhoun, V.D., 2016. Cross-frequency rs-fMRI network con-
nectivity patterns manifest differently for schizophrenia patients and healthy con-
trols. IEEE Signal Process. Lett. 23 (8), 1076–1080.

Penttonen, M., 2003. Natural logarithmic relationship between brain oscillators.
Thalamus Relat. Syst. 2 (2), 145–152.

Pettersson-Yeo, W., et al., 2011. Dysconnectivity in schizophrenia: where are we now?
Neurosci. Biobehav. Rev. 35 (5), 1110–1124.

Schultz, S.K., Andreasen, N.C., 1999. Schizophrenia. Lancet 353 (9162), 1425–1430.
Smith, S.M., et al., 2009. Correspondence of the brain's functional architecture during

activation and rest. Proc. Natl. Acad. Sci. U. S. A. 106 (31), 13040–13045.
Turner, J.A., et al., 2013. A multi-site resting state fMRI study on the amplitude of low

frequency fluctuations in schizophrenia. Front. Neurosci. 7, 137.
Van Dijk, K.R.A., Sabuncu, M.R., Buckner, R.L., 2012. The influence of head motion on

intrinsic functional connectivity MRI. NeuroImage 59 (1), 431–438.
Wernicke, C., 1906. Grundriss der Psychiatrie in klinischen Vorlesungen.
Whitfield-Gabrieli, S., et al., 2009. Hyperactivity and hyperconnectivity of the default

network in schizophrenia and in first-degree relatives of persons with schizophrenia.
Proc. Natl. Acad. Sci. U. S. A. 106 (4), 1279–1284.

Woodward, N.D., Karbasforoushan, H., Heckers, S., 2012. Thalamocortical dysconnec-
tivity in schizophrenia. Am. J. Psychiatry 169 (10), 1092–1099.

Xiong, J.H., et al., 1999. Interregional connectivity to primary motor cortex revealed
using MRI resting state images. Hum. Brain Mapp. 8 (2–3), 151–156.

Yaesoubi, M., et al., 2015. Dynamic coherence analysis of resting fMRI data to jointly
capture state-based phase, frequency, and time-domain information. NeuroImage
120, 133–142.

Yu, R., et al., 2014. Frequency-specific alternations in the amplitude of low-frequency
fluctuations in schizophrenia. Hum. Brain Mapp. 35 (2), 627–637.

Zhou, Y., et al., 2007. Functional disintegration in paranoid schizophrenia using resting-
state fMRI. Schizophr. Res. 97 (1–3), 194–205.

M. Yaesoubi et al. NeuroImage: Clinical 15 (2017) 761–768

768

http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0015
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0015
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0020
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0020
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0025
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0025
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0030
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0030
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0035
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0035
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0040
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0040
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0040
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0045
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0045
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0050
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0050
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0050
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0055
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0055
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0060
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0060
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0060
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0065
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0065
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0070
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0070
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0075
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0075
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0080
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0080
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0080
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0085
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0085
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0090
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0090
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0100
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0100
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0100
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0105
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0105
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0110
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0115
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0115
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0120
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0120
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0125
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0125
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0125
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0130
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0130
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0135
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0135
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0135
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0140
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0140
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0145
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0145
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0150
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0150
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0155
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0155
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0160
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0160
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0160
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0160
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0165
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0165
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0165
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0165
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0170
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0170
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0170
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0175
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0175
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0180
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0180
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0185
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0190
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0190
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0195
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0195
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0200
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0200
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0205
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0210
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0210
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0210
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0215
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0215
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0220
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0220
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0225
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0225
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0225
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0230
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0230
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0235
http://refhub.elsevier.com/S2213-1582(17)30154-7/rf0235

	A joint time-frequency analysis of resting-state functional connectivity reveals novel patterns of connectivity shared between or unique to schizophrenia patients and healthy controls
	Introduction
	Materials and method
	Participants, image acquisition and pre-processing
	Group-ICA and post-processing

	Temporally-dynamic and frequency-specific connectivity states

	Results
	Discussion
	Limitations and future works
	Conclusion
	Acknowledgment
	Supplementary data
	References




