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Complex organization of CNS and PNS pathways is necessary for the coordinated
and reciprocal functions of the urinary bladder, urethra and urethral sphincters.
Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways
and target organs can produce lower urinary tract (LUT) dysfunction. Numerous
neuropeptide/receptor systems are expressed in the neural pathways of the LUT
and non-neural components of the LUT (e.g., urothelium) also express peptides. One
such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide
(PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific
distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder
dysfunction and altered somatic sensation. PACAP and associated receptors are
expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation,
and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1
receptor system reduces voiding frequency in preclinical animal models and transgenic
mouse models that mirror some clinical symptoms of bladder dysfunction. A change in
the balance of the expression and resulting function of the PACAP/receptor system
in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including
symptoms of urinary urgency, increased voiding frequency, and visceral pain. The
PACAP/receptor system in micturition pathways may represent a potential target for
therapeutic intervention to reduce LUT dysfunction.

Keywords: micturition, neuropeptides, inflammation, psychogenic stress, NGF, cyclophosphamide, PAC1,
PACAP(6-38)

Abbreviations: AC, adenylate cyclase; ATP, adenosine triphosphate; B1, bradykinin receptor B1; B2, bradykinin receptor B2;
BAC, bacterial artificial chromosome; BDNF, brain-derived neurotrophic factor; BNST, bed nucleus of the stria terminalis;
BOO, bladder outlet obstruction; cAMP, cyclic adenosine monophosphate; CGRP, calcitonin gene-related peptide; CNS,
central nervous system; CRH, corticotropin releasing hormone; CYP, cyclophosphamide; DH, dorsal horn; DRG, dorsal
root ganglia; FIC, feline interstitial cystitis; FKBP5, FK506-binding protein 5; HPA, hypothalamic–pituitary–adrenal; IR,
immunoreactivity; LCP, lateral collateral pathway; LUT, lower urinary tract; MPG, major pelvic ganglia; mRNA, messenger
ribonucleic acid; NGF, nerve growth factor; NGF-OE, nerve growth factor overexpression; NO, nitric oxide; OAB, overactive
bladder; P2X and P2Y, purinergic receptors; p75NTR, p75 neurotrophin receptor; PAC1, PACAP receptor 1; PACAP, pituitary
adenylate cyclase-activating polypeptide; PACAP-EGFP, PACAP-enhanced green fluorescent protein; PAG, periaqueductal
gray; PBS/IC, painful bladder syndrome/interstitial cystitis; PC, pheochromocytoma; PCR, polymerase chain reaction; PLC,
phospholipase C; PMC, pontine micturition center; PNS, peripheral nervous system; PTSD, post-traumatic stress disorder;
RVS, repeated variate stress; SCI, spinal cord injury; SP, substance P; SPN, sacral parasympathetic nucleus; TrkA, tropomyosin
receptor kinase A; TrkB, tropomyosin receptor kinase B; TRPA1, transient receptor potential ankyrin 1; TRPM8, transient
receptor potential melastatin 8; TRPV1, transient receptor potential vanilloid 1; TRPV2, transient receptor potential vanilloid
2; TRPV4, transient receptor potential vanilloid 4; VIP, vasoactive intestinal polypeptide; VPAC1, VIP receptor 1; VPAC2, VIP
receptor 2; WAS, water avoidance stress; WT, wildtype.

Frontiers in Systems Neuroscience | www.frontiersin.org 1 December 2017 | Volume 11 | Article 90

https://www.frontiersin.org/journals/systems-neuroscience/
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2017.00090
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnsys.2017.00090
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2017.00090&domain=pdf&date_stamp=2017-12-04
https://www.frontiersin.org/articles/10.3389/fnsys.2017.00090/full
http://loop.frontiersin.org/people/11077/overview
https://www.frontiersin.org/journals/systems-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-11-00090 November 30, 2017 Time: 19:20 # 2

Girard et al. PACAP/Receptor System in Bladder

INTRODUCTION

Micturition, the expulsion of urine from the urinary bladder
through the urethra, is an important part of everyday life.
Micturition is a basic physiological function to which we give
little thought until this daily behavior is changed in some way.
Normal micturition involves the filling and storage of urine in the
bladder, and the periodic voiding of urine at socially appropriate
times. Storage and elimination functions involve the reciprocal
functions of the bladder, urethra and external urethral sphincter
(i.e., urethral rhabdosphincter). These two modes of operation
are controlled by the coordination of the structural features of
the bladder and complex neural pathways organized in the CNS
and PNS (Elbadawi, 1996; Andersson, 2004).

ANATOMY OF THE LOWER URINARY
TRACT (LUT)

The LUT consists of the urinary bladder and urethra. The urethra
is composed of both smooth and striated muscle (Andersson,
2004). The urinary bladder is a hollow, smooth muscle organ
and consists of two main parts, the bladder body and the bladder
base (Elbadawi, 1996; Andersson, 2004). The bladder body is
located above the opening of the urethra. The base contains the
trigone, urethrovesical junction, and the anterior bladder wall
(Elbadawi, 1996; Andersson, 2004). The urinary bladder wall is
organized into layers: mucosa, muscle, and serosa and adventitia
(Tank, 2009). The mucosal layer consists of transitional epithelial
cells that line the lumen of the bladder and a lamina propria
beneath the basement membrane of the epithelial cells (Tank,
2009). The urothelium, a layer of epithelial cells, lines the lumen
of the bladder. The lamina propria is composed of a thick layer
of cells (e.g., fibroblasts, adipocytes, interstitial cells, and afferent
and efferent nerve terminals), collagen, elastic fibers and blood
vessels (Andersson and McCloskey, 2014). The muscular layer is
composed of smooth muscle cells that constitute the muscular
wall of the bladder. It is structurally different from the smooth
muscle of the trigone and urethra because it consists of an
inner and outer longitudinal layer and a middle circular layer
of smooth muscle (Andersson, 2004). These muscle cells relax
and elongate during bladder filling, whereas the urethra is closed
and non-compliant. Bladder emptying involves the coordinated
contraction of the detrusor muscle as well as relaxation, opening,
and dilation of the urethra (Elbadawi, 1996; Andersson, 2004).
The serosal layer surrounds the superior and lateral external
surfaces of the bladder wall, whereas loose connective tissue,
the adventitia, surrounds the retroperitoneal bladder wall (Tank,
2009).

UROTHELIUM

The urothelium is a layer of transitional epithelium capable of
detecting diverse stimuli including, mechanical, chemical, and
thermal stimuli. The urothelium is composed of three layers: an
innermost basal cell layer attached to a basement membrane,

an intermediate layer, and a superficial apical layer (Birder,
2005; Apodaca et al., 2007; Birder and de Groat, 2007; Birder
et al., 2009, 2014; Birder and Andersson, 2013). The apical
layer contains large, hexagonal shaped umbrella cells that change
shape during filling to expand the epithelial surface giving the
transitional epithelium its name. The apical layer also acts as a
barrier against substances in the urine that may be detrimental to
the bladder. This barrier function can be compromised during
injury or inflammation, allowing toxic substances to reach the
suburothelial nerve plexus and muscular layers, contributing to
urinary urgency, frequency, and pain during voiding (Birder,
2005; Apodaca et al., 2007; Birder and de Groat, 2007; Birder et al.,
2009, 2014; Birder and Andersson, 2013).

The urothelium, once thought to act only as a passive barrier,
is now appreciated to play important and active roles in afferent
signaling. This active function involves receiving afferent nerve
input from nearby nerves in the suburothelial nerve plexus
and in response, communicating directly with the nerves that
innervate the bladder, the smooth muscle of the bladder and
local inflammatory cells (Birder, 2005; Apodaca et al., 2007;
Birder and de Groat, 2007; Birder et al., 2009, 2014; Birder and
Andersson, 2013). The apical layer of the urothelium expresses
surface receptors and ion channels (Birder, 2005; Birder and de
Groat, 2007; Birder and Andersson, 2013; Merrill et al., 2016)
enabling the recognition of diverse sensory stimuli. Receptors
found in the urothelium are numerous and diverse and include:
B1 and B2 bradykinin receptors activated by bradykinin (Chopra
et al., 2005; Birder and de Groat, 2007), p75NTR, TrkA, and
TrkB activated by neurotrophins (e.g., NGF, BDNF) (Qiao and
Vizzard, 2002b; Murray et al., 2004; Petruska and Mendell,
2004; Merrill et al., 2016), purinergic receptors (P2X and P2Y)
activated by ATP (Cockayne et al., 2005; Wang et al., 2005; Ford
and Cockayne, 2011; Birder and Andersson, 2013), adrenergic
receptors activated by norepinephrine (Birder and Andersson,
2013), cholinergic receptors activated by acetylcholine (Beckel
et al., 2006; Birder and Andersson, 2013), neuropeptide receptors
including PACAP type 1 receptor (PAC1) and VIP receptor
2 (VPAC2) (Arms and Vizzard, 2011; Merrill et al., 2013a;
Gonzalez et al., 2014b). Transient receptor potential (TRP)
channels, activated by inflammatory mediators, temperature
changes and/or pH changes within the bladder (Birder and
Andersson, 2013; Merrill et al., 2016), are also expressed
by the urothelium, including members of the vanilloid (V),
melastatin (M), and ankyrin (A) families: TRPV1, TRPV2,
TRPV4, TRPM8, and TRPA1 (Skryma et al., 2011; Merrill et al.,
2012; Avelino et al., 2013; Gonzalez et al., 2014b). In addition,
recent studies demonstrate the presence of another cell type in
the rat urethra that recognizes and responds to diverse stimuli.
Cholinergic chemosensory cells are found in the rat urethra
in close proximity to sensory nerve fibers expressing nicotinic
acetylcholine (ACh) receptors (Deckmann et al., 2014). These
cells respond to bitter (denatonium), umami (monosodium
glutamate) and uropathogenic Escherichia coli stimulation and
intraurethral denatonium increases detrusor activity (Deckmann
et al., 2014). It is suggested that these chemosensory cells in the rat
urethra may monitor for the presence of hazardous compounds,
release ACh and affect bladder function (Deckmann et al., 2014).
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Following stimulation, the urothelium can release signaling
mediators to produce localized vascular changes (Birder and
de Groat, 2007; Fowler et al., 2008) and to influence adjacent
tissues and cells, including: detrusor smooth muscle, afferent
nerve fibers in the suburothelial nerve plexus, inflammatory
cells and interstitial cells within the bladder (Birder and de
Groat, 2007; Fowler et al., 2008; Birder and Andersson, 2013;
Merrill et al., 2016). For example, the urothelium can release
many signaling molecules, including, ATP, (Ferguson et al.,
1997; Birder and Andersson, 2013), NO (Birder and Andersson,
2013), acetylcholine (Birder and de Groat, 2007), substance P,
cytokines, chemokines and prostaglandins as well as a variety
of neurotrophic factors (Arms and Vizzard, 2011; Merrill et al.,
2013a; Gonzalez et al., 2014a,b; Merrill et al., 2016). The release
of signaling molecules from the urothelium can be altered with
injury, inflammation and disease (Birder, 2005; Birder and de
Groat, 2007; Arms and Vizzard, 2011; Birder and Andersson,
2013; Merrill et al., 2013a, 2016; Gonzalez et al., 2014a,b).

NEURAL CONTROL OF MICTURITION

The LUT has two phases of operation (storage and elimination),
that are under CNS and voluntary control (Fowler et al., 2008;
Griffiths, 2015; Miyazato et al., 2017) (Figure 1). During the
filling phase, the detrusor smooth muscle is relaxed and the
urethral sphincter is contracted. In the emptying phase, the
opposite occurs (Fowler et al., 2008; Griffiths, 2015; Miyazato
et al., 2017). These processes are controlled by both the
autonomic (sympathetic and parasympathetic) and the somatic
nervous system (Figure 1A).

The cell bodies of the preganglionic sympathetic innervation
to the urogenital organs are located in the intermediolateral
gray matter of the lower thoracic and upper lumbar spinal
cord (T10-L2) (de Groat, 1990, 1993; Elbadawi, 1996; Holstege,
2005; Fowler et al., 2008). After projecting from the spinal cord,
these cells form lumbar splanchnic nerves and synapse in the
inferior mesenteric ganglion. Postganglionic sympathetic fibers
then travel from the ganglion to urogenital organs through the
pelvic and hypogastric nerves (de Groat, 1990, 1993; Elbadawi,
1996; Holstege, 2005; Fowler et al., 2008) (Figure 1C). These
sympathetic fibers act either directly on the bladder or indirectly
via connections with vesical or pelvic ganglia (de Groat, 1990,
1993; Elbadawi, 1996; Holstege, 2005; Fowler et al., 2008). The
sympathetic system is activated alone during bladder filling,
and acts to inhibit the detrusor muscle causing relaxation and
to excite the bladder neck and urethra causing contraction
(de Groat, 1990, 1993; Elbadawi, 1996; Holstege, 2005; Fowler
et al., 2008) (Figure 1C). However, the contribution of the
sympathetic system to continence across species is debatable.
For example, in humans and cats, sympathetic innervation
of the detrusor may contribute to continence (Vaughan and
Satchell, 1992; Khadra et al., 1995; Andersson and Arner,
2004) by modulating transmission in parasympathetic ganglion
neurons (De Groat and Saum, 1972), but this is less clear
in rodents (Keast et al., 2015). There is limited evidence that
sympathetic noradrenergic pelvic ganglion neurons innervate the

FIGURE 1 | An overview of micturition reflex control. Neural control of lower
urinary tract function (A) involves the coordinated activity of afferent (B) and
efferent pathways (C). (B) Micturition is initiated by a supraspinal reflex
pathway that passes through a center in the brainstem [figure from (Fowler
et al., 2008) with permission]. The pathway is triggered by myelinated
afferents (Aδ-fibers), which are connected to the mechanoreceptors in the
bladder wall. Suprasacral spinal cord injury interrupts the connections
between the brain and spinal cord and initially causing the micturition reflex to
be areflexic. Following SCI, a spinal micturition reflex emerges that is now
triggered by unmyelinated bladder afferents (C-fibers). The C-fiber reflex
pathway is usually weak or undetectable in spinal cord intact animals. Cold
water stimulation of the C-fiber bladder afferents activates voiding responses
in patients with SCI. The C-fiber neurotoxin, capsaicin (20–30 mg
subcutaneously), blocks the C-fiber reflex in cats with SCI but does not block
micturition reflexes in spinal intact cats. Intravesical capsaicin also suppresses
detrusor hyperreflexia and cold-evoked reflexes in patients with neurogenic
bladder dysfunction (Fowler et al., 2008). This schematic is based on results
from electrophysiological studies in cats (de Groat and Yoshimura, 2006).
Additional species differences in afferent control mechanisms of micturition
reflexes are described in the text. (C) Excitatory (black) and inhibitory (gray)
nerves activated during storage and elimination (voiding) are shown.

(Continued)

Frontiers in Systems Neuroscience | www.frontiersin.org 3 December 2017 | Volume 11 | Article 90

https://www.frontiersin.org/journals/systems-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-11-00090 November 30, 2017 Time: 19:20 # 4

Girard et al. PACAP/Receptor System in Bladder

FIGURE 1 | Continued
External urethral sphincter (i.e., urethral rhabdosphincter) innervation via
pudendal nerves is also indicated. Broken lines indicate neuronal pathways
that are less well understood. Storage reflexes, activated during bladder filling,
are organized primarily in the spinal cord, whereas voiding is mediated by
reflex mechanisms organized in the brain. During bladder filling and storage,
the sympathetic nervous system plays a major role. Preganglionic neurons in
the rostral lumbar spinal cord excite sympathetic neurons in the inferior
mesenteric ganglia and pelvic ganglia causing contraction of smooth muscle
in the trigone and urethra, and this is coordinated with contraction of the
external urethral sphincter. During bladder filling and storage, the sympathetic
nervous system acts to inhibit the detrusor muscle causing relaxation and to
excite the bladder neck and urethra causing contraction, preventing
incontinence. However, the contribution of the sympathetic system to
continence across species is debatable (broken lines). See text for additional
details. During bladder filling, the parasympathetic efferent pathway to the
bladder, including a population of CNS (e.g., pontine micturition center)
neurons, is turned off. When a threshold level of bladder distension is reached
during filling, the afferent activity from bladder mechanoreceptors switches the
pathway from the storage to the elimination mode. The parasympathetic
nervous system predominates during elimination (voiding). Activation of sacral
preganglionic neurons excites parasympathetic ganglion neurons in the pelvic
ganglia. During elimination, the activity of the parasympathetic nervous system
results in urinary bladder contraction, whereas sympathetic activity and
somatomotor activity is withdrawn. Figure adapted from (de Groat, 1990,
1993; de Groat et al., 1998; de Groat and Araki, 1999; Middleton and Keast,
2004; Vizzard, 2006; de Groat and Yoshimura, 2012; de Groat and Wickens,
2013; Merrill et al., 2016).

bladder, which parallels the observation of sparse sympathetic
noradrenergic innervation of the detrusor in rodents (Andersson
and Wein, 2004; Forrest et al., 2014).

The cell bodies of the preganglionic parasympathetic nerves
that innervate the bladder are located in the lateral horn
of sacral spinal cord (S2–S4). These fibers project from the
spinal cord in ventral roots and immediately separate as
pelvic splanchnic nerves (i.e., pelvic nerve). The pelvic nerve
synapses on terminal ganglia (e.g., intramural ganglia, MPG)
and innervates the urogenital organs (de Groat, 1990, 1993;
Elbadawi, 1996; Holstege, 2005; Fowler et al., 2008) (Figure 1C).
The parasympathetic system is activated alone during voiding,
and acts to excite and contract the detrusor muscle (de Groat,
1990, 1993; Elbadawi, 1996; Holstege, 2005; Fowler et al., 2008)
(Figure 1C). The urethral sphincter is relaxed during voiding due
to the release of sympathetic activation.

The external urethral sphincter muscle is made up of striated
muscle and is controlled by the somatic nervous system. The
somatic motor neurons that innervate this structure have cell
bodies located in the ventrolateral part of the ventral horn
of the upper sacral spinal cord (S2–S4) in a nucleus called
Onuf ’s nucleus or the dorsolateral nucleus, depending on species
(de Groat, 1990, 1993; Elbadawi, 1996; Holstege, 2005; Fowler
et al., 2008). These motor neurons reach the external urethral
sphincter (i.e., urethral rhabdosphincter) via the pudendal nerve.

The PMC, also called Barrington’s nucleus, is located in the
dorsolateral pontine tegmentum of the brainstem and controls
the function of the urinary bladder as well as other pelvic
organs (Rouzade-Dominguez et al., 2003). Neurons in the PMC
send direct excitatory projections to preganglionic neurons in
the sacral spinal cord (de Groat, 1990, 1993; Elbadawi, 1996;

Holstege and Mouton, 2003; Holstege, 2005; Fowler et al.,
2008; Beckel and Holstege, 2011; Hou et al., 2016). Stimulation
of the PMC leads to contraction of the detrusor smooth
muscle and micturition (Hou et al., 2016). The PMC not only
augments parasympathetic outflow but also attenuates output of
preganglionic sympathetic and motor neurons in Onuf ’s nucleus
resulting in bladder contraction and sphincter relaxation (de
Groat, 1990, 1993; Elbadawi, 1996; Holstege and Mouton, 2003;
Holstege, 2005; Fowler et al., 2008; Beckel and Holstege, 2011).
Afferent projections carrying information about bladder filling
is first processed in the PAGmatter in the brainstem before
being relayed to the PMC (de Groat, 1990, 1993; Elbadawi, 1996;
Holstege and Mouton, 2003; Holstege, 2005; Fowler et al., 2008;
Beckel and Holstege, 2011).

The micturition reflex switches the bladder from the filling
phase to the emptying phase. During the filling phase, the
sympathetic nervous system inhibits the detrusor smooth muscle,
allowing the bladder to increase in size. In addition, the
urethral sphincter contracts under background stimulation by the
sympathetic nervous system maintaining continence (Holstege,
2005; Fowler et al., 2008; Beckel and Holstege, 2011). When the
detrusor is relaxed, the bladder base is flat, and the urethra is
pulled upward, constricting its orifice and further impeding the
flow of urine. The switch to the emptying phase is triggered
by tension in the urinary bladder during filling that stimulates
stretch receptors (slowly adapting mechanoreceptors) within the
bladder wall (Holstege, 2005; Fowler et al., 2008). These receptors
activate Aδ- and C-fibers that convey sensory information about
bladder distention and noxious stimuli, respectively, from the
bladder neck and urethra to the lumbosacral spinal cord (L4-
S4) via the pelvic, pudendal and hypogastric nerves (Holstege
and Mouton, 2003; Holstege, 2005; Fowler et al., 2008; Beckel
and Holstege, 2011). Aδ- and C-fibers enter the spinal cord
through Lissauer’s tract and synapse in spinal cord laminae
(i.e., I, V, VII, X) that contain preganglionic parasympathetic
neurons as well as projection neurons that send axons to the PAG
(Holstege and Mouton, 2003; Holstege, 2005; Fowler et al., 2008;
Beckel and Holstege, 2011). Signals then travel from the PAG to
the PMC and back to the lumbosacral spinal cord to synapse
on preganglionic sympathetic and parasympathetic neurons
(Holstege and Mouton, 2003; Holstege, 2005; Fowler et al., 2008;
Beckel and Holstege, 2011). The PMC inhibits the preganglionic
sympathetic control that releases the contraction of the sphincter
and withdraws the inhibition of the detrusor. A few seconds
later, there is an increase in the activity of the parasympathetic
system, contracting the detrusor smooth muscle. The micturition
reflex is a spinobulbospinal reflex because information travels
from the spinal cord to the brainstem and back to the spinal
cord to convey information regarding bladder filling (Holstege
and Mouton, 2003; Holstege, 2005; Fowler et al., 2008; Beckel and
Holstege, 2011).

The micturition reflex occurs without conscious control only
in infants. In adults, voluntary control via higher brain centers
can override the micturition reflex. This is necessary in humans
for social purposes, and in animals for survival mechanisms, such
as the marking of territory (de Groat et al., 1998; de Groat and
Araki, 1999). Therefore, CNS control of the micturition reflex
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from supraspinal levels is necessary. As mentioned previously,
integration occurs between the descending and ascending signals
of the micturition reflex in the PAG. Several higher brain centers
project to the PAG, including the hypothalamus, preoptic region,
central nucleus of the amygdala, BNST, and prefrontal cortex
(Beckel and Holstege, 2011). During filling, these higher brain
centers can prevent the PAG from exciting neurons in the PMC
and prevent voiding or incontinence (Holstege and Mouton,
2003; Holstege, 2005; Fowler et al., 2008; Beckel and Holstege,
2011).

In addition to efferent functions, the pelvic nerve contains
two types of afferent fibers: C-fibers and Aδ-fibers. Aδ-fibers
are myelinated fibers that transmit information to the brain
about the degree of bladder distension and are essential for
the generation of storage and elimination reflexes (Janig and
Morrison, 1986). In contrast to the reflex underlying the storage
phase, the elimination reflex relies on supraspinal circuitry as
demonstrated by voiding dysfunction following suprasacral SCI
(Gonzalez et al., 2014a) (Figure 1B). C-fibers are unmyelinated
fibers that are insensitive to bladder filling under normal
conditions (Gonzalez et al., 2014a). In humans, C-fibers only
respond when a noxious stimulus, such as chemical irritation,
is present (Fowler et al., 2008). The C-fiber reflex pathway is
usually weak or undetectable in animals with an intact nervous
system. Stimulation of the C-fiber bladder afferents by installation
of ice water into the bladder (cold stimulation) activates voiding
responses in patients with SCI (Fowler et al., 2008) (Figure 1B).
Subcutaneous capsaicin administration blocks the C-fiber reflex
in cats with SCI but does not block micturition reflexes in spinal
intact cats (Fowler et al., 2008) (Figure 1B). Intravesical capsaicin
also suppresses detrusor hyperreflexia and cold-evoked reflexes
in patients with neurogenic bladder dysfunction (Fowler et al.,
2008) (Figure 1B). In cats, the recovery of bladder function after
a suprasacral SCI is mediated by a change in the afferent limb
of the micturition reflex pathway and synaptic plasticity in the
spinal cord (de Groat et al., 1981; Fowler et al., 2008; de Groat and
Yoshimura, 2010). Following chronic SCI in cats, unmyelinated
C-fiber afferents, rather than Aδ afferents, initiate voiding and
a spinal micturition reflex (de Groat and Yoshimura, 2010)
(Figure 1B). The situation in rats following SCI is more complex.
In spinal intact rats and those with chronic SCI, Aδ afferents
initiate the micturition reflex (Mallory et al., 1989). Although it
has been demonstrated that C-fibers are not necessary for spinal
micturition reflexes after SCI in rats, C-fibers do contribute to the
appearance of non-voiding contractions and detrusor sphincter
dyssynergia in deeply anesthetized rats with SCI (Cheng and de
Groat, 2004).

Bladder afferent fibers in the pelvic nerve in rodents travel
through the dorsal roots into the lateral dorsal root entry zone
(i.e., Lissauer’s tract) and then give off axon collaterals that
extend ventromedially and ventrolaterally along the superficial
laminae of the DH. Bladder afferent fibers project to the dorsal
commissure and to the SPN (laminae V–VII) that contains
preganglionic parasympathetic neurons (Donovan et al., 1983;
Noto et al., 1991; Steers et al., 1991; de Groat, 1993; Nadelhaft
and Vera, 1995; Marson, 1997; Arms and Vizzard, 2011; Beckel
and Holstege, 2011; de Groat and Yoshimura, 2012; de Groat and

Wickens, 2013; Merrill et al., 2016). The ventrolateral pathway
that projects along the lateral edge of the DH is referred to as
the LCP of Lissauer’s tract (Morgan et al., 1981; Morgan, 1990).
The medial collateral pathway, composed of afferent projections
from the pudendal nerve and genital structures, projects into the
dorsal commissure region (Morgan et al., 1981; Kawatani et al.,
1990; Morgan, 1990).

Many bladder afferent fibers project to the SPN, synapsing
with preganglionic parasympathetic neurons (Morgan et al.,
1981; Morgan, 1990; Fowler et al., 2008), as well as to the dorsal
commissure and superficial DH (Morgan et al., 1981; Fowler
et al., 2008). The lumbosacral dorsal commissure, superficial DH,
and SPN all contain interneurons important to urinary bladder
function (de Groat, 1993; Fowler et al., 2008) that contribute to
local circuit function as well as to supraspinal circuitry (Fowler
et al., 2008). Some bladder afferents synapse with ascending
pathways in the spinal cord projecting to supraspinal regions
including the PAG and PMC (de Groat, 1993; Fowler et al., 2008).

There continues to be tremendous interest in growth factors
(e.g., NGF, BDNF) and associated receptors (e.g., TrkA, TrkB,
p75NTR) and the roles they play the regulation of micturition
in health and disease as well as their biomarker potential for
LUT disease (Dmitrieva and McMahon, 1996; McMahon, 1996;
Clemow et al., 1998; Mendell et al., 1999; Vizzard, 2000b;
Bjorling et al., 2001; Huang and Reichardt, 2001; Pezet and
McMahon, 2006; Girard et al., 2011; Jiang et al., 2013, 2014).
NGF is a potent neurotrophin that exerts pleiotropic effects in
the PNS and CNS through the tissue-specific expression of TrkA
and p75NTR receptors. NGF regulates sensory and sympathetic
neuronal development and maintenance and contributes to
inflammation of somatic and visceral origin (Schnegelsberg et al.,
2010; Frias et al., 2011; Ochodnicky et al., 2012). A large
percentage of pelvic visceral afferent neurons, including bladder
afferent neurons, exhibit neurotrophin receptors, including
certain tyrosine kinase membrane receptors (Trk) for NGF and
related substances (McMahon et al., 1994; Wright and Snider,
1995; Qiao and Vizzard, 2002a,b, 2005). TrkA- and TrkB-IR and
Trk phosphorylation in bladder afferent neurons is increased
after cystitis (Qiao and Vizzard, 2002b).

Nerve growth factor has an established role in urinary bladder
inflammation (Vizzard, 2000b; Schnegelsberg et al., 2010), most
likely contributing to increased voiding frequency (Dmitrieva
and McMahon, 1996; Clemow et al., 1998; Chuang et al., 2001;
Hu et al., 2005; Guerios et al., 2006; Zvara and Vizzard, 2007;
Guerios et al., 2008). Administration of NGF intravesically
(Dmitrieva et al., 1997), intrathecally (Yoshimura et al., 2006),
intramuscularly (Zvara and Vizzard, 2007), or via adenovirus-
mediated delivery to the urinary bladder (Lamb et al., 2004)
induces increased voiding frequency as well as afferent neuronal
hyperexcitability in rodents. Additionally, scavenging strategies
involving sequestration of NGF or its receptor TrkA, as well
as administration of Trk inhibitors, reduces urinary frequency
in rodent models of urinary bladder inflammation (Dmitrieva
et al., 1997; Hu et al., 2005; Klinger and Vizzard, 2008). NGF
is also thought to play a role in several LUT disorders such as
PBS/IC (Lowe et al., 1997; Okragly et al., 1999), OAB (Kim et al.,
2006; Liu and Kuo, 2009; Liu et al., 2009, 2010, 2011) and BOO
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(Liu and Kuo, 2008). In fact, increased levels of NGF have been
detected in the urine and the urothelium of individuals with
PBS/IC, OAB, and other painful bladder conditions (Lowe et al.,
1997; Okragly et al., 1999; Kuo et al., 2010). Additional NGF-
mediated changes may include: modulation of local inflammatory
responses through recruitment of mast cells, upregulation of
neuropeptide/receptor systems and ion channels and altered
expression of other neurotrophins/receptor systems (Girard et al.,
2010, 2011, 2012).

A humanized monoclonal antibody (i.e., tanezumab) binds to
and blocks the effects of NGF and has been used in a proof of
concept human study for PBS/IC (Evans et al., 2011). Tanezumab
was first developed for the treatment of osteoarthritis of the
hip and knee, but further clinical trials were stopped due to
adverse side effects (Cruz, 2014). Treatment produced modest
improvements in self-reported pain scores as well as decreases
in the number of urgency and frequency episodes. However,
adverse side effects were reported in some patients, including
paraesthesia (i.e., tingling skin), hyperesthesia (i.e., abnormal
increase in sensitivity to stimuli), and migraines (Cruz, 2014).

NEUROCHEMISTRY OF MICTURITION
PATHWAYS

Bladder afferents contain a number of neuroactive compounds
including multiple neuropeptides (e.g., CGRP, SP, neurokinin
A, neurokinin B, VIP, PACAP, cholecystokinin, enkephalins)
(de Groat et al., 1983; Donovan et al., 1983; Keast and De Groat,
1992; Vizzard, 2000c, 2001; Arms and Vizzard, 2011; Merrill
et al., 2013a). These neuropeptides are mainly expressed in small
diameter, C-fiber afferents (de Groat et al., 1983; Donovan et al.,
1983; Keast and De Groat, 1992; Vizzard, 2000c, 2001; Arms and
Vizzard, 2011; Merrill et al., 2013a). The following sections will
focus on the expression, distribution and functional plasticity of
two members of the VIP/secretin/glucagon family of hormones in
micturition reflex pathways: PACAP and VIP. The contributions
of other peptides are described elsewhere (Arms and Vizzard,
2011).

Neuropeptides, expressed in afferent pathways to the LUT,
exhibit either excitatory or inhibitory actions (Arms and Vizzard,
2011). Other, non-neural, sources of peptides in the LUT include
the urothelium. For example, there is evidence of expression
and functional activity by the VIP-PACAP family of peptides as
well as the CRH family of peptides in the urothelium (Braas
et al., 2006; LaBerge et al., 2006; Birder and Andersson, 2013;
Hanna-Mitchell et al., 2014). The balance of peptides in LUT
pathways can be affected by disease, neural injury and target
organ inflammation. This change in balance of peptides can,
conceivably, shift the LUT reflexes to a hyper- or a hypo-
active reflex state (Arms and Vizzard, 2011). Functional changes
in the micturition reflex that are demonstrated with urinary
bladder inflammation (Vizzard, 2000a,c, 2001), PBS/IC, (Braas
et al., 2006; de Groat and Yoshimura, 2009), OAB (Yoshimura
et al., 2008), detrusor overactivity secondary to BOO (Andersson,
2006a,b), stress (Lutgendorf et al., 2000; Klausner et al., 2005;
Robbins and Ness, 2008; Merrill et al., 2013b; Merrill and Vizzard,

2014; Mingin et al., 2014, 2015) or Parkinson’s disease (Hamill
et al., 2012) may reflect a change in the balance of peptides in
LUT reflex pathways.

PITUITARY ADENYLATE
CYCLASE-ACTIVATING POLYPEPTIDE
(PACAP) AND PAC1, VPAC1, VPAC2
RECEPTORS

Pituitary adenylate cyclase-activating polypeptide is a member
of the VIP/secretin/glucagon family of super hormones that was
originally isolated from hypothalami based on its stimulation of
anterior pituitary AC activity (Ogi et al., 1990; Arimura, 1998).
The rat PACAP precursor protein undergoes post-translational
processing to produce two, ∝-amidated forms: PACAP38 and
PACAP27 (Kimura et al., 1990; Ohkubo et al., 1992; Okazaki et al.,
1995; Arimura, 1998; Braas et al., 1998). The distribution of these
two forms is tissue-specific with PACAP38 being the predominate
form (Arimura et al., 1991; Arimura, 1998). PACAP38 is highly
conserved among mammalian species underscoring its important
involvement in cell signaling, modulation and trophic functions
in the nervous and endocrine systems (Moller et al., 1997b;
Arimura, 1998). There are three distinct G-protein-coupled
receptors for PACAP and VIP: PAC1, VPAC1, and VPAC2
(Ishihara et al., 1992; Hashimoto et al., 1993; Hosoya et al.,
1993; Lutz et al., 1993; Spengler et al., 1993; Inagaki et al.,
1994). The expression of PAC1 and VPAC receptors is tissue-
and cell type-specific (May and Braas, 1995; Braas and May,
1996, 1999; Beaudet et al., 1998, 2000; Braas et al., 1998; May
et al., 1998; DiCicco-Bloom et al., 2000). After G-protein-coupled
PAC1 receptor activation and signaling at the plasma membrane,
the receptor complex is often rapidly internalized via endocytic
vesicles for trafficking into various intracellular compartments
and pathways. PACAP mediates its diverse cellular functions
through internalization of its cognate G-protein-coupled PAC1
receptor and endosomal signaling (May and Parsons, 2017).

PACAP AND PAC1 RECEPTOR
NEURONAL FUNCTIONS IN THE LUT

Pituitary adenylate cyclase-activating polypeptide peptides
exhibit diverse functions in many organ systems (e.g., endocrine,
nervous, urinary, gastrointestinal, cardiovascular systems) and
PACAP peptides are widely expressed in CNS and PNS, including
sensory and autonomic ganglia (Koves et al., 1990, 1991; Arimura
et al., 1991; Ghatei et al., 1993; Masuo et al., 1993; Tatsuno et al.,
1994; May and Braas, 1995; Portbury et al., 1995; Shiotani
et al., 1995; Braas and May, 1996, 1999; Holgert et al., 1996;
Klimaschewski et al., 1996; Sundler et al., 1996; Brandenburg
et al., 1997; Moller et al., 1997a,b; Nogi et al., 1997; Arimura,
1998; Beaudet et al., 1998, 2000; Braas et al., 1998; May et al.,
1998; Cheppudira et al., 2009). PACAP-IR is expressed in nerve
fibers within the urinary bladder smooth muscle, suburothelial
nerve plexus and surrounding blood vessels (Fahrenkrug and
Hannibal, 1998b). PACAP expression is significantly reduced in
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the urinary tract (i.e., ureter, bladder, and urethra) by neonatal
capsaicin treatment delivered intraperitoneally, suggesting
these fibers are derived from small diameter, C-fiber neurons
(Fahrenkrug and Hannibal, 1998b). PACAP is expressed in
DRG under control conditions and PACAP expression is
increased after nerve injury or inflammation (Zhang et al., 1995,
1996; Larsen et al., 1997; Moller et al., 1997a; Vizzard, 2000c).
Immunohistochemistry studies that demonstrated PACAP
expression in LUT pathways and increased expression after SCI
or bladder inflammation used both monoclonal and polyclonal
PACAP antisera. Specificity of these reagents was confirmed
with antibody preabsorption with PACAP (20 mg/ml) peptide
(Hannibal et al., 1995; Calupca et al., 2000; Vizzard, 2000c)
and in PACAP−/− mice (Girard et al., 2006). Using behavioral
and neurological tests, we have demonstrated that PACAP−/−

and VIP−/− mice exhibit functional distinctions between
the knockout genotypes. These results suggest that PACAP
and VIP have evolved to possess distinct biological activities
with the respective knockout phenotypes representing deficits
unmitigated by the actions of the complementary related peptide
(Girard et al., 2006).

PACAP-MEDIATED EFFECTS ON
UROTHELIUM

A disruption to the barrier function of the urothelium (Negrete
et al., 1996; Zeidel, 1996) may occur with disorders and injury that
affect the bladder including PBS/IC or spinal cord injury (Lavelle
et al., 2000; Apodaca et al., 2003, 2007). This loss of barrier
integrity may contribute to the altered sensory processing (i.e.,
allodynia) observed in cystitis (i.e., pain with low to moderate
bladder distention). The urothelium expresses PAC1 receptors
and with stimulation, releases ATP to stimulate receptors on
underlying sensory nerve fibers in the suburothelial plexus
(Girard et al., 2008b). ATP release was evoked by PACAP27,
PACAP38, and VIP application to cultured urothelial cells
whereas PACAP27 and PAC1 receptor antagonism blocked ATP
release (Girard et al., 2008b). PACAP signaling through PAC1
receptors may regulate micturition reflex function at the level of
the urothelium (Girard et al., 2008b).

PACAP OR VIP KNOCKOUT (−/−) MICE
EXHIBIT ALTERED MICTURITION
REFLEXES

Mice with a genetic disruption or deletion of PACAP or VIP
exhibit altered bladder and somatic function. PACAP+/− and
PACAP−/− mice display reduced mechanical sensitivity in
the pelvic and hindpaw regions as determined with von Frey
monofilament testing (May and Vizzard, 2010). These differences
may reflect distinct roles for VIP and PACAP in bladder sensory
function and referred somatic sensation in the mouse. In contrast
to somatic mechanosensitivity differences, both PACAP−/− and
VIP−/− mice exhibited urinary bladder hypertrophy (Jensen
et al., 2008; May and Vizzard, 2010). Cystometric analyses in

PACAP−/− and VIP−/− mice demonstrated increased bladder
capacity, void volume, and longer duration between micturition
events (i.e., intercontraction interval) (May and Vizzard, 2010)
(Studeny et al., 2008). In addition to urinary bladder hypertrophy
and increased bladder mass, VIP−/− mice have increased
permeability to urea, increased basal expression of NGF and
an exaggerated pro-inflammatory response (Girard et al., 2008a;
Jensen et al., 2008; Studeny et al., 2008). Additionally, studies
suggest an increase in bladder afferent activity in lumbosacral
DRG in VIP−/− mice demonstrated with a marker of cellular
activation (i.e., phosphorylated cAMP response-element binding
protein) (Jensen et al., 2008). Given that PACAP−/− and VIP−/−

mice are global knockout models, the contributions of these
peptides to LUT function from CNS or PNS sites of action must
both be considered.

Urinary bladder dysfunction presents a major problem in
the clinical management of patients suffering from a large
number of neurological injuries (e.g., upper motor neuron
disease after spinal cord injury, stroke), disorders (e.g., multiple
sclerosis, Parkinson’s disease) and chronic pain syndromes (e.g.,
PBS/IC). Information related to the normal organization of
the micturition reflex and neuroplasticity with injury, disease
and/or inflammation has the tremendous potential to increase
our understanding of bladder disorders, to identify novel targets
and to develop new therapeutic approaches.

CYCLOPHOSPHAMIDE (CYP)-INDUCED
CYSTITIS

The etiology of PBS/IC is unknown. Thus, there is no universally
accepted animal model for PBS/IC and no one model completely
mimics all signs and symptoms of PBS/IC (Westropp and
Buffington, 2002). CYP-induced cystitis is one of the most
widely used animal models to study various aspects of the
human condition, PBS/IC (Figure 2). CYP is an urotoxic
anti-tumor agent that requires metabolism in the liver by
cytochrome P50 (Boucher et al., 2000; Batista et al., 2006;
Wantuch et al., 2007) and is then metabolized into acrolein,
the urinary metabolite (Boucher et al., 2000; Eichel et al.,
2001; Batista et al., 2006). It has been proposed that the
urothelial damage that results from CYP treatment occurs by
direct contact of the urothelium with acrolein (Figure 2B). This
contact produces toxic effects on the bladder wall including
edema, ulceration, neovascularization, necrosis, and hemorrhagic
cystitis that are characteristic of treatment with CYP (Boucher
et al., 2000; Eichel et al., 2001; Batista et al., 2006). CYP
treatment has also been shown to produce changes in histological,
permeability, and functional aspects of the urinary bladder
(Boucher et al., 2000; Eichel et al., 2001; Batista et al., 2006).
Functional changes after CYP administration include irritative
voiding patterns in humans and animals, as well as an increase
in micturition frequency in rodents (Cox, 1979; Maggi et al.,
1992; Vizzard, 2000a,b, 2001; Eichel et al., 2001; Qiao and
Vizzard, 2002b; Murray et al., 2004; Hu et al., 2005; Braas
et al., 2006) (Figure 2C). CYP-induced cystitis is thought to
alter bladder reflexes through stimulation of capsaicin-sensitive
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FIGURE 2 | Inflammation of the Urinary Bladder Induced by CYP Treatment.
(A) Chemical cystitis is induced in rats by CYP, which is metabolized to
acrolein, an irritant eliminated in the urine. CYP is administered
intraperitoneally in one of three dosing protocols to elicit: acute (4 h),
intermediate (48 h) or chronic (every 3rd day for 10 days) inflammation. (B)
Gross microscopic analyses of urinary bladders from animals treated with
CYP revealed: mucosal erosion, ulcerations, edema, and, in some instances,
petechial hemorrhages. Histological changes observed after chronic CYP
treatment included the presence of inflammatory cell infiltrates, including mast
cells, macrophages and neutrophils. (C) CYP-induced cystitis increased
voiding frequency in rodents. Representative cystometrogram recordings
using continuous, intravesical infusion of saline in conscious rats with an open
outlet from a control rat and a rat treated with CYP (48 h) are shown. Bladder
pressure in a control (top) and CYP-treated (bottom) rat are shown. Figure is
based upon the CYP-induced cystitis phenotype (Vizzard, 2000a; Braas et al.,
2006; Klinger et al., 2007).

bladder afferent nerves (Yamamoto et al., 2012). CYP does not
produce histological lesions or signs of inflammation in other
tissues apart from the bladder, but does produce visceral pain
similar to PBS/IC (Boucher et al., 2000; Wantuch et al., 2007).
Our laboratory has found changes in urinary bladder function,
somatic sensation, and the inflammatory milieu of the urinary
bladder with various CYP treatment protocols in rodents (i.e.,
rats and mice) (Figure 2A). However, differences exist between
the model and PBS/IC, including severity of inflammation at the
level of the urinary bladder (Yamamoto et al., 2012). Although
the naturally occurring FIC also models the human condition
of PBS/IC (Westropp and Buffington, 2002), FIC cats are not
available to most investigators and FIC cats usually represent

established disease. Thus, determining early, initiating events
and mechanisms involved in the disease process is difficult. The
CYP-induced bladder inflammation model enables the testing of
specific hypotheses related to LUT function.

NEUROPLASTICITY OF PACAP/
RECEPTOR EXPRESSION AND
FUNCTION WITH CYSTITIS

It has been previously demonstrated that PACAP and its
receptors are regulated by CYP-induced cystitis and may
contribute to the development of urinary bladder dysfunction
(Braas et al., 2006). Following a down regulation in transcript
expression after acute (4 h) CYP-induced cystitis, PACAP and
PAC1 transcript expression are dramatically upregulated in the
urothelium, L6 and S1 DRG and detrusor smooth muscle after
intermediate (48 h) or chronic (10 days) CYP-induced cystitis
(Girard et al., 2008b). In contrast, VPAC1 and VPAC2 transcript
expression remains upregulated in the urothelium and detrusor
smooth muscle with acute and intermediate CYP-induced cystitis
but down-regulation of VPAC2 transcript expression occurs
with chronic treatment (Girard et al., 2008b). PACAP-IR in
the spinal cord is increased in lumbosacral spinal cord regions
[e.g., superficial laminae (I–II) of the DH, LCP of Lissauer,
SPN] associated with LUT reflexes following CYP-induced
cystitis (Vizzard, 2000c; Herrera et al., 2006). Additionally,
numbers of bladder afferent cells exhibiting PACAP-IR increased
in lumbosacral DRG following CYP-induced cystitis (Vizzard,
2000c).

Pharmacological studies using PAC1 receptor antagonists
suggest that PACAP and its receptors may play a role in
bladder dysfunction with bladder inflammation (Braas et al.,
2006). Intrathecal (L6-S1) or intravesical administration of
a PAC1 receptor antagonist, PACAP(6-38), increased bladder
capacity but not intravesical pressure with CYP-induced cystitis
(Braas et al., 2006). The different routes of administration
(i.e., intrathecal and intravesical) with similar functional
improvements suggest that PACAP(6-38) may be acting at
multiple sites in the PNS and CNS. Intrathecal administration
of PACAP(6-38) may be acting on superficial DH neurons to
block PACAP release from C-fiber afferents, whereas, intravesical
PACAP(6-38) may be targeting urothelial cells, suburothelial
nerve fibers or detrusor smooth muscle cells (Braas et al., 2006).
Intrathecal or intravesical blockade of PACAP/PAC1 may be a
promising target to reduce voiding frequency with cystitis.

PACAP EXPRESSION IN LUT WITH
CYP-INDUCED CYSTITIS IN PACAP
PROMOTER-DEPENDENT EGFP BAC
TRANSGENIC MICE

The PACAP-EGFP mouse strain is a transgenic line in which
PACAP expressing cells and neurons are tagged with green
fluorescent protein for easy visualization and tracking (Condro
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et al., 2016). PACAP-EGFP transgenic mice, Tg(Adcyap1-
EGFP)FB22Gsat/Mmucd (RRID:IMSR_MMRRC:012011) were
generated using the BAC (RP24-358O1) by the Gene Expression
Nervous System Atlas (GENSAT) project and obtained from the
Mutant Mouse Resource and Research Centers (Condro et al.,
2016). The identification of PACAP expressing neurons has been
challenging using standard immunocytochemistry and in situ
hybridization techniques especially in areas with low peptide
expression levels. The availability of these mice obviates these
difficulties and will allow ready identification of these neurons
and their fiber tracts to establish neurocircuits. The PACAP-
EGFP construct is regulated by the endogenous promoter.
Therefore, it is possible to examine whether altered physiology,
including stress, can differentially regulate specific neuronal
PACAP populations in the CNS and PNS. We previously
demonstrated an upregulation of PACAP expression in rodent
micturition pathways following CYP-induced cystitis (Braas
et al., 2006). We have subsequently examined the effects of
CYP-induced cystitis (4 h, 48 h, chronic) in PACAP promoter-
dependent EGFP BAC transgenic mice (gift from Dr. James
A. Waschek, David Geffen School of Medicine, University of
California, Los Angeles) (May et al., 2015, 2017a; Gonzalez
et al., 2016). In control mice with no CYP treatment, low
basal expression of PACAP-EGFP+ fibers and cells was present
in the superficial DH (L1, L2, L4-S1) and DRG (L1, L2, L6,
S1) examined. After CYP-induced cystitis, numbers of PACAP-
EGFP+ cells increased dramatically in spinal cord segments
and DRG (L1, L2, L6, and S1) involved in micturition reflexes.
PACAP-EGFP+ nerve fibers were increased in density in the
superficial laminae (I-II) of the DH and LCP of the lumbosacral
spinal cord. Following CYP-induced cystitis, numbers of PACAP-
EGFP+ urothelial cells increased with the duration of cystitis
(May et al., 2015, 2017a). After CYP-induced cystitis, additional
changes in PACAP-EGFP+ nerves fibers and cells were observed
in numerous supraspinal locations including: locus coeruleus,
Barrington’s nucleus, rostral ventrolateral medulla, PAG, raphe,
and amygdala (May et al., 2015, 2017a). PACAP expression, in
central and peripheral LUT pathways, may play a role in altered
visceral sensation (allodynia) and/or increased voiding frequency
in CYP-induced cystitis and in the chronic inflammatory pain
syndrome, PBS/IC.

ROLE OF NERVE GROWTH FACTOR
(NGF) AND ASSOCIATED RECEPTORS IN
LUT PLASTICITY

Nerve growth factor is upregulated at the site of tissue injury,
inflammation and/or target organ hypertrophy (Heumann et al.,
1987; Lewin and Mendell, 1993; Meller and Gebhart, 1994; Dray,
1995; Woolf et al., 1997) and is also released from the target
organ for TrkA binding and retrograde transport in DRG afferent
neurons (Johnson et al., 1987). This increase in NGF expression
or increased uptake of NGF in the DRG neurons may then
induce increased production of neuropeptides (e.g., SP, CGRP,
and PACAP) and alter sensory transduction (Donnerer et al.,
1992; Woolf et al., 1997). A large percentage of pelvic visceral

afferent neurons, including bladder afferent neurons, express
neurotrophic factor receptors, including Trk and p75NTR for
NGF and proNGF binding (McMahon et al., 1994; Wright and
Snider, 1995; Qiao and Vizzard, 2002a,b). Similar to increased
expression of NGF after cystitis, increased expression of TrkA-
and TrkB-IR and Trk phosphorylation in bladder afferent
neurons has been demonstrated (Qiao and Vizzard, 2002b).

NGF AND PACAP INTERACTIONS

There is a growing body of literature that supports reciprocal
regulatory interactions between NGF and PACAP in
pheochromocytoma (PC)12 cells and sensory ganglia. NGF is a
positive regulator of PACAP expression in DRG cells (Jongsma
Wallin et al., 2001). In rat PC12 cells, both NGF and PACAP can
induce PC differentiation into a neuronal phenotype (Grumolato
et al., 2003). Similarly, following transfection of PC12 cells with
a PACAP promoter-luciferase construct, exogenously applied
PACAP and/or NGF upregulated PACAP gene expression
(Hashimoto et al., 1993; Yamamoto et al., 2012). In addition, the
neurotrophins, NGF and/or BDNF can also facilitate expression
of the PACAP-selective PAC1 receptor in CNS neurons (i.e.,
cerebellar granule cells) and PC12 cells (Jamen et al., 2002).
In complementary studies, PACAP upregulated neurotrophin
receptors, TrkA and TrkB, expression and/or phosphorylation
in PC12 cells and CNS neurons (i.e., hippocampal neurons) in
a Src-dependent manner (Lee et al., 2002). Using sympathetic
neuroblasts, PACAP was shown to augment TrkA and TrkC
expression in neuronal differentiation (DiCicco-Bloom et al.,
2000). Reciprocal regulation of PACAP and NGF signaling
pathways may be a feed-forward mechanism to amplify critical,
physiological processes (e.g., survival or differentiation) during
neuronal development or regeneration. In the context of urinary
bladder inflammation, the same feed-forward mechanism may
be detrimental resulting in the amplification of painful signals
and exacerbation of target organ dysfunction.

TRANSGENIC MOUSE MODEL OF
CHRONIC, UROTHELIAL NGF
OVEREXPRESSION (NGF-OE)

Numerous studies have pointed to NGF as a molecule of interest
in urinary bladder dysfunction and specifically, PBS/IC. Studies
have demonstrated: (1) significant increases in urinary bladder
NGF, after acute and chronic bladder inflammation induced by
CYP (Vizzard, 2000b); (2) increased voiding frequency, reduced
bladder capacity and increased Fos protein in lumbosacral
spinal interneurons after exogenous delivery of NGF into the
detrusor smooth muscle (Zvara and Vizzard, 2007); (3) reduced
voiding frequency with NGF-scavenging agents in CYP-treated
rats (Hu et al., 2005) and (4) increased expression of NGF
in urine of women and in the urothelium of bladder biopsies
from women with PBS/IC (Lowe et al., 1997; Okragly et al.,
1999). To more closely mimic the environment of chronic
bladder inflammation and the clinical syndrome of PBS/IC,
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mice with chronic overexpression of NGF in the urothelium
(uroplakin II NGF transgenic mice) were generated at Roche
Palo Alto under the direction of Dr. Debra Cockayne and
in collaboration with Dr. Henry Sun at New York University
Medical School (Figures 3A,B) (Schnegelsberg et al., 2010).
Mice with chronic, urothelial NGF-OE are valuable tools in
determining the contribution of increased NGF expression in
the urothelium to neural and functional plasticity of micturition
reflexes (Figures 3D,E). Functionally, NGF-OE mice exhibit
frequent urination and the presence of non-voiding bladder
contractions as well as referred somatic pelvic hypersensitivity
(Schnegelsberg et al., 2010) (Figure 3C). The electrical properties
of the MPG neurons were unchanged suggesting that the efferent
limb of the micturition reflex does not influence the voiding
function in NGF-OE mice (Girard et al., 2012). Pleiotropic
changes, subsequent to NGF-OE, including changes in the
expression of growth factors, neuroactive compounds, receptors
and ion channels (e.g., TRP channels) (Allen and Dawbarn, 2006;
Pezet and McMahon, 2006) can also directly modulate pain and
bladder/visceral sensory function and could contribute to altered
urinary bladder function in NGF-OE mice (Yoshimura et al.,
2002; Ford et al., 2006; Pezet and McMahon, 2006). For example,
PACAP/VIP and receptor expression is changed in micturition
pathways in NGF-OE mice (Arms et al., 2010). The PAC1
mRNA and PAC1-IR were upregulated whereas PACAP mRNA
and PACAP-IR were decreased in urothelium of NGF-OE mice
(Arms et al., 2010). In contrast, VPAC1 mRNA was decreased in
both urothelium and detrusor smooth muscle of NGF-OE mice
(Arms et al., 2010). VIP mRNA expression and VIP-IR were not
altered in urinary bladder of NGF-OE mice (Arms et al., 2010).
These additional changes in PACAP and associated receptors in
micturition pathways of NGF-OE mice may also contribute to
altered urinary bladder function in NGF-OE.

CONTRIBUTIONS OF
PACAP/RECEPTOR SIGNALING TO
INCREASED VOIDING FREQUENCY AND
SOMATIC SENSITIVITY IN NGF-OE

Chronic, urothelial NGF-OE, achieved through the use of a
highly urothelium-specific uroplakin II promoter, produces
neuroanatomical and functional changes in the LUT (Figure 3).
Chronic, urothelial NGF-OE results in: (1) hyperinnervation
in the urinary bladder; (2) increased voiding frequency; (3)
increased presence and amplitude of non-voiding contractions
during the filling phase and (4) increased referred somatic
sensitivity (Schnegelsberg et al., 2010) (Figure 3). Previous
sections have described the following key observations
concerning PACAP/receptor signaling in the LUT: (1) PAC1-
immunoreactive fibers and neurons are present in the LUT
including the urinary bladder and DRG (Braas et al., 2006);
(2) PAC1 receptor is expressed by the DRG, urothelium, and
detrusor smooth muscle (Braas et al., 2006); (3) PACAP increases
detrusor contractions (Braas et al., 2006) and (4) PAC1 receptor
antagonists, delivered intrathecally or intravesically, reduce

voiding frequency in rodents with CYP-induced cystitis (Braas
et al., 2006). Thus, we evaluated whether PACAP/receptor
signaling contributes to increased voiding frequency and somatic
sensitivity in NGF-OE mice (Girard et al., 2016). Intravesical
administration of the PAC1 receptor antagonist, PACAP(6-38)
(300 nM), increased intercontraction interval (2.0-fold) and void
volume (2.5-fold) and reduced pelvic sensitivity in NGF-OE
mice (Girard et al., 2016) but had no effects in WT mice.
PACAP/receptor signaling contributes to the increased voiding
frequency and pelvic sensitivity observed in NGF-OE mice.

We have also determined whether additional changes
in neuropeptides/receptors and growth factors/receptors are
observed in LUT pathways in NGF-OE treated with CYP to
induce cystitis (Girard et al., 2012). Quantitative PCR was
used to determine NGF, BDNF and receptors (TrkA, TrkB,
p75NTR) and PACAP/VIP and receptors (PAC1, VPAC1, VPAC2)
transcripts expression in LUT tissues from NGF-OE and WT
mice with CYP-induced cystitis (4 h, 48 h, and chronic) (Girard
et al., 2012). As expected, NGF mRNA in the urothelium
was increased in control NGF-OE mice. However, urothelial
expression of NGF mRNA in NGF-OE mice treated with CYP
was not further increased but maintained with all durations
of CYP (Girard et al., 2012). In contrast, CYP-induced cystitis
in NGF-OE mice resulted in significant, additional changes in
transcript expression for NGF, BDNF and receptors (TrkA, TrkB,
p75NTR) and PACAP/VIP and receptors (PAC1, VPAC1, VPAC2)
in lumbosacral DRG and urinary bladder (e.g., urothelium,
detrusor) that was dependent on the duration of cystitis (Girard
et al., 2012). Conscious cystometry in unrestrained, NGF-OE
mice treated with CYP demonstrated significant increases in
voiding frequency above that observed in control NGF-OE
mice underscoring that bladder functional changes were not
saturated (Girard et al., 2011). These results suggest that chemical
mediators (e.g., neurotrophins, neuropeptides) upregulated when
CYP-induced cystitis is combined with NGF-OE can contribute
to neurochemical and functional LUT plasticity in NGF-OE mice
(Guerios et al., 2006, 2008; Arms et al., 2010, 2013; Schnegelsberg
et al., 2010; Arms and Vizzard, 2011; Gonzalez et al., 2013,
2014a,b).

PACAP MECHANISMS AND STRESS
FACILITATE MICTURITION
DYSREGULATION

Patients with disorders of the LUT and associated disease states
report worse symptoms during stress (Westropp and Buffington,
2002; Nazif et al., 2007). Several studies support this role in
the exacerbation and likely the development of a number of
LUT disorders including OAB syndrome and PBS/IC (Birder
and Andersson, 2013). A majority of these patients report
exacerbation of symptoms by clinical stress (Rothrock et al.,
2001a,b), and experimental stress increases bladder pain and
urgency in these individuals (Lutgendorf et al., 2000). In addition,
animal models of stress demonstrate symptoms of bladder
dysfunction (e.g., increased micturition frequency, urgency, pain)
as well as anxiety-like behavior (Birder and Andersson, 2013)
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FIGURE 3 | Generation of NGF-overexpressing (NGF-OE) transgenic mice. (A) A 6,058 bp NotI fragment containing the uroplakin II (UPII)-NGFv2 transgene was
microinjected into the pronuclei of fertilized C57BL/6J embryos to generate NGF-OE transgenic F0 lines. BamHI and Pst I restriction sites, and the position of the
primers used for genotyping (RP41-NGF-S and βEx3-AS) are indicated (Schnegelsberg et al., 2010). (B) Representative semi-quantitative RT-PCR data showing
amplification of total NGF mRNA (268 bp) isolated from the urothelium or detrusor smooth muscle bladder of WT and NGF-OE mice (Schnegelsberg et al., 2010).
(C) Open cystometry in conscious, unrestrained WT and NGF-OE mice demonstrated increased voiding frequency and non-voiding contractions (NVCs) in NGF-OE
mice (Schnegelsberg et al., 2010). Representative cystometrogram traces from WT (top) and NGF-OE (bottom) mice during continuous intravesical infusion of room
temperature saline. Bladder pressure (BP, cm H2O) is shown. Arrows indicate examples of NVCs. (D,E) Characterization of NGF mRNA and protein expression in
urinary bladder from NGF-OE mice by quantitative RT-PCR and ELISAs (Cheppudira et al., 2008). (D) NGF transcript expression in urothelium/suburothelium and
detrusor layers in NGF-OE and WT mice normalized to the housekeeping gene, 18S. Values are means ± SEM. ∗P ≤ 0.001: NGF-OE urothelium/suburothelium vs.
WT urothelium/suburothelium and detrusor (with horizontal bars) and within NGF-OE bladder layers (without horizontal bars) (Cheppudira et al., 2008). (E) Summary
histogram of NGF protein expression in whole urinary bladder, urothelium/suburothelium, and detrusor layers in NGF-OE and WT mice. Values are means ± SEM.
∗P ≤ 0.001: urothelium/suburothelium vs. detrusor from NGF-OE mice (with horizontal bars) and NGF-OE vs. WT (without horizontal bars) (Cheppudira et al., 2008).

that may be due, in part, to disruption of the HPA axis.
Cortisol, by feeding back on the HPA axis, normally acts to
attenuate inflammation; however, abnormalities in the feedback
loop may cause dysregulation of the inflammatory response.
Therefore, patients with bladder dysfunction disorders may have
abnormalities in the HPA axis, and stress could be attributed
to the increase in bladder symptoms, like urgency and pain,
reported by these patients (Westropp and Buffington, 2002; Nazif
et al., 2007). However, while stress has been associated with
symptom aggravation, the pathophysiology underlying the effect
of stress on urinary frequency and/or other voiding disorders
remains unknown.

STRESS EFFECTS ON THE STRUCTURE
AND FUNCTION OF THE URINARY
BLADDER

Stress is known to exacerbate symptoms of PBS/IC, and exposure
to stressors is related to the onset, progression and even outcome
of many disease states including those related to the urinary

bladder (Yamamoto et al., 2012). Several animal models of stress,
including social stress (Miczek, 1979; Bhatnagar et al., 2006;
Chang et al., 2009; Wood et al., 2009), immobilization stress
(Spanos et al., 1997; Alexacos et al., 1999; Boucher et al., 2002,
2010), WAS (Cetinel et al., 2005; Robbins et al., 2007; Smith et al.,
2011), and electric footshock (Imaki et al., 1991; Robbins and
Ness, 2008; Black et al., 2009) produce morphological changes
in the urinary bladder, urinary bladder dysfunction, urothelial
barrier disruption, inflammation, and visceral sensitivity similar
to signs and symptoms of PBS/IC.

PSYCHOSOCIAL STRESS, ALTERED
BEHAVIORS AND PHYSIOLOGICAL
DISORDERS

From the different modes of stress, psychosocial stress is
the most familiar and relevant to everyday challenges and
experiences. Unlike physical and metabolic stress which reflects
perturbations of the homeostatic or resting state of the body,
psychosocial stress results from our cognitive appraisal of
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some perceived threat (either real or imagined) and our
judgment that we may not have the resources or means to
overcome that challenge (Marshall and Garakani, 2002; Turner-
Cobb, 2005; FitzGerald et al., 2009; Lovallo, 2013; Mahon
et al., 2013; Mihaljevic et al., 2016; Stephens et al., 2016).
Classically, the heightened HPA axis coordinates sympathetic
nervous system and cortisol adaptive responses to maintain
homeostasis (allostasis) (Marshall and Garakani, 2002; Turner-
Cobb, 2005; FitzGerald et al., 2009; Lovallo, 2013; Mahon
et al., 2013; Mihaljevic et al., 2016; Stephens et al., 2016);
however, repeated challenges or the inability to attenuate stress
signaling even when the dangers have dissipated can result
in maladaptations and cumulative long-term damages (i.e.,
increased HPA and sympathetic reactivity; allostatic overload)
that can manifest a variety of disorders (Marshall and Garakani,
2002; Turner-Cobb, 2005; FitzGerald et al., 2009; Lovallo, 2013;
Mahon et al., 2013; Mihaljevic et al., 2016; Stephens et al.,
2016). Psychosocial stressors engage the same pathways, and
as in other stress modalities, the culmination of the many
sustained psychosocial insults on individuals can increase the
risk of a panoply of behavioral and physiological disorders
including anxiety, depression, altered feeding preferences and
behaviors, cardiovascular disease, obesity/metabolic diseases,
gastrointestinal/urinary dysregulation, immunologic disorders
and tumor progression (Herman et al., 1996, 2003, 2005, 2012,
2016, Marshall and Garakani, 2002; Turner-Cobb, 2005; Ressler
and Mayberg, 2007; Jankord and Herman, 2008; FitzGerald et al.,
2009; Jeanneteau et al., 2012; Lovallo, 2013; Mahon et al., 2013;
Mihaljevic et al., 2016; Stephens et al., 2016). Juveniles and
adolescents are particularly vulnerable to stress- and trauma-
related effects on neural development; therefore, psychosocial
stress during these life stages may have long-lasting consequences
with enhanced risks for future behavioral and physiological
disorders (Ressler and Mayberg, 2007). Thus, psychosocial stress
has a broad impact on health and disease progression with
substantial human and societal costs (Herman et al., 1996, 2003,
2005, 2012, 2016; Jankord and Herman, 2008; Jeanneteau et al.,
2012).

Yet despite the consequences of psychosocial stressors,
some of the fundamental neural mechanisms and pathways
linking psychosocial stress to altered behaviors and physiological
disorders are still unclear. Although a large body of data
have implicated CRH, arginine vasopressin, mineralocorticoid
and glucocorticoid receptors, FKBP5 (a co-chaperone with
hsp90 in GR heterocomplex), catecholamine metabolic enzymes,
dopamine D2 receptor, and serotonin transporter isoforms
transcripts in stress (Valentino, 1988; Marshall and Garakani,
2002; Turner-Cobb, 2005; FitzGerald et al., 2009; Lovallo, 2013;
Mahon et al., 2013; Mihaljevic et al., 2016; Stephens et al.,
2016), how altered expression of these genes contribute to
the stress-related disorders remains to be elucidated. However,
among central neuroregulators, PACAP and its cognate G protein
coupled PAC1 receptor have recently been implicated as novel
stress mediators. Ressler et al. (2011) published an elegant study
that demonstrated the critical involvement of PACAP/PAC1
receptor expression and signaling in regulating psychological
and physiological responses to traumatic stress. PACAP/PAC1

receptor transcripts are increased in specific limbic structures
following RVS exposure; CNS PACAP signaling is anxiogenic
and anorexic (Hammack et al., 2009; Lezak et al., 2014a,b;
Missig et al., 2014; Roman et al., 2014), and chronic stress-
induced anxiety-related behaviors can be blocked by PAC1
receptor antagonists. These PACAP-mediated responses are very
similar to the anxiogenic effects of CRH suggesting that the
two peptidergic systems may be integrated in limbic pathways.
But importantly, unlike CRH, recent work demonstrated that
the PACAPergic system is dysregulated in PTSD in a sex-
specific manner (Ressler et al., 2011). Recent studies suggest
potential interactions between stress, PACAP and circulating
gonadal hormones to differentially regulate the PACAPergic
system in men and women with pathology including PTSD
(King et al., 2017). Blood PACAP levels correlated with severity
of PTSD symptoms and a single nucleotide polymorphism
in the estrogen response element of the PAC1 receptor gene
is predictive of PTSD diagnosis and symptoms in females
(Ressler et al., 2011). These observations are consistent with
the anxiolytic behavioral phenotype of PACAP knockout mice
(Hashimoto et al., 2001; Otto et al., 2001; Hattori et al.,
2012) and importantly, recent PACAP knockout studies have
implicated PACAP as a unique mediator of emotional stressors
(Hammack et al., 2009; Lezak et al., 2014a,b; Missig et al., 2014;
Roman et al., 2014). From these aggregate results, the novel
identification of PACAP/PAC1 receptor in emotional stress adds
an important layer to existing neural circuits and mechanisms,
which may further enhance understandings of stress and disease
pathways.

A RVS paradigm has been previously used to examine PACAP
and BDNF mRNA expression in the BNST (Hammack et al.,
2009; King et al., 2017) (Figure 4A). This model of repeated
stress was found to be anxiogenic, a result most likely mediated
by BNST PACAP (Hammack et al., 2009; Lezak et al., 2014a,b;
Missig et al., 2014; Roman et al., 2014). This paradigm involves
seven consecutive days with daily exposure to one of five different
stressors: oscillation, swim, footshock, restraint, and pedestal
stress (Figure 4A). Oscillation stress involves rodents placed
inside a chamber secured to a rotator on low to medium speed
for 30 min. Rodents are placed on an elevated platform for
30 min during pedestal stress. The other stressors include 5 min
of forced monitored swimming, two 1.0 mA 5 s scrambled
footshocks, and 60 min of restraint. Swim and footshock stressors
are repeated during the 7-day paradigm (Hammack et al., 2009;
King et al., 2017) (Figure 4A). When compared with other
animal models of stress (e.g., resident intruder, immobilization,
WAS, and electrical footshock) where the same stressors are
presented daily, the RVS paradigm is unique in that various
stressors are presented throughout the 7-day protocol, which
may be more relevant to human daily life stressors. Other
advantages of the RVS paradigm include: (1) lack of habituation
because of novel stressor exposure; (2) consistent and robust
changes in urinary bladder function (Merrill et al., 2013b;
Merrill and Vizzard, 2014) (Figure 4D) and (3) reproducible
decrease (10%) in weight gain during RVS (Merrill et al.,
2013b; Merrill and Vizzard, 2014) (Figures 4B,C). Furthermore,
RVS paradigms are widely used to characterize the chronic
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FIGURE 4 | Repeated variate stress (RVS) protocol (7 days). (A) Five different
stressors and the duration of each stressor for each day they are administered
in the RVS protocol (Merrill et al., 2013b; Longden et al., 2014a,b; Merrill and
Vizzard, 2014). Swim and footshock stressors are repeated on the last 2 days
of RVS. s, seconds; min, minutes. (B) Changes in body weight of rats during
7 days of RVS. On days 5–7 of stressor exposure, rats exposed to RVS
exhibit significant weight gain attenuation compared with controls rats. Body
weights were significantly (P ≤ 0.01) decreased in the RVS group on days 5–7
of stress (Merrill et al., 2013b). (C) Percentage weight change from baseline
body weight to body weight on day 7 of stressor exposure was significantly
(P ≤ 0.01) decreased in rats exposed to RVS. Values are means ± SEM,
∗P ≤ 0.01 (Merrill et al., 2013b). (D) Representative cystometrogram
recordings using continuous, intravesical infusion of saline in conscious rats
with an open outlet from a control rat and a rat exposed to RVS demonstrate
increased voiding frequency in rats exposed to RVS. Bladder pressure in a
control (top) rat and RVS-exposed (bottom) rat are shown (Merrill et al.,
2013b).

stress response, including: (1) CNS and PNS responses and
neurochemical plasticity to chronic stress; (2) comorbidity of
stress-related disorders; and (3) the role of the limbic system
and neuroendocrine cascade in chronic stress (Herman et al.,
1996, 2003, 2005, 2012, 2016; Jankord and Herman, 2008;
Jeanneteau et al., 2012). We recently extended the use of the RVS
protocol to characterize the effects on the autonomic nervous
system and somatic sensitivity (Merrill et al., 2013b; Merrill
and Vizzard, 2014). RVS produced (1) a decrease in bladder
capacity and void volume and an increase in voiding frequency
(Figure 4D); (2) enhanced referred somatic sensitivity of both the
hindpaw and pelvic regions; and (3) changes in the inflammatory
milieu (e.g., histamine, myeloperoxidase, NGF, CXCL12) of the

urinary bladder (Merrill et al., 2013b; Merrill and Vizzard,
2014).

RVS AND PACAP/RECEPTOR
MECHANISMS CONTRIBUTE TO
MICTURITION DYSFUNCTION

Symptom exacerbation due to stress is prevalent in many disease
states, including functional disorders of the urinary bladder
(e.g., OAB, PBS/IC) and may be partly due to disruption of
the HPA axis (Westropp and Buffington, 2002; Nazif et al.,
2007). The prevalence of micturition disorders is high among
individuals with anxiety disorders (Perry et al., 2006; Fan
et al., 2008; Coyne et al., 2009). However, the mechanisms
underlying the effects of stress on micturition reflex function
are unclear. Among central neuroregulators, PACAP (Adcyap1)
and PAC1 receptor (Adcyap1r1) are novel stress mediators (Dore
et al., 2013). PACAP/PAC1 receptor transcripts are increased
in specific limbic structures following RVS exposure; CNS
PACAP signaling is anxiogenic and anorexic, and chronic stress-
induced anxiety-related behaviors can be blocked by PAC1
receptor antagonists (Hammack et al., 2009; Lezak et al., 2014a,b;
Missig et al., 2014; Roman et al., 2014). We have recently
characterized PACAP/PAC1 signaling in stress-induced urinary
bladder dysfunction in mice (Gonzalez et al., 2016; May et al.,
2017b). RVS induced urinary bladder hyperreflexia characterized
by reduced void volumes, increased voiding frequency and
decreased intercontraction void intervals (Merrill et al., 2013b;
Merrill and Vizzard, 2014). In studies using a resident intruder
paradigm in mice, similar changes in urinary bladder function
(i.e., increased voiding frequency) have also been demonstrated
(Mingin et al., 2014, 2015). Plasma corticosterone, a steroid
hormone involved in the HPA axis secreted by the adrenal
gland in rodents during stressor exposure, was determined in
RVS and control mouse groups. Plasma corticosterone was
significantly increased (5.2-fold) in mice with RVS compared
to control mice (May et al., 2017b). We determined PACAP
and PAC1 transcript and protein expression in the urinary
bladder and lumbosacral DRG and spinal cord in RVS or
control mouse groups. PACAP mRNA was significantly increased
in lumbosacral (L1, L2, L6, S1) DRG following RVS but no
changes were observed in PACAP protein. PACAP protein was
significantly increased in urinary bladder and in the lumbosacral
spinal cord (L6, S1) following RVS. No changes were observed
in PAC1 mRNA expression in lumbosacral DRG examined;
however, PAC1 protein was significantly increased in L6 an
S1 DRG. Bladder function was assessed in RVS and control
mouse groups using continuous, intravesical infusion of saline in
conscious, unrestrained mice with an open outlet both before and
after PAC1 blockade at the level of the urinary bladder (Gonzalez
et al., 2016; May et al., 2017b). Intravesical administration of the
PAC1 receptor antagonist, PACAP(6-38) (300 nM), significantly
increased intercontraction interval (2.5-fold) and void volume
(2.5-fold) in mice following RVS (Gonzalez et al., 2016; May
et al., 2017b). We also evaluated the effect of PAC1 blockade
at the level of the urinary bladder on pelvic and hindpaw
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sensitivity in RVS or control mouse groups using von Frey
filament testing. Intravesical administration of PACAP(6-38)
(300 nM) significantly reduced pelvic and hindpaw sensitivity in
mice following RVS (Gonzalez et al., 2016; May et al., 2017b).
PACAP/receptor signaling contributes to the increased voiding
frequency and pelvic and hindpaw sensitivity observed in mice
following RVS (Figure 5) (Braas et al., 2006). Ongoing studies
are evaluating the potential overlap of CNS and PNS pathways
involved in micturition reflex function and stress responses.

PERSPECTIVES AND SIGNIFICANCE

Numerous neuropeptide/receptor systems are expressed in CNS
and PNS pathways that coordinate LUT reflexes [for review,
see (Arms and Vizzard, 2011)]. PACAP is a member of
the VIP/secretin/glucagon family of hormones, that is highly
conserved across species and exists in two different isoforms,
PACAP27 and PACAP38; the latter being the predominant form
in most tissues and organ systems (Fahrenkrug et al., 1989;
Arimura et al., 1991; Hannibal et al., 1995; Arimura, 1998;
Fahrenkrug and Hannibal, 1998a,b). PACAP/receptor signaling
underlies diverse neurological and physiological functions.
Fahrenkrug and Hannibal (1998b) demonstrated that PACAP
was expressed in C-fiber, unmyelinated nerve fibers in rat urinary
tract. Given the involvement of C-fiber nerve pathways in the
LUT following inflammation and neural injury (Fowler et al.,
2008), we began to evaluate the anatomical distribution and
function of PACAP/receptor signaling in rodent LUT pathways.
PACAP (Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1),
have tissue-specific distributions in diverse systems including
the LUT in both neural and non-neural components. Preclinical
animal models including the CYP-induced bladder inflammation
model, the transgenic mouse model of chronic urothelial
NGF-OE and a RVS model are useful to evaluate underlying
mechanisms contributing to urinary bladder dysfunction and
pelvic pain associated with the clinical condition of PBS/IC
(Figure 5). PACAP and associated receptors exhibit neuroplastic
changes in expression and function with bladder inflammation
or psychogenic stress and the PAC1 antagonist, PACAP(6-38),
improves bladder function and reduces somatic sensitivity in
preclinical models (Figure 5) (Braas et al., 2006). Changes
in the PACAP/receptor system in micturition pathways may
underlie and/or contribute to LUT dysfunction including the
symptoms of increased voiding frequency, and pelvic pain. The
PACAP/receptor system in micturition reflexes may represent a
potential target for therapeutic intervention (Figure 5) (Braas
et al., 2006).

We now draw attention to several areas where additional
research is needed to advance our understanding of LUT function
and dysfunction:

The Need for Novel LUT Targets
This review with its focus on the PACAP/receptor system in
micturition pathways and its potential as a novel target to
improve bladder function, underscores the need for additional
LUT targets for intervention. Given the heterogeneity of PBS/IC

syndrome, it is unlikely that one targeted intervention will work
for all.

The Need for Preclinical Models
There are many challenges in identifying potential LUT targets.
One challenge that continues to limit the identification and
effectiveness of targets concerns the use of preclinical models
and their relevance to human disease. For example, there is
no consensus concerning the etiology of the disease syndrome,
PBS/IC, which hinders the development and acceptance by the
research community of preclinical models of PBS/IC (Lavelle
et al., 2000; Sant and Hanno, 2001; Nazif et al., 2007; Quillin
and Erickson, 2012; Saban, 2015). The models we have described
in this review are several used to test hypotheses pertaining to
LUT function and dysfunction. For example, the CYP model of
bladder inflammation has grown in popularity and acceptance in
the research community over the past 20 years. However, we still
exercise caution and never consider the CYP model, a preclinical
model of PBS/IC. Rather, CYP-induced cystitis is a bladder
inflammation model that mirrors some signs and symptoms of
the PBS/IC. The translational relevance of targets identified in
preclinical models must be demonstrated in clinical studies.

The Contribution of Stress in Bladder
Dysfunction
As discussed in this review, BPS/IC symptoms are often
exacerbated by stress and correlate with symptom severity;
however, cause and effect have not been addressed (Rothrock
et al., 2001a,b; Birder and Andersson, 2013). There are a
growing number of preclinical stress models being used to
determine underlying mechanisms of stress-induced urinary
bladder dysfunction (Miczek, 1979; Imaki et al., 1991; Spanos
et al., 1997; Alexacos et al., 1999; Boucher et al., 2002, 2010;
Cetinel et al., 2005; Bhatnagar et al., 2006; Robbins et al., 2007;
Robbins and Ness, 2008; Black et al., 2009; Chang et al., 2009;
Wood et al., 2009; Smith et al., 2011; Merrill et al., 2013b; Merrill
and Vizzard, 2014). As an important first step, determining the
overlap in the PNS and CNS neural structures and pathways that
underlie stress responses and micturition reflexes will provide
insight into the anatomical substrates underlying these processes.
These studies should be followed by studies determining the
neurochemical phenotype of participating cells in identified PNS
and CNS substrates.

The Function of the Lamina Propria
Signaling Network
Additional attention should be focused on unexplored and
unappreciated aspects of the urinary bladder structure that
could have profound influence on bladder function. As
described previously, the lamina propria is located between the
basement membrane of the mucosa and the detrusor muscle
and is composed several types of cells, including: fibroblasts,
adipocytes, interstitial cells, and afferent and efferent nerve
endings (Andersson and McCloskey, 2014). Although increasing
attention is being focused on the lamina propria, its contribution
to bladder function is still emerging (McCloskey, 2010; Johnston
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FIGURE 5 | The PACAP/receptor system in micturition reflexes: a potential target for therapeutic intervention. CYP-induced bladder inflammation model, the
transgenic mouse model of chronic urothelial NGF-OE and a repeated variate stress model are useful to evaluate underlying mechanisms contributing to urinary
bladder dysfunction and pelvic pain. Each model is associated with changes in NGF expression in the urinary bladder that can result in changes in the urinary
bladder and be transported in a retrograde manner to lumbosacral dorsal root ganglia (DRG). PACAP and PAC1 receptor exhibit neuroplastic changes in expression
and function with bladder inflammation, and stress. Intravesical instillation of the PAC1 receptor antagonist, PACAP(6-38), reduces voiding frequency and somatic
sensitivity in preclinical models. The PACAP/receptor system in micturition reflexes may represent a potential target for therapeutic intervention to improve urinary
bladder function and reduce pelvic pain. DH, dorsal horn; EUS, external urethral sphincter. Figure modified from Braas et al. (2006).

et al., 2012; Andersson and McCloskey, 2014). We have recently
observed slow propagating waves of activity in the lamina
propria network that displayed varying degrees of coupling
(Heppner et al., 2017). Application of ATP or TRPV4 agonist,
GSK1016790 (100 nM), increased the duration of Ca2+ events,
the number of cells with Ca2+ events and the integrated
Ca2+ activity corresponding to propagation of activity among
cells in the lamina propria network (Heppner et al., 2017).
These findings indicate that ATP and TRPV4 can activate cells
in the laminar propria network, leading to the appearance
of organized propagating wavefronts (Heppner et al., 2017).
Continued analyses of the lamina propria network should include
determining if neuropeptide/receptor systems can also activate
cells in the lamina propria network and lead to propagating
wavefronts. Such studies will help in understanding the potential
functional importance of the lamina propria in health and
disease.

STUDIES INVOLVING ANIMAL
RESEARCH

The studies described from the Vizzard laboratory were
performed in accordance with institutional and national
guidelines and regulations. The University of Vermont

Institutional Animal Care and Use Committee approved all
experimental protocols involving animal use. Animal care was
under the supervision of the University of Vermont’s Office of
Animal Care Management in accordance with the Association
for Assessment and Accreditation of Laboratory Animal Care
(AAALAC) and National Institutes of Health guidelines. All
efforts were made to minimize the potential for animal pain,
stress or distress.
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