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Abstract: COVID-19 is a widely spread disease, and in order to overcome its spread, vaccination
is necessary. Different vaccines are available in the market and people have different sentiments
about different vaccines. This study aims to identify variations and explore temporal trends in
the sentiments of tweets related to different COVID-19 vaccines (Covaxin, Moderna, Pfizer, and
Sinopharm). We used the Valence Aware Dictionary and Sentiment Reasoner (VADER) tool to analyze
the public sentiments related to each vaccine separately and identify whether the sentiments are
positive (compound ≥ 0.05), negative (compound ≤ −0.05), or neutral (−0.05 < compound < 0.05).
Then, we analyzed tweets related to each vaccine further to find the time trends and geographical
distribution of sentiments in different regions. According to our data, overall sentiments about
each vaccine are neutral. Covaxin is associated with 28% positive sentiments and Moderna with
37% positive sentiments. In the temporal analysis, we found that tweets related to each vaccine
increased in different time frames. Pfizer- and Sinopharm-related tweets increased in August 2021,
whereas tweets related to Covaxin increased in July 2021. Geographically, the highest sentiment
score (0.9682) is for Covaxin from India, while Moderna has the highest sentiment score (0.9638)
from the USA. Overall, this study shows that public sentiments about COVID-19 vaccines have
changed over time and geographically. The sentiment analysis can give insights into time trends
that can help policymakers to develop their policies according to the requirements and enhance
vaccination programs.

Keywords: COVID-19; VADER; vaccine; Moderna; Covaxin; Pfizer; Sinopharm; data mining

1. Introduction

COVID-19 is a respiratory disease, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). COVID-19 can cause sore throat, shortness of breath, and
respiratory illness. COVID-19’s first case was detected in December 2019 in Wuhan city,
China [1]. It spread quickly, from person to person and country to country. Within a few
days, it became a global disease that created a pandemic situation worldwide. The cases
of COVID-19 reached above 100 million, including 2 million deaths by the end of January
2021 [2]. This pandemic has affected people’s lives worldwide. Many steps are being
taken by world governments to control the spread of this pandemic disease and its effects.
Although all the steps work effectively, vaccination is one of the most prominent steps
taken by governments to reduce the effects of this viral disease.

Many vaccines have been introduced in markets across the world for emergency use
since December 2020 [3]. Further, 50 more vaccines are under development [4]. On 31 De-
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cember 2020, the WHO’s Emergency Use List (EUL) was updated with the Pfizer/BioNTech
Comirnaty vaccine [5]. On 16 February, EUL was administered to the SII/Covishield
and AstraZeneca/AZD1222 vaccines (designed by AstraZeneca/Oxford and manufac-
tured by Serum Institute of India and SK Bio, respectively) [6]. Johnson & Johnson’s
Janssen/Ad26.COV 2.S was approved for EUL on 12 March 2021 [7]. On 30 April 2021,
EUL approved the Moderna COVID-19 vaccine (mRNA 1273), and the Sinopharm COVID-
19 vaccine was approved on 7 May 2021 [8]. The Sinopharm vaccine was developed by
the Beijing Bio-Institute of Biological Products, a subsidiary of China’s National Biotech
Group [9].

To control the spread of the COVID-19 outbreak, a satisfactory proportion of the popu-
lation must be vaccinated, which is almost 67% for COVID-19 [10]. Therefore, vaccination
is necessary, although there are questions as to the extent to which these vaccines protect
us from COVID-19 [11]. Different countries have adopted different mechanisms for the
effective vaccination of their people; however, many people have expressed hesitancy
towards vaccination. UK and European general population data show a mostly positive
attitude towards vaccines; research also shows that there is still certainty or mistrust about
the safety and effectiveness of vaccines in a substantial (10%) proportion of adults in the
UK and European general population [12]. In Europe and the UK, 26% of adults were
unwilling to receive a dose of a vaccine during the early pandemic (April 2020) [13]. Simi-
larly, other studies show that one quarter of French [14] and US [15] adults are not ready
for vaccination.

After COVID-19 spread around the world, many conspiracy theories appeared on
different media platforms opposing vaccination against it. Many questions arose about
vaccination quality, dose standards, religious buy-in, and suspicion about the presence of
live viruses in vaccines [16]. People of different countries have shown different behavior
towards vaccines due to misinformation and anti-vaccination sentiments. Misinformation
and anti-vaccination sentiments reduce the effectiveness of vaccination. To understand
people’s behavior during such situations, social media can play an important role [17]. Peo-
ple have expressed their concerns about COVID-19 using different social media platforms.
Twitter is globally known as a popular social media platform, so we use Twitter as the data
source in our study.

There is a need to analyze the public attitudes towards COVID-19 vaccines to better
understand them, and this study sought to examine the public’s attitudes. This will help
governments to reduce the hesitancy among individuals about COVID-19 vaccines and
build their confidence in vaccines. The main contribution of this study is to analyze the
sentiments of people regarding four vaccines (Covaxin, Moderna, Pfizer and, Sinopharm).
The comparison of sentiment analysis of each vaccine shows different statistics in different
time frames and different regions of the world. By using this proposed research study,
policymakers can improve the efficiency of vaccination among populations where positive
sentiments about the COVID-19 vaccine are low. The government and policymakers can
compare locations in which positive sentiments are high in comparison with locations
where positive sentiments are low and determine the factors that affect people’s health. Our
temporal analysis will also help in identifying the time frame in which there is significant
change occurring in public sentiments towards these vaccines.

2. Background

During the COVID-19 pandemic, different research and surveys have been conducted
to overcome the effects of this disease. Vaccine hesitancy in a population is a basic hurdle in
the control of vaccine-preventable illnesses. A long-term lockdown is not an efficient
method in many developing countries owing to economic instability. The uptake of
vaccinations may be the only method to restrict the pandemic’s endurance [18]. As vaccines
play a great role in reducing the effects of COVID-19, researchers have collected data from
different online sources to analyze public sentiments about different COVID-19 vaccines.
Twitter is one of the most popular social media platforms used to research health issues [19].
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Twitter shows real-time public attention, behavior, and attitudes in different locations [20].
There are 100 million active users present on Twitter [21] and almost 500 million tweets
posted every day [22].

In previous studies, tweets have been used successfully to analyze public sentiments
about vaccines other than COVID-19. Raghupathi et al. used the frequency-inverse doc-
ument frequency technique to analyze public sentiments towards vaccination, and their
findings show that most people have concerns about newly developed vaccines [23].
Due et al. constructed a model of tweets related to the HPV vaccine, and the model shows
that public sentiments changed in early 2017 and the US varied significantly [24]. Similarly,
a few studies have been performed to analyze public sentiments through COVID-19-related
tweets. For example, Dubey et al. analyzed COVID-19 vaccine-related tweet sentiments
from 14 January 2021 to 18 January 2021, which were posted in India only [25]. Paul et al.
analyzed public attitudes towards vaccines using ordinary least squares regression and
multinomial regression methods. This survey showed that 16% of participants had a high
level of mistrust towards vaccines. Overall, 14% of participants showed unwillingness to
receive the COVID-19 vaccine [26]. Kreps et al. used the conjoint analysis method to deter-
mine the role of vaccine attributes towards vaccination. This survey shows that different
attributes of a vaccine affect people’s willingness to receive vaccinations. An attribute that
had a larger effect on individual vaccine preference was efficacy [27]. Doaa et al. performed
a cross-sectional survey to analyze intention and attitudes about the COVID-19 vaccine
in Egyptian adults from 7 January 2021 to 30 March 2021. Among 1011 Egyptians, 54%
showed hesitancy towards the COVID-19 vaccine, 21% of them showed non-acceptance of
the vaccine, and 25% among them showed a willingness to receive the vaccine. Approxi-
mately 27.1%, 6.9%, and 4.5% of respondents preferred the Pfizer, Chinese, and AstraZeneca
vaccines, respectively [28]. Similarly, Al-Qerem et al. studied the attitudes of Jordanian
young adults towards the COVID-19 vaccine using a non-parametric statistical test. A
total of 1897 participants took this survey and 19.9% of them were ready to receive a dose
of the COVID-19 vaccine. Participants showed differences in the acceptance of different
COVID-19 vaccines, and specific knowledge about vaccines was a significant predictor
of vaccine acceptance [29]. Khan et al. performed a mixed-method survey to analyze the
attitudes of the Pakistani population towards the COVID-19 vaccine from 15 September
2020 to 30 November 2020. The total number of participants included in this survey was
1003, and 71.29% among them reported that they will be vaccinated when the vaccine is
made available [30].

Vaccines have helped significantly to overcome the effects of the COVID-19 pandemic.
A global survey of participants from 19 countries showed that acceptance rates ranged
between less than 55% to over 90% and the overall result showed that the acceptance rate
was 71.5% [31]. The vaccination rate in the United Arab Emirates and Bahrain in January
2021 was high as compared to other countries. The United Arab Emirates and Bahrain
vaccination rates were 33 and 11.56 per 100 people, respectively, whereas in other countries,
it was less than 2 per 100 people [32]. In Jordan, it was less than 0.5% [33]. These rates
in the Middle East were reported before vaccine availability; therefore, the situation may
be different now. As discussed earlier, different vaccines evoke different sentiments in
people; therefore, our study aims to investigate these sentiments and find associations, if
any, between the different vaccines.

3. Materials and Methods
3.1. Data Collection

We used different combinations of hashtags and keywords “(#COVID OR COVID-
19 OR #COVID19) AND (#VACCINE OR VACCINES ORVACCINATION OR VACINE
OR)” to explore tweets related to COVID-19 vaccination between 12 December 2020 and
24 October 2021. We used the Twitter social media platform to collect data as it offers
an API that enables developers to integrate Twitter with other applications [34]. We
employed the tweepy Python package to collect the tweet-related data and then used a
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filter to exclude retweets [35]. Our dataset contained tweets related to Pfizer/BioNTech,
Sinopharm, Sinovac, Moderna, Oxford/AstraZeneca, Covaxin, Sputnik V., and other
COVID-19-related tweets.

3.2. Data Statistics

All vaccine tweets were separated from the dataset for data mining based on their
names, and the total number of tweets was 212,982. The dataset contained 63,545 and
40,552 tweets about Covaxin and Moderna, respectively. The majority of tweets were
related to Covaxin and Moderna, which constituted around 44% of all vaccine-related
tweets. Similarly, the percentage of tweets about Pfizer and Sinopharm was 7.4% and 4.6%,
respectively. Overall, 70% of tweets contained user locations. The percentages of tweets
related to the specific vaccines are shown in Table 1.

Table 1. The total number of tweets collected related to different COVID-19 vaccines.

Name Number of Tweets Percentage of Tweets

Covaxin 63,545 29.8%
Moderna 40,552 19%

Pfizer 18,396 8.6%
Sinopharm 8109 3.8%

3.3. Pre-Processing

Pre-processing is an important step in a study related to data science. It uses several
Natural Language Processing (NLP) techniques to process the data according to require-
ments. After the collection of data, these techniques are used for cleaning data to obtain
better results. NLP techniques used for pre-processing were the conversion of tweet text
to lowercase and removal of punctuation, Uniform Resource Locators (URLs), and stop
words from tweets. In the end, the stemming and lemmatization technique was used for
further pre-processing. The stemming and lemmatization technique is used to convert a
word into its root word (e.g., caring into care) but the difference between these techniques
is that lemmatization is more intelligent than stemming [34]. For example, if we wish to
convert the word better into its root word, then stemming may merely chop it into “bett”
or “bet” while lemmatization will convert into “good”.

3.4. Sentiment Analysis

Sentiment analysis is used to analyze people’s attitudes and behavior. It is a significant
task in NLP that uses rule-based, supervised, or unsupervised machine learning techniques
to classify people’s sentiments into multiple categories [36]. One of the most common clas-
sifications of sentiments is to divide them into positive, negative, and neutral categories. In
this research, the Valence Aware Dictionary and Sentiment Reasoner (VADER) [37] tool was
used for sentiment analysis. The Textblob [37] library is also used for sentiment analysis,
but VADER is more valid than TextBlob as it was developed to analyze sentiments, espe-
cially for social media websites. Its F1 score (0.96) is higher than that of any other machine
learning model; it is even more accurate than any human raters (F1 = 0.84) [38]. It ana-
lyzes each text document, including emojis, and generates a normalized compound score
ranging from −1 (extremely negative) to +1 (extremely positive). Normally, sentiments
are classified into three categories: positive, negative, and neutral. This study classified
sentiments into positive (compound score ≥ 0.05) and negative (compound score ≤ −0.05)
categories based on the compound score. For the neutral category, the compound score
must be greater than −0.05 and less than 0.05.

The TextBlob sentiment analyzer returns the result of input in two categories. One is
the polarity, which is a float number. It lies within a range from −1 to +1. A score close
to +1 is considered positive and a score close to −1 is considered negative. The second is
subjectivity, which is also a float number that lies between 0 and 1.
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The subjectivity score represents whether a statement is more opinion- or fact-based.
VADER returns output with positive, negative, neutral, and compound classification. The
compound score is the sum of the positive, negative, and neutral scores. The compound
score is calculated by adding together the sentiment scores of all the words in a text, adjust-
ing it according to VADER rules, and then normalizing the score between +1 (most extreme
positive) to −1 (most extreme negative). The following equation is used to normalize the
compound score:

x =
x√

x2 + α
(1)

where x is the sum of the valence score words in a text and α = normalization constant
(default value = 15). TextBlob only analyzes the known words, and it ignores unfamiliar
words [37]. It considers only subjectivity and polarity, whereas VADER gives output with
three classifications, as well as a compound score [39]. VADER is specifically developed
for social media data such as Twitter and Facebook, so it gives good results related to
sentiments. The total numbers of tweets with positive, negative, and neutral sentiments
using TextBlob and VADER are given in Table 2.

Table 2. The sentiment classification of tweets using TextBlob and VADER.

Sentiments
Number of

Tweets
Using TextBlob

Percentage of
Tweets

Using TextBlob

Number of
Tweets

Using VADER

Percentage of
Tweets

Using VADER

Positive 70,607 33% 77,573 36%
Negative 21,557 10% 32,085 15%
Neutral 120,818 57% 103,324 49%

Total 212,982 100% 212,982 100%

We used the McNemar [40] test to compare the results obtained using TextBlob and
VADER. We found that sentiments obtained using TextBlob and VADER were statistically
significantly different. We obtained a p-value less than 0.05; therefore, the null hypothesis
was rejected in the McNemar test.

After finding sentiment results using VADER, the word cloud technique was used for
the representation of each vaccine sentiment. Word cloud shows the importance of text
by using different font colors and sizes [41]. Word cloud [41] and matplotlib [42] libraries
are used with Python to create a word cloud of these sentiments. All these functions are
executed in Jupyter Notebook because it is a great tool for scientists to share their code,
related computation, and documentation [43].

3.5. Temporal Analysis

After using a sentiment analyzer and obtaining the sentiment score of each tweet,
we obtained the daily average of sentiment scores and plotted the distribution over time.
We compared the sentiment scores of vaccines individually and also analyzed the public
sentiments on different dates to check for significant changes in public sentiments.

3.6. Geographical Analysis

We used a heat map to map the sentiments based on user location. In this study, we
analyzed tweets geographically and, after this, all the tweets were separated based on user
location. Then, the top 5 countries with the maximum number of tweets based on user
location were visualized to assess the sentiments geographically. We used a bar chart to
visually analyze the tweets geographically.

4. Results and Discussion
4.1. Data Separation

We collected a total of 212,982 tweets related to COVID-19 vaccines in our dataset.
Specific vaccine tweets were separated based on their names. We separated our data
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into four vaccines (Covaxin, Moderna, Pfizer, and Sinopharm). Statistics of a specific
vaccine are mentioned in Table 1. Most of the tweets contained the user location for
geographical analysis.

4.2. Sentiment Analysis

In this study, VADER was used for the sentiment analysis of all COVID-19 vaccine-
related tweets. We used the following values to calculate the sentiment score: compound
score ≥ 0.05 for positive, compound score ≤ −0.05 for negative, and −0.05 < compound
score < 0.05 for neutral sentiments. After applying VADER, we obtained the following results.

Figure 1a represents the sentiments of people about the COVID-19 Covaxin vaccine.
Most of the sentiments are neutral. In total, 28% of tweets about Covaxin are positive and
only 8% are negative. Figure 1b represents the sentiments of people about the COVID-19
Moderna vaccine. People’s sentiments about Moderna are 46% neutral, 37% positive, and
17% negative. Similarly, Figure 1c,d represent the sentiments about Pfizer and Sinopharm,
respectively. People’s sentiments about the Pfizer vaccine are 45% neutral, 38% positive,
and 17% negative. Tweets related to Sinopharm are 52% neutral, 28% positive, and 20%
are negative. The vaccines elicited different feelings among people, as Raghupathi et al.
demonstrate in their study, where people were concerned about receiving newly developed
vaccines [23]. These statistics show that people’s sentiments about Covaxin are more
positive as compared to Moderna, Pfizer, and Sinopharm. Moderna ranks second in terms
of positive sentiments. The sentiments related to each vaccine are mostly neutral and
positive, and in another study, Paul et al. found that only 14% of respondents had negative
attitudes towards vaccines [26].
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Figure 1. Distribution of COVID-19 vaccine sentiments: (a) Sentiment distribution of Covaxin;
(b) sentiment distribution of Moderna; (c) sentiment distribution of Pfizer; (d) sentiment distribution
of Sinopharm.

The words used most frequently in the tweets are listed in Table 3. Effective, dose, got,
first, and vaccinated are the main words related to positive sentiments, and death, report,
victims, and pain are related to negative sentiments. As many rumors and misinformation
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is circulating, especially on social media, people wish to know about the efficiency of
vaccines. They wish to know about the quality of vaccines and dose standards [30].

Table 3. Most frequent words in COVID-19 vaccine-related tweets across sentiment types.

Sentiments
Frequent Words

Positive Sentiments Negative Sentiments

Covaxin
Covaxin, age, slot, vaccine,

dose, Bharat biotech, approval,
free, India, covishield

Covaxin, hospital, vaccine,
block, age, slot, emergency,

dose, use, India

Moderna
Moderna, vaccine, Pfizer,
COVID19, shot, got, dose,

first, today, vaccinated

Moderna, vaccine, Pfizer, arm,
sore, effect, hour, pain, report,

death, Japan

Pfizer
Pfizer, vaccine, Moderna,
Pfizerbiontech, COVID19,

dose, effective, first, get, shot

Pfizer, Moderna, vaccine,
Pfizerbiontech, covid19,

AstraZeneca, death, report,
people, victims

Sinopharm

Sinopharm, vaccine, China,
COVID19, approved, Sinovac,

Chinese, dose, use, got,
vaccinated, effective

man, Sinopharm, vaccine, day,
vaccinated, died, receiving,

health, Sinovac, China

As Pfizer [44] and Moderna [45] both are developed by American companies and both
completed their trials one after another, people discussed these vaccines at the same time
in their tweets. This is why the word cloud for Moderna contains the word “Pfizer” and
the word cloud for the Pfizer vaccine contains “Moderna” with a high frequency. The
most frequent words in Sinopharm tweets are Sinopharm, vaccine, man, good, day, health,
receiving, and vaccinated as depicted in Figure 2. Most words occurring in Sinopharm-
related tweets are slightly different as compared to the other vaccines.
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Figure 2. Word cloud of four different COVID-19 vaccines: (a) word cloud of Covaxin-related tweets;
(b) word cloud of Moderna-related tweets; (c) word cloud of Pfizer-related tweets; (d) word cloud of
Sinopharm-related tweets.

4.3. Temporal Analysis
4.3.1. Covaxin

Tweets were collected from 12 December 2020 to 24 October 2021, and the total number
of days during this duration was 317. The maximum number of tweets related to Covaxin
tweeted in a day was 1996 (19 July 2021). The average score for Covaxin-related tweets was
262.58 per day, with an overall mean of 0.10. In this study, we found a significant change
in the number of tweets per day after 6 June 2021, and in July, it reached its maximum
number. Then, the number of tweets dropped to 500 and below in August onwards, with
the exception of one day (12 October 2021).

4.3.2. Moderna

The average score of tweets related to the Moderna COVID-19 vaccine was 139.35 per
day. The maximum number of Moderna vaccine tweets in a single day was 588 (16 April
2021). In April, the number of tweets changed significantly from 4 April 2021 to 21 April
2021. Then, it was seen to fluctuate as before.

4.3.3. Pfizer

The average score for Pfizer tweets was 63.0 per day. Our dataset contained 18,396 tweets
related to the Pfizer COVID-19 vaccine. The maximum number of tweets related to Pfizer
in a single day was 245, which was found on 23 August 2021. We observed that the total
number of tweets in a single day was below 100 from 12 December 2021 to 28 March 2021.
It was above one hundred only on the 8th and 9th of January. The total number of tweets in
a single day reached above 150 on 24 May 2021, and in August, it reached 245. In August
2021, people showed more concern about the Pfizer vaccine in their tweets, according to
our data.

4.3.4. Sinopharm

There were a total of 8901 tweets related to Sinopharm present in our dataset. The
average number of tweets was 33.79 and the maximum numbers of tweets in a single day
was 856 (13 August 2021). According to our data, the total number of tweets related to
Sinopharm in a single day was below 100. These numbers increased in March (20 March
2021) and August (13 August 2021) only and reached above one hundred.

Figure 3 shows the sentiment distribution over time, and the red line represents the
moving average of fourteen days. We also calculated the proportion of tweets for every
type of sentiment (See Figure 4). We plotted the frequency of all four vaccines’ positive,
negative, and neutral sentiments on a graph from 6 March 2021 to 20 March 2021. During
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this duration, the number of positive, negative, and neutral tweets related to Covaxin was
477, 172, and 452, respectively. The number of positive, negative, and neutral tweets related
to Moderna was 675, 301, and 855, respectively. Similarly, for Pfizer, the number of positive,
negative, and neutral tweets was 290, 128, and 372, respectively. Further, for Sinopharm,
186, 60, and 321 were the frequency of positive, negative, and neutral tweets, respectively.
These statistics show that Moderna’s positivity rate was high from 6 March 2021 to 20
March 2021 as compared to the other vaccines. The total number of Moderna tweets was
also high during this period.
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4.4. Geographical Analysis

Our dataset contained 212,982 tweets, and this included 150,242 with the user location.
We analyzed 130,602 user locations of tweets because these tweets mentioned Covaxin,
Moderna, Pfizer, and Sinopharm.

4.4.1. Covaxin

Out of 63,545 tweets related to the Covaxin vaccine, 34,662 tweets had user locations.
Our data show that most of the users who tweeted about the Covaxin COVID-19 vaccine
were from India.

4.4.2. Moderna

The Moderna vaccine has been discussed in 40,552 tweets and 31,500 of them mention
the location. According to this study, most of the users who tweeted about the Moderna
COVID-19 vaccine were from the United States of America.

4.4.3. Pfizer

Pfizer vaccine-related tweets had a location in 15,721 tweets out of 18,396. Our data
show that most of the users who tweeted about the Covaxin COVID-19 vaccine were
from India.

4.4.4. Sinopharm

Out of 8109 tweets related to the Sinopharm vaccine, 6882 tweets had user locations.
Our data show that most of the users who tweeted about the Covaxin COVID-19 vaccine
were from China.

Both the Covaxin and Pfizer vaccines had a large number of tweets from India. We
analyzed the data of five countries (India, USA, Canada, UK, and China). We separated the
user locations based on the states and capitals of these countries.

Our study found that most of the tweets related to the four vaccines were from India.
Tweets related to the Covaxin vaccine had large numbers of users (24,411) from India as
compared to other countries. Moderna had the most users from the USA, whereas tweets
related to Sinopharm had the most users from China.

Figure 5 shows the heat map of the sentiment scores of the countries. The maximum
sentiment score of tweets related to the Covaxin vaccine posted from India was 0.97 and
it was the highest among the selected five countries. In the USA, the highest sentiment
score of tweets related to the Covaxin vaccine was 0.88. On the other hand, Canada had
the lowest sentiment score of −0.66 for tweets related to the Covaxin vaccine. The highest
sentiment score (0.96) of tweets related to Moderna was found in the USA, and the lowest
sentiment score was also seen in the USA, which was also −0.96. India ranked second for
the lowest sentiment score (−0.95) of tweets related to the Moderna vaccine. Tweets related
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to the Pfizer vaccine had the highest sentiment score of 0.9231 and the lowest sentiment
score of −0.9217 from the UK. The second highest sentiment score of tweets related to the
Pfizer vaccine was from the USA and it was 0.9153. China had the highest sentiment score
of tweets related to Sinopharm, which was 0.8074. India had the lowest sentiment score of
tweets related to Sinopharm, and it was −0.75.
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The average mean of the sentiments related to the four COVID-19 vaccine is shown in
Table 4, and the vaccine coverage in the mentioned five countries (India, USA, Canada, UK,
and China) is shown in Figure 6. Table 4 shows that the average sentiment score of Covaxin
was 0.0046, with 24,313 tweets in India. The USA had the lowest average sentiment score
(−0.0007), with 4632 tweets related to Moderna. The Moderna vaccine had the highest
average sentiment score of 0.0551, with 71 tweets in China. The Analysis of Variance
(ANOVA) [46] and Tukey (CI = 95%) [47] methods were used to examine differences in the
sentiments of these five countries. These methods showed that India and China, the USA
and China, Canada and China, and the UK and China had differences of 0.2061, 0.1816,
0.0805, and 0.2031 in sentiments related to the Covaxin vaccine, respectively. In the case
of the Moderna vaccine, a large statistical difference of 0.0923 in sentiments was present
between India and China. There was a large statistical difference of 0.0356 present between
the USA and Canada in the case of the Pfizer vaccine. The statistical difference (0.1422) in
the case of the Sinopharm vaccine was large between India and Canada.

Table 4. The average of sentiments and number of tweets in the top five most posted countries.

Country
Vaccine

Covaxin Moderna Pfizer Sinopharm
Mean Tweets Moderna Tweets Pfizer Tweets Mean Tweets

India 0.0046 24,313 −0.0372 1228 −0.0053 1028 0.0237 198
USA 0.0291 869 −0.0007 4632 0.0045 1188 −0.0164 53

Canada 0.1302 399 0.0104 2489 0.0401 1068 0.1659 34
UK 0.0076 392 0.0492 898 0.0007 740 0.0269 71

China 0.2107 09 0.0551 71 −0.0530 38 0.0912 818
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5. Conclusions

In this study, we performed a sentiment analysis of 212,982 tweets related to the Cov-
axin, Moderna, Pfizer, and Sinopharm COVID-19 vaccines and found that their sentiments
were mostly neutral. Covaxin, Moderna, Pfizer, and Sinopharm had positive sentiments of
28%, 37%, 38%, and 28%, respectively, while their negative sentiments totaled 8%, 17%, 17%,
and 20%. These statistics show that Covaxin’s positivity rate is high, with 17,793 tweets,
as compared to other vaccines. The number of tweets related to Covaxin increased signifi-
cantly in October 2021 as it was due to be licensed for emergency use by WHO, whereas
the number of tweets related to Moderna, Pfizer, and Sinopharm increased in June, August,
and March, respectively. Public sentiments also changed geographically. Government
officials and health policymakers should adopt effective vaccine education programs on
the basis of timely changes and region-based sentiments. Government should track the
changes in the sentiments of the public over time and try to detect the topics discussed
by them. This can help them to strength the vaccination program and to achieve herd
immunity among the population.

6. Limitations

Out of 212,982 tweets, our dataset contained only 130,602 tweets related to COVID-
19 vaccines (Covaxin, Moderna, Pfizer, and Sinopharm) with a user location, and in the
future, researchers should work on data with an increased number of tweets with user
locations to find the rate of positive and negative sentiments in different locations. Secondly,
after analyzing the tweet content, we found that VADER identified the sentiments of text
correctly but it could not distinguish whether the COVID-19 vaccine was the subject of the
statements. For example, a tweet with text “COVID is gone” expresses the confidence of
the user but VADER considered it as neutral text.
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46. Ostertagova, E.; Ostertag, O.; Kováč, J. Methodology and application of the Kruskal-Wallis test. Appl. Mech. Mater. 2014, 611,
115–120. [CrossRef]

47. Nanda, A.; Mohapatra, B.B.; Mahapatra, A.P.K.; Abiresh Prasad Kumar Mahapatra, A.P.K.; Mahapatra, A.P.K. Multiple com-
parison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. IJAMS 2021, 6, 59–65.
[CrossRef]

http://doi.org/10.1016/j.chb.2015.10.020
http://doi.org/10.3390/ijerph17103464
http://www.ncbi.nlm.nih.gov/pubmed/32429223
http://doi.org/10.1001/jamanetworkopen.2020.22025
http://www.ncbi.nlm.nih.gov/pubmed/33185676
http://doi.org/10.2139/ssrn.3772401
http://doi.org/10.1016/j.lanepe.2020.100012
http://doi.org/10.1038/s41541-021-00335-2
http://doi.org/10.1016/j.jiph.2021.06.019
http://doi.org/10.1016/j.vacun.2021.07.008
http://doi.org/10.1016/j.vacun.2021.08.002
http://doi.org/10.1038/s41591-020-1124-9
https://www.statista.com/statistics/1194939/rate-covid-vaccination-by-county-worldwide/
https://ourworldindata.org/covid-vaccinations.
https://towardsdatascience.com/how-to-build-a-dataset-from-twitter-using-python-tweepy-861bdbc16fa5
https://towardsdatascience.com/how-to-build-a-dataset-from-twitter-using-python-tweepy-861bdbc16fa5
http://doi.org/10.51983/ajcst-2019.8.S2.2037
https://neptune.ai/blog/sentiment-analysis-python-textblob-vs-vader-vs-flair
https://www.statology.org/mcnemars-test-python/
https://www.analyticsvidhya.com/blog/2021/05/how-to-build-word-cloud-in-python/
https://www.analyticsvidhya.com/blog/2021/05/how-to-build-word-cloud-in-python/
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-celebrate-historic-first-authorization
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-celebrate-historic-first-authorization
https://www.modernatx.com/modernas-work-potential-vaccine-against-covid-19
https://www.modernatx.com/modernas-work-potential-vaccine-against-covid-19
http://doi.org/10.4028/www.scientific.net/AMM.611.115
http://doi.org/10.22271/maths.2021.v6.i1a.636

	Introduction 
	Background 
	Materials and Methods 
	Data Collection 
	Data Statistics 
	Pre-Processing 
	Sentiment Analysis 
	Temporal Analysis 
	Geographical Analysis 

	Results and Discussion 
	Data Separation 
	Sentiment Analysis 
	Temporal Analysis 
	Covaxin 
	Moderna 
	Pfizer 
	Sinopharm 

	Geographical Analysis 
	Covaxin 
	Moderna 
	Pfizer 
	Sinopharm 


	Conclusions 
	Limitations 
	References

