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Abstract: Approximately 0.1% for term and 10–15% of preterm infants receive chest compression (CC)
in the delivery room, with high incidence of mortality and neurologic impairment. The poor prognosis
associated with receiving CC in the delivery room has raised concerns as to whether specifically-
tailored cardiopulmonary resuscitation methods are needed. The current neonatal resuscitation
guidelines recommend a 3:1 compression:ventilation ratio; however, the most effective approach
to deliver chest compression is unknown. We recently demonstrated that providing continuous
chest compression superimposed with a high distending pressure or sustained inflation significantly
reduced time to return of spontaneous circulation and mortality while improving respiratory and
cardiovascular parameters in asphyxiated piglet and newborn infants. This review summarizes the
current available evidence of continuous chest compression superimposed with a sustained inflation.

Keywords: newborn; neonatal resuscitation; chest compressions; sustained inflation

1. Introduction

Approximately 0.1% of term infants and 10–15% of preterm infants receive chest
compressions (CC) in the delivery room (DR) [1–5]. Infants who receive CC have a high
incidence of mortality and neurodevelopmental impairment [1–5]. Furthermore, newborns
who received prolonged CC and epinephrine without signs of life at 10 min after birth
have 83% mortality, with 93% of survivors suffering moderate-to-severe neurological
disability [6,7]. The poor prognosis associated with receiving CC in the DR has raised
concerns as to whether specifically-tailored cardiopulmonary resuscitation (CPR) methods
could improve outcomes.

In newborn infants, bradycardia or cardiac arrest is mainly caused by hypoxia rather
than a primary cardiac disease [8,9]. Therefore, the neonatal resuscitation guidelines put
an emphasis on ventilation and adequate oxygen delivery. Current neonatal resuscitation
guidelines recommend initiating CC if an infant’s heart rate remains < 60 beats/min,
despite adequate ventilation for at least 30 s [8,9]. CC should be delivered at a rate of
90/min in sequences of three CC followed by a pause to deliver 1 inflation at a rate of
30/min, which corresponds to a 3:1 compression:ventilation (C:V) ratio [8,9]. The 3:1 C:V
ratio is recommended, as respiratory failure is the primary cause of bradycardia or asystole
in newborn infants [8,9]. A 3:1 C:V ratio has a higher rate of inflations compared to the
pediatric or adult C:V ratios, which will result in a higher oxygen delivery, hence improved
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ventilation [8,9]. While the current neonatal resuscitation guidelines recommend a 3:1 C:V
ratio, the most effective C:V ratio in newborn infants remains controversial.

Several studies have compared various C:V ratios or continuous chest compression
with asynchronized ventilation [10–14], however none of the studies reported any improved
outcomes compared to the 3:1 C:V ratio. More recently, our group used a higher airway
pressure or sustained inflation during continuous chest compression (CC + SI), which
significantly improved time to return of spontaneous circulation (ROSC) and survival [15].
While the current available data is mostly limited to animal data, some human data are
available. The aim of the review is to provide an in-depth analysis of CC + SI during
neonatal CPR.

2. 3:1 Compression-to-Ventilation Ratio: Rationale and Evidence

Current resuscitation guidelines in newborns recommend a 3:1 C:V ratio [8,9], however
this approach may not be optimizing coronary and cerebral perfusion while providing
adequate ventilation to improve outcomes. Animal studies on cardiac arrest demonstrated
that combining CC with ventilations, compared with ventilations or CC alone, improves
ROSC and neurological outcome at 24 h in asphyxiated newborn piglets [16–18].

Solevåg et al. compared 9:3 C:V and 15:2 C:V to 3:1 C:V in asphyxiated newborn piglets
with cardiac arrest and reported no significant differences in the time to ROSC [10,11].
These studies suggest that just using a higher C:V ratio does not improve outcome in
asphyxiated newborn piglets. Alternatively, continuous CC with asynchronous ventilations
(CCaV), where 90 CC are given continuously with 30 non-synchronized inflations, would
potentially improve hemodynamics during CC as there are no interruptions. Indeed, a
manikin study reported a significantly higher minute ventilation with CCaV compared
to 3:1 C:V ratio (221 vs. 191 mL/kg/min, respectively) [19]. During CPR in asphyxiated
newborn piglets, CCaV or 3:1 C:V had similar minute ventilation (387 vs. 275 mL/kg)
and similar time to ROSC (114 and 143 s for CCaV and 3:1 C:V, respectively) and survival
(3/8 and 6/8, respectively) between the two groups [12,13]. Furthermore, no differences in
diastolic blood pressure or mean arterial blood pressure between CCaV and 3:1 C:V were
observed [12,13]. These studies suggest that CCaV has no advantage compared to 3:1 C:V.

3. Chest Compression with Sustained Inflations (CC + SI)

Schmölzer et al. compared continuous CC superimposed with a high distending
pressure (or sustained inflation = CC + SI) with 3:1 CV during CPR of asphyxiated newborn
piglets and reported (i) significantly reduced time to ROSC (median (Interquartile range
(IQR)) 38 (23–44) vs. 143 (84–303) s, respectively, (p = 0.0008), mortality (7/8 (87.5%) vs.
3/8 (37.5%), respectively, p = 0.038), epinephrine administration (0/8 vs. 7/8, respectively,
p < 0.0001), and improved systemic and regional hemodynamic recovery; (ii) less infants
received 100% oxygen (3/8 vs. 8/8, respectively, (p = 0.0042); (iii) minute ventilation (mean
(SD) 936 (201) vs. 623 (116) mL/kg/min, respectively, p = 0.0080), and therefore alveolar
oxygen delivery, was significantly increased with CC + SI; iv) compression of the chest
during SI forced gas out of the chest and during passive chest recoil allowed air to be
drawn back into the lungs [15].

During CC + SI, CCs are delivered continuously and superimposed by a constant high
airway pressure or sustained inflation (SI). During CC + SI, a constant high airway pressure
or SI is given for a set time (e.g., 30 s) with a set peak inflation pressure (e.g., 25 cm H2O)
while CCs are continuously delivered [20–24]. During compression and release phase, the
distending pressure is fluctuating by ~1 cm H2O. After the set time (i.e., 30 s), the SI is
paused for 1 s while CCs are continued. The SI is then resumed for the same time frame
(i.e., 30 s). Both CC and SI combined as CC + SI are continued until ROSC. While in all
studies a 1 s pause between each SI was used, the optimal duration for the pause between
each SI (e.g., 0.5, 1, 2 s) has never been examined.
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Mechanism of CC + SI

Antegrade blood flow during CPR can be achieved by either direct cardiac com-
pression between the sternum and vertebral column or increased intrathoracic pressure
produced by CC [25]. Indeed, maneuvers that increase the intrathoracic pressure result in
increased carotid blood flow during CPR, further augmenting antegrade blood flow [26,27].
Chandra et al. combined ventilation at high airway pressure while simultaneously per-
forming CC in an animal model and demonstrated increased carotid flow, without com-
promising oxygenation [26,27]. Furthermore, providing continuous CC and lung inflation
simultaneously substantially improved brain perfusion by enhancing cerebral perfusion
pressure in a piglet model [28,29]. In addition, animal studies have demonstrated that
an SI also increases intrathoracic pressure without impeding blood flow [30]. These data
suggest that CC + SI might provide two maneuvers, which increase intrathoracic pressure
and thereby improve blood flow.

4. Chest Compression Rate

The newborn infant normal respiratory rate and resting heart rate are 40–60 breaths/min
and 120–160/min, respectively. In comparison, the current neonatal resuscitation guide-
lines recommend CC with 90 compressions and 30 inflations per minute [8,9], which is
lower than the normal physiological parameters.

Schmölzer et al. compared CC + SI with a CC rate of 120/min with 3:1 C:V with a CC
rate of 90/min in a newborn asphyxiated piglets experiment, and reported shorter time
to ROSC (38 (23–44) vs. 143 (84–303) s; (p = 0.0008)) and survival to 4 h with 7/8 vs. 3/8,
respectively [15]. Similarly, Vali et al. reported that CC + SI with CC rate of 120/min was as
effective as CC with 90/min with a 3:1 C:V ratio in achieving ROSC [31]. Li et al. compared
CC rates of 90/min and 120/min during CC + SI and reported a reduced time to ROSC (34
(28–156) vs. 99 (31–255) s p = 0.29), respectively [32]. Those studies suggest the 90/min CC
rates in the CC + SI might be sufficient to deliver an adequate tidal volume and minute
ventilation without impairing gas exchange. However, a mathematical model suggests that
the most effective CC rate depends on body size and body weight, and CC rates of 180/min
for term infants and even higher for preterm infants might improve survival [33]. The
mathematical model calculated that the optimal systemic perfusion pressure occurs at CC
rates of 180 and 250/min for infants weighing 3 and 1 kg, respectively [33]. In infants and
newborns, there are fundamental physical and mathematical reasons including (i) effects of
the mass of venous blood columns entering the chest pump, (ii) length, and (iii) area scale
with body size [33]. However, these higher CC rates might be impossible during manual
CPR as healthcare professionals will get fatigued more quickly, which conversely affects
CC quality [34–36]. Using an automated CC machine might be the solution to achieving
these high CC rates. While automated CC machines are routinely used in adults, no such
device is currently available for newborn infants.

5. Peak Inflation Pressures

The optimal peak inflation pressure during CC + SI for adequate tidal volume delivery
is unknown. While the current neonatal resuscitation guidelines recommend an initial
distending pressure of 20–25 cm H2O during positive pressure ventilation [8,9], the optimal
peak inflation pressure remains unknown. During mask ventilation, a certain threshold
peak inflation pressure is needed to move the liquid air interface downwards towards
the alveoli [37,38]. Similarly, during CC + SI, a threshold sustained pressure is needed
to deliver an adequate tidal volume. Solevåg et al. used manikins and cadaver piglets
to establish the distending pressure required to achieve sufficient tidal volume delivery
during CC + SI [39]. A distending pressure of 25 cm H2O was required to achieve a tidal
volume delivery of > 5 mL/kg [39]. Tidal volume increased with increasing distending
pressure in all models, with an overall positive correlation (r = 0.49, p < 0.001) [39]. Shim
et al. compared a peak inflation pressure of 10, 20, and 30 cm H2O during CC + SI in
asphyxiated newborn piglets and reported no difference in median (IQR) time to ROSC,
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with 75 (63–193), 94 (78–210), and 85 (70–90) s, respectively (p = 0.56) [22]. In addition,
tidal volume was positively correlated with increasing pressure with a mean (SD) 7.3 (3.3),
10.3 (3.1), and 14.0 (3.3) mL/kg;(p = 0.0018) with 10, 20, and 30 cm H2O, respectively [22].
The higher tidal volume with a peak inflation pressure of 30 cm H2O also showed increased
concentrations of proinflammatory cytokines interleukin-1β and tumor necrosis factor-α
in the frontoparietal cerebral cortex (both p < 0.05 vs. sham-operated controls). These
data suggest that pressures of 20–25 cm H2O might be sufficient to deliver an adequate
tidal volume during CC + SI, and that higher pressures could lead to increases in lung
inflammation markers.

6. Passive Ventilation

Tsui et al. applied a downward force of 0.16 kg per kg patient weight on the chest of in-
fants undergoing surgery during general anesthesia and was able to deliver a tidal volume
of 2.4 mL/kg or ~33% of an infant’s physiological tidal volume [40]. This study suggests
that chest recoil produces a distending pressure-dependent tidal volume, which achieves
passive ventilation during CCs. In asphyxiated term piglets, the delivered tidal volume
was 10–15 mL/kg with a constant distending pressure of 25–30 cm H2O, and in preterm
infants < 32 weeks’ gestation, the tidal volume ranged between 0.6 to 4.4 mL/kg with a
constant distending pressure of 24 cm H2O [15,41]. These data demonstrate that passive
ventilation is achieved when providing a constant high distending pressure during CC.

7. Tidal Volume

Providing adequate ventilation is a cornerstone of neonatal CPR. The main purpose
of lung inflations during CCs is to provide an adequate tidal volume to facilitate oxygen
delivery and gas exchange. However, during CPR with 3:1 C:V, Li et al. reported a cu-
mulative loss of expiratory tidal volume of 4.5 mL/kg with each 3:1 C:V cycle [42], which
could cause lung derecruitment and thereby interfere with oxygenation and ROSC. In
comparison, during CC + SI, a constant lung recruitment and thereby gain in functional
residual capacity was observed with a tidal volume gain of 2.4 mL/kg per CC + SI cy-
cle [42]. This is supported by data from a human pilot trial comparing CC + SI with 3:1
C:V in the DR using a distending pressure of 24 cm H2O (local hospital policy during
neonatal resuscitation) in preterm infants < 32 weeks of gestation [41,43]. During CC + SI,
a significantly higher tidal volume and minute ventilation was delivered, suggesting that
CC + SI might improve ventilation and oxygenation during neonatal CPR. During CC + SI,
adequate tidal volume delivery might lead to better alveolar oxygen delivery and lung
aeration, hence faster ROSC compared to 3:1 C:V group.

8. Duration of Sustained Inflations

SI as initial respiratory support in the DR has been postulated to achieve a more
unified lung aeration [44]. However, recent systematic reviews reported similar rates of
bronchopulmonary dysplasia when SI was compared with intermittent positive pressure
ventilation for initial respiratory support in the DR [45,46]. These reviews also reported
that in a subgroup of <28 weeks’ gestation, SI was associated with potential increased
risk of death before discharge (risk ratio 2.42 (95% confidence interval = 1.15–5.09)) and
increased risk of death within the first 2 days (risk ratio 1.38 (95% confidence interval =
1.00–1.91)), when compared to intermittent positive pressure ventilation [45,46]. However,
the mechanism of how an initial SI could potentially increase risk of death is unknown.

Furthermore, the European resuscitation guidelines recommend five SIs of 3 s in
asphyxiated term infants [47], though no human studies have examined this approach in
newborn infants. However, a recent study in asphyxiated lambs reported that a 30 s SI will
achieve lung aeration and hemodynamic stability, while five SIs of 3 s does not [48]. In the
original study, we used a 30 s SI during CC + SI, which significantly reduces time to ROSC
compared to 3:1 C:V ratio [15]. However, the optimal duration of SI to improve ROSC and
reduce mortality during CC + SI remains unknown. Mustofa et al. compared CC + SI with
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either 20 s or 60 s in asphyxiated piglets and reported similar time to ROSC and survival,
with no difference in tidal volume delivery [21]. In addition, there were no differences
in markers of lung inflammation (IL-1ß, IL-6, IL-8, and TNF-α) and brain inflammation
(IL-1ß, IL-6, and IL-8) between the groups [21]. This suggests that the duration of SI during
CC + SI might be not the dependent factor, however further studies are needed to identify
the optimal duration of SI during CC + SI.

9. Oxygen Concentration with CC + SI

The current neonatal resuscitation guidelines recommend 100% oxygen once CCs
are initiated [8,9]. However, this is based on expert opinions and not supported by any
clinical data. Several animal studies compared 21% or 100% oxygen during CC using the
3:1 C:V ratio in asphyxiated newborn piglets and reported no difference in time to ROSC or
mortality. In addition, the cumulative alveolar oxygen exposure during resuscitation was
significantly lower in the CC + SI group compared to the 3:1 C:V group, with mean (SD)
27,755 (4706) and 47,729 (6692) mmHg seconds, respectively (p < 0.001). Similar, a meta-
analysis of these animal studies reported no difference in time to ROSC (mean difference of
−3.8 (−29.7–22) s, I2 = 0%, p = 0.77) or mortality (risk ratio 1.04 (0.35, 3.08), I2 = 0%, p = 0.94)
between 21% or 100% oxygen during CC with the 3:1 C:V ratio [49]. Recently, Hidalgo
et al. compared 21% and 100% oxygen during CC + SI in term newborn asphyxiated
piglets and reported similar time to ROSC (median (IQR) 80 (70–190) vs. 90 (70–324) s,
respectively, p = 0.56), short-term survival (7/8 (88%) vs. 5/8 (63%), respectively, p = 0.569),
and hemodynamic recovery [50]. In addition, there was no significant difference in injury
markers in the left ventricle tissue or the frontoparietal cortex tissue. These data suggest
that 21% oxygen during CPR might be efficient, however human data are needed.

10. Type of Cardiac Arrest

In 2015, the neonatal resuscitation guidelines added the use of an electrocardiograph
to assess heart rate at birth [51,52]. This led to several reports of pulseless electrical activity
during CPR in the DR [53,54]. In addition, rates of up to 50% of asphyxiated piglets
displayed pulseless electrical activity during asphyxia-induced cardiac arrest [55–57].
Solevåg et al. reported that cardiac arrest due to pulseless electrical activity will result in
lower rates of ROSC and lower 4 h survival, compared to asystole, in asphyxiated newborn
piglets [56]. This suggests that the initial electrocardiograph algorithm might serve as an
outcome predictor during neonatal CPR.

11. Inflammatory Markers

There are concerns that SI could adversely affect lung or brain injury. Lista et al.
reported a pneumothorax rate of 6% compared to 1% with intermittent positive pressure
in preterm infants with 25–28 weeks of gestation [58]. However, the mechanisms for an
increased rate of pneumothorax during SI is unknown. Interestingly, none of the animal
studies examining CC + SI reported pneumothoraxes during autopsy. There is also the
concern that SI delivers an excessive large tidal volume, which could cause a pulmonary
proinflammatory response and initiate systemic inflammatory cascade [59]. However,
when SIs were given as initial respiratory support, no increase in lung injury marker has
been reported [60,61]. Similar, during CPR with either CC + SI or 3:1 C:V, no difference in
lung injury markers were observed.

The mechanism of brain injury is thought to be impaired venous return or secondary
brain injury due to excessive tidal volume delivery. Sobotka et al. reported that a single
30 s SI followed by ventilation caused a blood–brain barrier disruption and cerebral vascu-
lar leakage, which may exacerbate brain injury in asphyxiated near-term lambs [62]. This
injury might have occurred as a direct insult of the initial SI or due to the excessive tidal
volume delivered during subsequent ventilation. Recently, Shim et al. reported that a peak
inflation pressure of 30 cm H2O delivered a significant higher tidal volume compared to
peak inflation pressure of 20 cm H2O, which was associated with significant increased
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cerebral tissue pro-inflammatory cytokines [22]. While CC + SI did not increase lung injury
markers, markers of brain inflammation were increased, and therefore a peak inflation
pressure of ≥ 25 cm H2O should not be exceeded.

12. Clinical Studies

The animal data suggest that CC + SI might be an effective CC technique for new-
born infants. A pilot trial compared CC + SI (n = 5) with 3:1 C:V (n = 4) in preterm
infants < 32 weeks’ gestation with a mean (SD) gestational age of 24.6 (1.3) and 25.6 (2.3)
weeks [41]. There was a significantly shorter time to ROSC with CC + SI, compared to 3:1
C:V, with 31(9) vs. 138 (72) s, respectively (p = 0.011) [41]. In addition, CC + SI provided
a higher minute ventilation and ventilation rate, while short-term outcomes, including
intraventricular hemorrhages, air leak, retinopathy of prematurity, and chronic lung dis-
ease, were similar between groups [41]. Although mortality was higher in the CC + SI
group with 2/5 vs. 0/4 in the 3:1 C:V group, this did not reach statistical significance, as
the sample size was too small, and it was a very vulnerable patient population.

Currently, the Sustained Inflation and Chest Compression Versus 3:1 Chest Compres-
sion to Ventilation Ratio During Cardiopulmonary Resuscitation of Asphyxiated Newborns:
A Randomized Controlled Trial (SURV1VE-trial) is recruiting term and preterm infants
born > 28+0 weeks’ gestational age requiring chest compression in the delivery room [63,64].
In this cluster trial, hospitals are randomized to either CC + SI or 3:1 C:V ratio for one
year each [63,64]. The SURV1VE-trial has been approved by a human clinical research
ethical committee at all participating sites, and a Data Safety Monitoring Committee is
assessing the results of the trial at regular intervals to assure safety. The SURV1VE-trial
hypothesis is that in newborn infants, CC + SI, compared to 3:1 C:V, during CPR will
reduce the time needed to ROSC, and aims to recruit 218 participants (109 control group
and 109 intervention group). The SURV1VE-trial aims to be completed by 2024.

13. Limitations

There are several limitations which prevent routine use of CC + SI in the DR. Most
animal studies described in this review used piglets that have already undergone the fetal-
to-neonatal transition. All experimental animals were sedated/anesthetized and intubated
with a tightly sealed endotracheal tube to prevent any endotracheal tube leak, which may
not occur in the delivery room as mask ventilation is frequently used [65].

Furthermore, sustained lung inflations have been postulated as a ventilation strategy
immediately after birth [44]. Indeed, in intubated and sedated animals, SI improved
lung aeration compared to intermittent positive pressure ventilation. However, several
smaller randomized trials and meta-analyses were unable to identify any advantage or
disadvantage for either SI or intermittent positive pressure ventilation [66]. Recently,
the SAIL trial compared SI with intermittent positive pressure ventilation in < 28 weeks’
gestation infants and reported an increased mortality within the first 48 h with SI [67]. Most
recently, a meta-analysis from ILCOR raised concerns about the potential harm of SI for
premature infants < 28 weeks’ gestation [46]. These data raise some concerns about the use
of SI during the initial respiratory support.

14. Conclusions

CC + SI reduces time to ROSC, improves mortality, and improves respiratory and
hemodynamic parameters compared to 3:1 C:V ratio during neonatal CPR. CC + SI al-
lows for passive lung ventilation and adequate tidal volume. Peak inflation pressures of
20–25 cm H2O might be sufficient to deliver an adequate tidal volume during CC + SI,
and higher pressures could lead to increases in lung inflammation markers. Furthermore,
21% oxygen had similar time to ROSC or mortality compared to 100% oxygen. However,
more clinical data are needed before this can be routinely used in the delivery room during
neonatal chest compression.
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Abbreviations

CC chest compression
DR delivery room
CPR cardiopulmonary resuscitation
C:V compression:ventilation
SI sustained inflation
CC + SI sustained inflation during chest compression
ROSC return of spontaneous circulation
CCaV continuous CC with asynchronous ventilations
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