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Abstract

Functional connectivity has been demonstrated to be varying over time during sensory and

cognitive processes. Quantitative examinations of such variations can significantly advance

our understanding on large-scale functional organizations and their topological dynamics

that support normal brain functional connectome and can be altered in individuals with brain

disorders. However, toolboxes that integrate the complete functions for analyzing task-

related brain functional connectivity, functional network topological properties, and their

dynamics, are still lacking. The current study has developed a MATLAB toolbox, the Graph

Theoretical Analysis of Task-Related Functional Dynamics (GAT-FD), which consists of

four modules for sliding-window analyses, temporal mask generation, estimations of net-

work properties and dynamics, and result display, respectively. All the involved functions

have been tested and validated using functional magnetic resonance imaging data collected

from human subjects when performing a block-designed task. The results demonstrated

that the GAT-FD allows for effective and quantitative evaluations of the functional network

properties and their dynamics during the task period. As an open-source and user-friendly

package, the GAT-FD and its detailed user manual are freely available at https://www.nitrc.

org/projects/gat_fd and https://centers.njit.edu/cnnl/gat_fd/.

Introduction

Functional connectivity (FC), which quantifies temporal dependencies among spatially sepa-

rated brain regions, has been highlighted as a sensitive and robust measurement in functional

magnetic resonance imaging (fMRI) for understanding the topological organization of func-

tional brain networks during sensory and cognitive processes and at resting-state [1, 2]. Typi-

cally, FC was evaluated in a “static” sense, which utilizes the entire scan duration for the

connectivity calculation. Recently, accumulative evidence has suggested the temporally varying

pattern of FC, referred to as dynamic FC, which can provide us a novel approach to depicting

the non-stationarity of functional brain communications [3–5].
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Currently, sliding-window-based techniques are commonly implemented for estimating

FC dynamics [6–9]. Such approach applies an N-volume moving window along the time

domain to estimate the pair-wise FCs based on signals of the current and previous N volumes.

It thus generates a series of consecutive FC metrics, depicting the dynamically varying FC and

topological organizations of the functional brain network.

To date, several toolkits have been developed for analyzing dynamic FC by using the slid-

ing-window approach. The GIFT (http://mialab.mrn.org/software/gift/) is one of such toolkits,

which has been commonly utilized in fMRI data [10–12]. The GIFT implements the K-means

clustering method to effectively detect region-of-interest (ROI)-based stable brain states within

a group of subjects when there is no external stimulus information, which makes it robust in

evaluating ROI-based FC dynamics during resting-state [13, 14]. The DynaConn (http://www.

drsakoglu.com/p/dynaconndfctoolbox.html), built based on GIFT toolbox’s functions, adds

statistical analysis, task modulation analysis, and display options in analyzing the functional

dynamics [15]. The DynamicBC (https://www.nitrc.org/projects/dynamicbc/) is another com-

monly implemented toolkit that calculates between-voxels, between-ROIs, and ROI-to-the

reminder of whole brain FC dynamics in the temporal domain [16]. Compared to the GIFT,

DynamicBC is more flexible in estimating ROI-based FC dynamics. The CONN (https://web.

conn-toolbox.org/) is also frequently utilized for sliding window-based analysis of FC dynam-

ics [17]. Relative to the GIFT and DynamicBC, CONN is a more comprehensive toolbox that

provides preprocessing, static connectivity analysis, between-ROI dynamic variability analysis,

and dynamic independent component analysis. The DyConPro (https://github.com/tobiamj/

DyConPro) implements parallel factor analysis on dynamic connectivity signals to identify

subnetworks that are related to individual differences [18]. Although these existing toolboxes

have made it possible to estimate regional or between-ROI FC dynamics in fMRI data, they all

lack the capacity in further assessing the temporal dynamics of the systems-level topological

properties associated with the functional brain network during a cognitive task.

In this study, we introduce an open-source and user-friendly MATLAB toolbox, the Graph

Theoretical Analysis of Task-Related Functional Dynamics (GAT-FD), which we have devel-

oped to integrate the complete pipelines for estimating the task-related dynamic brain FC and

quantifying the topological dynamics and its statistical property of the functional brain net-

work. This toolkit and the user manual with detailed explanations of each function and step-

by-step instructions for implementations are freely available at https://www.nitrc.org/projects/

gat_fd and https://centers.njit.edu/cnnl/gat_fd/.

Methods

Overview

The GAT-FD toolbox provides a graphical user interface for characterizing the functional net-

work dynamics in task-related fMRI data, based on the graph theoretical techniques. It was

developed in MATLAB (Mathwork, Inc.) version 2019b and has been tested with MATLAB

version 2016b to version 2019b. The GAT-FD is organized into four modules (Fig 1A and 1B)

for sliding-window analysis (Fig 1C), task-specific temporal mask generation (Fig 1D), estima-

tions of network properties (Fig 1E), and result display (Fig 1F), respectively. First, the sliding-

window analysis module takes the preprocessed fMRI data and generates connectivity matrices

based on selected atlas and sliding-window parameters. Next, the task design module creates

temporal mask for dynamic analysis using task design information. Then, the network analysis

module calculates the network properties for the time steps marked by the temporal mask.

Last, the result display module plots the results for visual checking.
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Inputs

The GAT-FD toolbox works with pre-processed fMRI data. Properly pre-processed images

can effectively minimize the falsely discovered dynamics caused by motion artifacts and unde-

sired physiological fluctuations. The inputs are 4-dimonsional fMRI data in uncompressed or

compressed NIfTI format (e.g., �.nii or �.nii.gz). All build-in atlases are in Montreal Neurologi-

cal Institute (MNI) space. Therefore, all input data are required to be transformed from indi-

vidual imaging space to MNI space, if the user is intended to use any of the build-in atlas. The

Fig 1. The four function modules of the GAT-FD toolbox. (A) A flowchart for analyzing functional network

dynamics using GAT-FD toolbox. (B) The main user interface. (C) The sliding-window analysis module. This module

generates connectivity matrices on the basis of specified sliding-window parameters. (D) The task design module. This

module generates temporal inclusive mask according to the task design. (E) The network analysis module. This

module calculates the topological properties for each connectivity matrix. (F) Result display module. This module

provides visualization of the results from all other modules. fMRI: functional magnetic resonance imaging. ROIs:

regions-of-interest. Note: Required steps are indicated using solid arrows. Optional steps are indicated using dashed

arrows.

https://doi.org/10.1371/journal.pone.0267456.g001
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toolbox also provides an option for the user to import MAT-format input files with a matrix

containing the time series of each ROI, which allows extra flexibility in temporal processing.

Sliding-window analysis and FC matrix construction

The sliding-window approach is the most common analytical method to explore the network

dynamics in fMRI studies [7, 19]. The basic time unit in sliding-window analysis is repetition

time (TR), which contains one volume. In this approach, a sliding-window with a fixed length

of TRs (called as window size) and a “moving step” (called as step size) along the time series

are first defined. Then a FC matrix is constructed, based on the volumes covered by the slid-

ing-window, for each time point that separated by the moving step. The GAT-FD

toolbox includes a sliding-window analysis module to extract the activation time series for

selected ROIs, perform temporal filtering, apply sliding-window, and construct the FC matri-

ces, as shown in Fig 2. Two options for ROI determination, the customized brain masks and

build-in atlas, are available in the module. The toolbox currently provides two build-in atlas,

including the automated anatomical labeling (AAL) atlas [20] and Brainnetome atlas [21]. For

user-loaded (customized) brain masks and atlas, the MNI space format is required to avoid

miscalculations during extraction of blood-oxygen-level-dependent (BOLD) responses.

Fig 2. The user interface of sliding-window analysis module. By clicking the “Default Setting” button, users can

reset all the parameters to default values. The user specified parameters can be saved and loaded by clicking the “Save/

Load Settings” buttons. By clicking the “Run” button, the sliding-window analysis can be performed.

https://doi.org/10.1371/journal.pone.0267456.g002
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Customized ROIs masks can also be imported with the atlas option set to “Custom”. If custom-

ized ROIs were selected, the masks must be in the same coordination space as the input data.

Compared to static FC analysis that uses signals in the entire scan duration to calculate the

functional correlations, dynamic FC analysis uses a much smaller window size, which is more

sensitive to noises in the data. Therefore, the step of temporal filtering is essential to guarantee

the accuracy of detected dynamics of the functional brain network. The sliding-window analy-

sis module of the GAT-FD toolbox includes options of high-, low-, band-pass filter, and wave-

let filter to help further minimize the undesired noises. When applying high-, low-, or band-

pass filter, the corresponding cut-off values (a lower-limit cut-off value is required for high-

pass filter, an upper-limit cut-off value is required for low-pass filter, and both lower- and

upper- limits cut-off values are required for band-pass filter) are specified as the inverse of the

cut-off frequency, i.e., the unit of second, instead of Hz are implemented here. Wavelet decom-

position, as a frequently used tool in task-based fMRI data analysis, increases sensitivity in

detecting signal correlation against a noisy background, especially when motion artifacts

related spikes occur [22, 23]. If the wavelet filtering function is selected, the sliding-window

module will first decompose each activation time series using the maximal overlap discrete

wavelet transform (MODWT) with a specific number of levels, and then transfer back with

selected levels of coefficients using inverse MODWT. The number of wavelet decomposition

levels and the selected wavelet levels need to be specified by the user. The temporal filtering

function is optional in this module, given that input data can be already filtered during the

pre-processing steps.

In the GAT-FD toolbox, the FC between a pair of ROIs at each step is represented by the

Pearson’s correlation coefficient of the BOLD signals within the corresponding sliding-win-

dow in the two ROIs. Therefore, the window size and the step size are critical in detecting the

desired temporal dynamics during task stimulation-related period when using sliding-window

analytical method. The selections of these parameters depend on the task design and the repe-

tition time (TR). Studies have suggested the window size to be larger than 15 TRs, which

means at least 15 volumes within a sliding-window, to get reliable estimations of between-

region temporal correlations [24–26]. In addition, the window size needs to be smaller than

the length of one task block to provide sufficient number of measures on describing mid-task

variability [27, 28]. The GAT-FD toolbox also offers an option to utilize gaussian kernel-based

sliding-window [7, 10]. Such approach applies a tapered sliding-window with a different

weight for each volume involved in the window during the correlation calculation. A series of

FC matrices is then generated for each subject with user specified sliding-window parameters.

The sliding-window analysis module can also generate connectivity matrix for static functional

network by setting the window size equal to the length of the full fMRI task. The sliding-win-

dow analysis module is able to process multiple input files at once, to generate one MAT-for-

mat output file for each selected subject.

Temporal inclusive mask generation for block-designed tasks

Studies have found that the pattern of pairwise FC varies between the rest and task conditions

during fMRI [29, 30]. To map the task-specific (or rest-specific) FC matrices in the sliding-

window analysis module, the temporal inclusive mask generated from the task design module

of the GAT-FD toolbox can be needed. To determine the temporal inclusive mask, two thresh-

olding methods, estimated activation level thresholding and condition coverage percentage

thresholding, are provided (Fig 3). Users can choose to use either or both methods to generate

their study-specific masks by checking the box of each function. If both boxes are checked,

logic AND will be implemented to the two masks for the final output of the temporal inclusive
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mask. The estimated activation level thresholding method is based on the estimated hemody-

namic responses which are internally estimated in the module by convolving the task design

with the hemodynamic response function in Statistical Parametric Mapping (SPM) tool-

box [31]. If the box for estimated activation level method is checked and the threshold is pro-

vided by the user (or by using default value), the time points with the estimated activation

magnitude (ranged from 0 to 1, with 1 representing the maximum estimated response for a

single stimulus) higher than the user defined threshold are included in the temporal inclusive

mask. By checking the box of condition coverage percentage thresholding method, selecting

the condition type (1 for task and 0 for rest), and defining the percentage threshold (X%), time

points with at least X% of their associated sliding windows under the selected task condition

Fig 3. The user interface of task design module. By clicking the “Default Setting” button, users can reset all the

parameters to default values. After defining all the parameters, the temporal inclusive mask can be plotted in the

bottom by clicking the “Update Design” button. When the “Task Design” plot option is checked, the task design is

plotted in solid black line. When the “Hemodynamic Response” plot option is checked, the estimated hemodynamic

response is plotted in dashed red line. When the “Temporal Mask” plot option is checked, the time points selected by

the temporal inclusive mask are shown in green areas. The temporal inclusive mask file needs to be saved by clicking

on the “Save Design Matrix” button.

https://doi.org/10.1371/journal.pone.0267456.g003
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(according to the task design) will be inclusive in the mask. The default settings for these two

parameters are 0.8 and 80, respectively. The output of this module is a temporal inclusive mask

which contains the indices of the task stimulation-related study-specific FC matrices. In addi-

tion, users can manually define the temporal inclusive mask.

Characteristics of the topological dynamics of the functional brain network

To characterize the topological dynamics of the functional brain network, the first step is to

binarize the involved FC matrices. The network analysis module of the GAT-FD

toolbox provides multiple thresholding methods for FC matrix binarization, including absolute

thresholding, proportional thresholding, and wiring cost thresholding. The absolute threshold-

ing method applies the same user specified correlation coefficient threshold (ranging from -1 to

1) to all connectivity matrices. The proportional thresholding method defines the threshold rel-

ative to the maximum correlation coefficient in each FC matrix with user specified proportion,

ranging from 0 to 1. The wiring cost thresholding method preserves the top connections (with

user specified cost threshold) in each FC matrix. The cost of a network is defined as the number

of existing connections divided by the number of all possible connections, which ranged from 0

to 1, representing the top 0% to 100% connections, respectively. The toolbox also includes the

option of using absolute value of the correlation coefficient for thresholding.

Estimations of topological properties at both the global- and nodal-level are provided in the

toolbox. The global-level properties include network global efficiency, network local efficiency,

network clustering coefficient, network average degree, characteristic path length, normalized

clustering coefficient, normalized path length, small world coefficient, transitivity coefficient,

assortativity coefficient, and modularity coefficient. The nodal-level properties include nodal

global efficiency, nodal local efficiency, nodal clustering coefficient, nodal degree, and

betweenness centrality. These topological properties are calculated from the binarized FC

matrices.

The network global efficiency, Eglob(G), is a metric of the structural network integration

that reflects the ability of information transferring across distributed brain areas [32]. It is

defined as:

Eglob Gð Þ ¼
1

nðn � 1Þ

P
i;j2G;j6¼i

1

dij
ð1Þ

where n is the number of nodes in the network, and dij is the inverse of the shortest path length

(number of edges) between node i and j.
The network local efficiency, Enetwork−loc(G), estimates the network segregation and repre-

sents the fault tolerance level of the network [32], which is defined as:

Enetwork� loc Gð Þ ¼
1

n
P

i2GEglobðGiÞ ð2Þ

where Gi is the subnetwork that consists of all neighbor nodes of node i, and the global effi-

ciency of subnetwork Gi is calculated using equation Eq (1).

The network averaged degree is the average number of neighbors (degree) of all nodes in

the network, represents the overall connectivity strength in the network.

The network clustering coefficient, C(G), is the mean clustering coefficient of all nodes in

the network, which represent the fraction of the node’s neighbors that are also neighbors of

each other [33]. It is defined as:

C Gð Þ ¼
1

n
P

i2G
1

kiðki � 1Þ
�
P

j;h2Gi
ðaijaihajhÞ

1=3
ð3Þ
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where aij is the connection between node i and j (1 for connected and 0 for not connected),

and ki is the number of neighbors of node i.
The characteristic path length, L(G), is the average length of the shortest path between all

node-pairs in the network [33]. It is an alternative of network global efficiency, which is

defined as:

L Gð Þ ¼
1

nðn � 1Þ

P
i;j2G;j6¼idij ð4Þ

The normalized clustering coefficient, Cnorm or γ, is the ratio between the network cluster-

ing coefficient of the current network and similar random networks [33]. It is defined as:

Cnorm ¼ Cnetwork=Crand ð5Þ

where Crand is the average of network clustering coefficient of multiple random networks (20

random networks are used in the GAT-FD toolbox) that have the same number of edges and

nodes as the current network.

The normalized path length, Lnorm or λ, is the ratio between the characteristic path length of

the current network and similar random networks [33]. It is defined as:

Lnorm ¼ Lnetwork=Lrand ð6Þ

where Lrand is the average of characteristic path length of multiple random networks (20 ran-

dom networks are used in the GAT-FD toolbox) that have the same number of edges and

nodes as the current network.

The small world coefficient, S or σ, is the ratio between normalized clustering coefficient

and normalized path length, which is defined as:

S ¼ Cnorm=Lnorm ð7Þ

The transitivity coefficient is a similar measure as network clustering coefficient, which is

the fraction of closed triplets in all possible triplets of a network [34].

The assortativity coefficient characterizes the connectivity similarity of all connected node-

pairs in the network, which is the correlation coefficient between the degrees of nodes on both

sides of all edges [35].

The modularity coefficient is the quantitative measure of the ability to subdivide a network

into clearly separated modules [36].

The nodal global efficiency, Enodal(i), is a measure of nodal communication capacity of a

node with all other nodes in the network, which is defined as:

Enodal ið Þ ¼
1

n � 1

P
j2N;j6¼i

1

dij
ð8Þ

The nodal local efficiency of node i represents the robustness and integration of the subnet-

work it belongs, which was defined as the network global efficiency of the subnetwork that

consists of all the neighbors of i.
The nodal clustering coefficient, C(i), describes the likelihood of whether the neighboring

nodes of node i are interconnected with each other [33]. It is defined as:

C ið Þ ¼
1

kiðki � 1Þ

P
j;h2Ni
ðaijaihajhÞ

1=3
ð9Þ

The nodal degree is the number of neighbors of a specific node. It represents the network

connection strength of the node.
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The betweenness centrality, B(i), attempts to measure the ability for one node to bridge

indirectly connected nodes [37]. It is defined as:

B ið Þ ¼
1

ðn � 1Þðn � 2Þ

P
j;k2N;j6¼k

pðijj; kÞ
Pðj; kÞ

ð10Þ

where j, k were node pairs in the network. p(i|j, k) was whether the shortest path between node

j and node k passes through node i. P(j, k) was the total number of unique shortest path

between node j and node k.

The temporal dynamics of a global- or nodal-level topological property are measured using

the variance of this property over the selected time range (or multiple time ranges defined in

Section 2.4) during the entire scan period. The variance is used to characterize the stability of a

topological property, which is defined as:

V ¼
1

N � 1

PN
i¼1
jAi � mj

2
ð11Þ

where N is the number of time points, Ai is the network topological property at that time

point, and μ is the mean of the network topological property over the selected time points. The

GAT-FD toolbox utilizes functions from the brain connectivity toolbox for network construc-

tion and topological features calculation [38]. The calculations are time consuming, therefore,

parallel computing option in this module is supported if the MATLAB parallel toolbox is

installed. The detailed configurable parameters are shown in Fig 4.

Result display

Result display module provides convenient features to visually check the calculated results

from all previous modules, as shown in Fig 5. The constructed connectivity matrices for each

sliding-window can be checked for any abnormal conditions. Task design can be loaded and

displayed to provide a visual inspection for sliding-window selection. The results from the net-

work analysis module can also be loaded in the display module. The global-level topological

properties selected in the network analysis module can be plotted at individual level or group

level, along with the estimated hemodynamic response. The nodal-level topological properties

are stored as MATLAB matrix in the result file. Due to the size of the results matrix, the nodal-

level topological properties cannot be plotted and can only be accessed by loading the result

file into MATLAB.

Illustration

Data

Task-based fMRI data from 40 typically developing children (male/female: 22/18) were

involved in the validation and illustration of the GAT-FD toolbox. All subjects were 11 to 16

years old, right-handed according to the Edinburgh Handedness Inventory [39], within or

post puberty based on the parent version of Carskadon and Acebo’s rating scale [40], and had

full scale IQ� 80 estimated by the Wechsler Abbreviated Scale of Intelligence II (WASI-II)

[41]. None of the subjects reported a history or current diagnoses of neurological and psychiat-

ric disorders, chronic medial illnesses, or learning disabilities. None of them had been taking

stimulant or non-stimulant medications within the past 3 months prior to the study visit that

might impact the brain activations during fMRI data acquisition. The study received institu-

tional review board approval at the New Jersey Institute of Technology and Saint Peter’s Uni-

versity Hospital. Prior the study, all the participants and their parents or legal guardians

provided written informed assents and consents, respectively.
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Each participant performed a block-design visual sustained attention task (VSAT) during the

fMRI scan. The VSAT included 5 task blocks interleaved by 5 rest blocks, each was 30 seconds.

Detailed descriptions of the task were provided in our previous studies [42, 43]. The fMRI data

were collected using a 3-Tesla Siemens TRIO (Siemens Medical Systems, Germany) scanner with

a whole brain gradient echo-planar sequence (voxel size = 1.5 mm × 1.5 mm × 2.0 mm,

TR = 1000 ms, echo time = 28.8 ms, and field of view = 208 mm, slice thickness = 2.0 mm).

Preprocessing

The preprocessing steps were performed using FEAT toolbox in FMRIB’s Software Library

[44]. Each raw data was first corrected for slice timing and motion artifacts, using sinc interpo-

lation and rigid-body transformation, respectively. Then brain extraction was performed to

remove non-brain tissues using the averaged fMRI data. Spatial smoothing was performed

Fig 4. The user interface of network analysis module. The selected timepoints are displayed at the top right corner

after loading the temporal mask file. If the “Use absolute value of correlation coefficient” is checked, all the negative

correlation coefficients in the connectivity matrices are converted to positive value before thresholding. By clicking the

“Calculate Network Properties” button, the network analysis is performed with user specified thresholding parameters

and user selected topological measures.

https://doi.org/10.1371/journal.pone.0267456.g004
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with a 5-mm full-width at half maximum gaussian kernel to improve the signal-to-noise ratio.

The signal intensity was then normalized for each slice. Then, a high-pass temporal filter of 1/

75 Hz was applied to remove low frequency noises. Finally, linear registration was performed

to the MNI template with a voxel size of 2 × 2 × 2 mm3.

The group average activation map within the study cohort was calculated and parcellated

according to the AAL atlas [20]. Within each parcellated brain regions that contain at least 100

significantly activated voxels (Z� 2.3 after cluster correction for multiple comparisons), a

spherical ROI with the radius of 5mm and centered at the regional maximum of the activated

cluster was generated in the MNI space. A total of 59 ROIs (nodes for the to be constructed

functional brain networks) were generated and mapped back to each pre-processed fMRI data

to construct the dynamic functional networks.

The GAT-FD-based processes

For data from each subject, wavelet-based temporal filtering was first performed on the time

series of each ROI, using the 5-level wavelet transformation. The level 3,4, and 5,

Fig 5. The user interface of result display module. After loading the generated connectivity matrices file and

temporal mask file, the functional connectivity matrix can be displayed at top right conner by selecting the desired

sliding-window step using the “Frame” slider. After loading the generated network properties file, the network

topological properties for different subjects and different threshold values can be displayed at the bottom by clicking

the “Update” button.

https://doi.org/10.1371/journal.pone.0267456.g005
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corresponding to frequency band of 0.015–0.124 Hz, were then used to reconstruct the time

series for each ROI. This frequency band has been demonstrated to contain most task-related

hemodynamic information [4, 42, 45]. Then, the sliding-window analysis was performed with

the window size of 17 TRs and the step size of 1 TR. Such window size and step size were sug-

gested to be able to generate reliable temporal correlation coefficient (the FC measure) within

each sliding step and offer enough sliding steps that allows for estimations of variability of the

FC during the task stimulation period [26–28]. A total of 284 connectivity matrices were then

generated for each subject.

As an example of illustrating the characterization the task stimulation-related dynamics of

the network properties, a temporal inclusive mask was generated based on the blocked design

of the task. The condition vector was set as “0 1 0 1 0 1 0 1 0 1”, where 0 was for a rest block

and 1 for a task block. The duration vector for each block was converted from second to TR

and set as “30 30 30 30 30 30 30 30 30 30”. The estimated activation level threshold was set as

0.8, and the task condition coverage percentage threshold was set as 80%, as suggested by

default. By implementing this temporal inclusive mask, a total of 79 FC matrices, which were

generated in the sliding-window analysis module, were marked as task stimulation-related.

In the network property analysis module, the absolute thresholding method was imple-

mented for the binarization of the 284 FC matrices generated in the sliding-window analysis

module. The range of correlation coefficient threshold was set as from 0.5 to 0.85 with a step

size of 0.01. Such threshold range was calculated based on the cost-range of the functional net-

work that satisfied the small-world network assumption [33, 46]. Then, the global- and nodal-

level topological properties of each of the 284 functional brain networks were calculated. In

each subject, the variance of each topological property was calculated over the 284 time points

in the overall scan duration and over the 79 task stimulation-related time points based on the

generated temporal mask. The group average of network topological properties was then cal-

culated. In addition, variances of the network properties calculated over the full scan duration

were compared with those calculated based on the generated temporal mask, using paired

sample t-test, with a threshold of significance at α� 0.05.

Results and discussion

As an example of visualization, Fig 6 illustrated group averages of the global-level topological

properties generated from our testing samples, including the network global efficiency, network

local efficiency, network clustering coefficient, network average degree, characteristic path length,

and small world coefficient, respectively. We observed decreased characteristic path length and

increased network global efficiency, network local efficiency, network clustering coefficient, and

network average degree in the functional brain network during both rest-to-task and task-to-rest

transition periods, while a relatively steady state of these topological properties in the middle of

the task blocks. Such pattern of task stimulation-related FC dynamics has also been observed in

other studies [26, 47–49]. The small world coefficient of the functional network over all time

points were within the range of 1.6 to 2.8, as shown in Fig 6F, which has been observed as a typical

small world coefficient range for common neural networks in both humans and animals [50, 51].

In addition, all the global topological properties showed significantly lower variances during the

task stimulation-related period covered by the temporal mask, when compared to those estimated

over the entire scan duration (the network global efficiency (t = 2.282, p = 0.028), network local

efficiency (t = 2.223, p = 0.032), network clustering coefficient (t = 2.235, p = 0.031), network aver-

aged degree (t = 2.529, p = 0.016), and characteristic path length (t = 3.989, p<0.001)). Indeed,

superior topological stability of the functional brain network during task performance relative to

that during resting state has also been reported by other studies [52, 53].
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To illustrate the results of nodal-level topological properties and their dynamics, Fig 7

included group averages of the nodal global efficiency, nodal local efficiency, nodal degree,

and betweenness centrality in the node of right middle frontal gyrus (MFG). Right MFG has

been found to serve as a critical component in the visual sustained attention pathways and

play key role in the dorsal and ventral attention networks [54–56]. We observed that, relative

to those over the entire scan duration, the variances of the nodal global efficiency and nodal

degree of the right MFG were significantly reduced during the task stimulation-related (the

nodal global efficiency (t = 2.269, p = 0.026) and nodal degree (t = 2.289, p = 0.024)), which

suggests strong functional stability and significant involvement of the right MFG during sus-

tained visual attention processing. These results are consistent with findings from previous

fMRI studies that showed significant activations in right MFG during attention-related tasks

[56–58].

Compared to the existing toolboxes that provide dynamic network analysis, GAT-FD

toolbox is able to 1) bring extra flexibility in defining task-related time points for dynamic

analysis; 2) integrate the calculation of network topological properties with dynamic network

construction. On the bases of the initial pipelines provided in the current version of the

GAT-FD toolbox, future work will focus on developing and including more alternative analyti-

cal techniques for characterizing the dynamics of FC and network properties.

Conclusion

In this study, we introduced an integrative MATLAB toolbox, GAT-FD, for analyzing the

task-related dynamics of FC and topological properties of the functional brain networks for

Fig 6. Group averages of the network global properties. Each global property was averaged over the first 4 task

blocks (the solid blue line). The light blue shadowed area represents the standard error of the mean of each property.

The task condition is plotted using dashed black line. The estimated hemodynamic response over the testing period is

plotted using dotted red line. The task stimulation-related period defined using the task design module is shadowed in

light green. (A) Network global efficiency. (B) Network local efficiency. (C) Network clustering coefficient. (D)

Network average degree. (E) Characteristic path length. (F) Small world coefficient. (Vtask: Variance of the topological

properties over the task-related period. Vall: Variance of the topological properties over the entire scan duration.).

https://doi.org/10.1371/journal.pone.0267456.g006
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sensory and cognitive processes during task-based fMRI, especially for block-designed data. All

the involved functions have been tested and validated using data collected from human subjects

during task-based fMRI. The results demonstrated that the GAT-FD allows for effective and

quantitative evaluations of the functional network properties and their dynamics during the

entire fMRI scan or user-specified periods. The GAT-FD toolbox and user manual are freely

available at https://www.nitrc.org/projects/gat_fd and https://centers.njit.edu/cnnl/gat_fd/.
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Fig 7. Group average of the nodal topological properties in right middle frontal gyrus. Each nodal property was

averaged over the first 4 task blocks (the solid blue line). The light blue shadowed area represents the standard error of

the mean of each property. The task condition is plotted using dashed black line. The estimated hemodynamic

response over the testing period is plotted using dotted red line. The task stimulation-related period defined using the

task design module is shadowed in light green. (A) Nodal global efficiency. (B) Nodal local efficiency. (C) Nodal

degree. (D) Betweenness centrality. (R_MFG: Right Middle Frontal Gyrus. Vtask: Variance of the topological

properties over the task stimulation-related period. Vall: Variance of the topological properties over the entire scan

duration.).

https://doi.org/10.1371/journal.pone.0267456.g007
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