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Abstract: Antifreeze proteins (AFPs) protecting the cells against freezing are produced in response to
extremely low temperatures in diverse psychrophilic organisms, and they are encoded by multiple
gene families. The AFP of Antarctic marine diatom Chaetoceros neogracile is reported in our previous
research, but like other microalgae, was considered to probably have additional genes coding AFPs.
In this paper, we reported the cloning and characterization of additional AFP gene from C. neogracile
(Cn-isoAFP). Cn-isoAFP protein is 74.6% identical to the previously reported Cn-AFP. The promoter
sequence of Cn-isoAFP contains environmental stress responsive elements for cold, thermal, and high
light conditions. Cn-isoAFP transcription levels increased dramatically when cells were exposed to
freezing (−20 ◦C), thermal (10 ◦C), or high light (600 µmol photon m−2 s−1) stresses. The thermal
hysteresis (TH) activity of recombinant Cn-isoAFP was 0.8 ◦C at a protein concentration of 5 mg/mL.
Results from homology modeling and TH activity analysis of site-directed mutant proteins elucidated
AFP mechanism to be a result of flatness of B-face maintained via hydrophobic interactions.

Keywords: Antarctic marine diatom; Chaetoceros neogracile; isoform antifreeze protein; antifreeze
activity; 3D-structure modeling

1. Introduction

Antifreeze proteins (AFPs) are found in various organisms such as fishes, insects, plants,
microalgae and even bacteria living in Arctic and Antarctic regions [1–3]. AFPs are able to decrease
the freezing point of the fluid below its melting point and inhibit ice-recrystallization, which
helps in survival of the organism at extremely low temperatures [4]. The basic mechanisms of
the protein functions have been studied through structure predictions using protein modeling
programs or structure identification using X-ray crystallography [5–11]. Like multicellular organisms,
microalgal AFPs such as Navicula glaciei [12], Fragilariopsis cylindrus [13], Chlamydomonas sp. [14],
Chloromonas sp. [15], and Fragilariopsis sp. [16], have also been studied using diverse analytic
approaches. Interestingly, many microalgal AFPs are encoded with multiple genes, similar
to other organisms [17,18]. The presence of multiple gene families of AFPs supports the
notion that AFPs are required for psychrophilic organisms to adapt and survive in extremely
low-temperature environments.

Based on previous research, the mechanism of AFPs has been considered as that an ice
crystal binding activity and a reducing the freezing temperature are most probably due to an
absorption-inhibition mechanism [4,19–22]. The “anchored clathrate water” mechanism was proposed
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to explain Marinomonas primoryensis AFP(MpAFP)-binding to the ice lattice [23]. MpAFP arranges
water molecules into an ice-like lattice on the ice-binding surface (IBS). The gamma-methyl groups
of Thr residues on the IBS are enclosed by water molecules. This type of “cage” is anchored on the
IBS by hydrogen bonding to the nitrogen in the main chain and hydroxyl functional groups in the
side chain of Thr. The anchored clathrate water mechanism can be explained as the organized water
molecules anchored to the protein by hydrogen bonds such as ice-like lattice [23]. Although there
are many reports about characterization of AFPs at a gene to protein level and even its industrial
applications [24], the mechanism of AFPs on a biochemistry and biophysics level has still not been
fully discovered.

The AFP of Chaetoceros neogracile (Cn-AFP), an Antarctic marine diatom, has been reported [25].
The expression of Cn-AFP was sharply induced by various environmental stresses, and its 5′ upstream
sequence was predicted to contain light, cold, and heat shock-responsive elements [26]. Similar to
Cn-AFP, other psychrophilic diatom AFPs also show dynamic expression in response to environmental
stresses like high salt- and low-temperature culture conditions [16]. The structure of Cn-AFP was
predicted using 3D modeling program and was comparable to the protein structure of AFPs from
a fungus and Arctic yeast. However, we considered that C. neogracile also has additional genes to
maintain more organically their intracellular environment from extremely low temperature like other
diatom AFPs [26].

In this paper, we cloned and sequenced an additional AFP gene from C. neogracile (Cn-isoAFP)
and compared it to the AFPs of other psychrophilic organisms. Promoter regions and functional
motifs were analyzed by prediction programs. To confirm the promoter results, we examined the
expression of Cn-isoAFP under various stress conditions. In addition, we propose a protein structure
for Cn-isoAFP and the mechanisms underlying its antifreeze activity based on homology modeling
and site-directed mutagenesis.

2. Results

2.1. Cloning and Identification of the C. neogracile Isoform AFP

The sequence of a C. neogracile AFP gene (Cn-AFP) and its expression in response to cold stress
has been reported previously [25]. Based on this previously identified Cn-AFP sequence, another AFP
of C. neogracile was amplified with degenerate primers, and the full sequence was obtained by 5′ DNA
walking and 3′-RACE PCR. The degenerate primers were designed to target the domains with high
sequence conservation among psychrophilic microalgal AFPs at the amino acid level. The Cn-isoAFP
ORF was 855 bp long, encoding a 284 amino acid protein. The predicted molecular weight of the
protein was 29.4 kDa. The signal peptide of Cn-isoAFP protein was identified using SignalP [27];
it was 31 amino acids in length and contained a glycosylation and a myristoylation site (Figure S1).
The molecular mass of mature Cn-isoAFP without a signal sequence was about 25.9 kDa. The gene
sequence of Cn-isoAFP was 74.8% identical to that of Cn-AFP (ACU09498) (Figure S2). Southern blot
analysis using the Cn-isoAFP gene as a probe showed the possibility that C. neogracile might have more
than two AFP genes, besides the Cn-isoAFP and the previously reported Cn-AFP (Figure S3).

2.2. Phylogenetic Analysis of Cn-isoAFP Using Multiple Alignment

Cn-isoAFP showed high sequence similarity to the AFPs of other psychrophilic diatoms, fungi,
and bacteria (Figure S4). The Cn-isoAFP exhibited high identity (57.4%) to the Antarctic ice diatom
N. glaciei AFP. Cn-isoAFP also showed high sequence identity to the AFP genes of F. curta (sea ice
diatom, 38.8%), T. ishikariensis (snow mold, 42.4%), Colwellia sp. (Antarctic sea ice bacteria, 39.1%),
and P. ingrahamii (psychrophilic bacteria, 41.5%). However, Cn-isoAFP exhibited very low similarity to
the genes of the psychrophilic green microalgae Chlamydomonas sp. (10.5%). Sequence alignment and
phylogenetic analysis showed that the Cn-AFP and Cn-isoAFP genes are evolutionarily close to the
N. glaciei AFP gene (Figures S4 and S5). Cn-isoAFP and Cn-AFP are related to other eukaryotic AFPs
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(snow mold, other ice diatom) and bacterial AFPs. However, Cn-isoAFP is evolutionarily distinct from
plant AFPs, ice recrystallization inhibition proteins (IRIPs), and green microalgal AFPs (Figure S5).

2.3. In Silico Analysis of the Cn-isoAFP Promoter

The 5′-upstream sequence of Cn-isoAFP was identified and analyzed using promoter database
programs to investigate the potential physiological roles of this protein [28–30]. Various putative
transcription factor binding sites responsive to environmental stresses and TATA and CCAAT
boxes were identified (Figure 1). MYCCONSENSUSAT [31], which is a cold-responsive element
in higher plants, was present in the Cn-isoAFP promoter sequence. Furthermore, light-responsive
elements such as GATA boxes [32], I BOX [33], 10PEHVPSBD [34], ASF1MOTIFCAMV [35],
GT1CONSENSUS [35], and TBOXATGAPB [36] were also present. Since freezing induces dehydration
and water stress, dehydration and water stress-responsive motifs, ACGTATERD1 [37], MYBCORE [38],
and MYCCONSENSUSAT [31] , were found in the Cn-AFP promoter. The HSP70A promoter of
Chlamydomonas (PRECONSCRHSP70A) [39] and transcriptional enhancement of circadian control
CIRCADIALELHC [40] motifs were also found in the Cn-isoAFP promoter sequence.
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To impose freezing stress, cells were kept at −20 °C for 20, 40, and 60 min, respectively. The cell 
culture medium began to freeze at 20 min and was completely frozen after 60 min. Cn-isoAFP 
transcription levels were up-regulated in response to freezing stress 20 min after treatment (Figure 
2A). Under thermal stress (10 °C), the Cn-isoAFP gene was rapidly induced in 1 h compared to 
baseline (Figure 2B). Under HL stress (600 μmol photon m−2 s−1), Cn-isoAFP transcription levels 
increased rapidly within 1 h, and the expression was continuously induced for up to 4 h (Figure 2C). 

Figure 1. In silico sequence analysis of the Cn-isoAFP promoter and the putative transcription
factor binding sites. The 5′ upstream of the Cn-isoAFP gene contained various environmental
stress responsive elements such as, high light, dehydration, heat and cold shock. All motifs were
underlined (or upperlined) and the name of responsive elements are indicated under (or above) the
line. The predicted TATA box and CAAT box were solid underlined. The red color letters show the
transcription start site.

2.4. Gene Expression Analysis of Cn-isoAFP in Response to Stress Conditions

To confirm the promoter analysis results, we analyzed the expression of Cn-isoAFP under freezing
(−20 ◦C), thermal (10 ◦C), and high light (HL, 600 µmol photon m−2 s−1) stress conditions.

To impose freezing stress, cells were kept at −20 ◦C for 20, 40, and 60 min, respectively.
The cell culture medium began to freeze at 20 min and was completely frozen after 60 min. Cn-isoAFP
transcription levels were up-regulated in response to freezing stress 20 min after treatment (Figure 2A).
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Under thermal stress (10 ◦C), the Cn-isoAFP gene was rapidly induced in 1 h compared to baseline
(Figure 2B). Under HL stress (600 µmol photon m−2 s−1), Cn-isoAFP transcription levels increased
rapidly within 1 h, and the expression was continuously induced for up to 4 h (Figure 2C). When the
4 h HL-stressed cells were transferred to normal culture conditions, Cn-isoAFP transcription levels
decreased dramatically (Figure 2D).
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2.5. Homology Modeling of the Structure of Cn-isoAFP

Cn-isoAFP is composed of one α-helix and seven β-loops (Figure 3). The tertiary structure of
Cn-isoAFP was predicted by Phyre2, Modeller v9.12 and PyMOL. T. ishikariensis AFP6 (TisAFP6;
PDB ID, 3VN3) was used as an amino acid template for protein modeling of Cn-isoAFP. Cn-isoAFP has
46% structural identity with TisAFP6. The results showed that the structure of Cn-isoAFP had high
similarity to that of TisAFP6 with 100% confidence. In addition, the protein structures of each mutated
Cn-isoAFP were modeled and predicted using the same homology modeling methods described
for Cn-isoAFP.

Cn-isoAFP had three faces located on side surfaces ofβ-helix with a triangle cross-section (Figure 3).
The A-face of Cn-isoAFP was covered by α-helix, and the B-face forms a relatively flat face. The B-face
of Cn-isoAFP formed one right-handed β-helix with seven loops. The β1 loop near the N-terminus was
on the β7 loop, which was located on the C-terminal region. Seven helical loops were formed in the
following irregular order: β1-β7-β6-β5-β4-β3-β2 (Figure 3). Six mutant proteins were produced
in order to identify IBS (V100Y, T196Y and V239Y) and amino acids interacting with ice lattice
oxygen atoms (T41L, E145L and T232L). In addition, two mutants were generated to demonstrate
the importance of the hydrophobic core (V40S and I213S). The mutated sites are indicated by balls
in Figure 4.
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Figure 3. The 3D-structure of Cn-isoAFP. The AFP of T. ishikeriensis was used as the template of
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The A-face of Cn-isoAFP was covered by an α-helix and the B-face formed a relatively flat surface
predicted as IBS.
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substitutions to Tyr were performed on A-face and C-face. In addition, six sites for replacement with
Tyr, Ser and Leu were demonstrated on the image showing the Cn-isoAFP structure.

2.6. The Antifreeze Activity of Cn-isoAFP and Its Mutant Proteins

Recombinant Cn-isoAFP protein was assayed for thermal hysteresis (TH) activity and its effect on
ice crystal growth and morphology. Pre-mature Cn-isoAFP with the signal peptide did not show any TH
activity and only induced minor morphological changes in ice crystals (data not shown). The shapes of
the ice crystals formed in the presence of mature Cn-isoAFP (without a signal peptide sequence) were
investigated (Figure 5B). The mature form of recombinant Cn-isoAFP yielded hexagonal ice crystals at
a protein concentration of 0.25 mg/mL. All ice crystals formed in the presence of Cn-isoAFP exhibited
a “burst growth” at high protein concentrations (above 0.5 mg/mL). The shapes of ice crystals became
sharper at higher protein concentrations. The maximum TH activity of Cn-isoAFP was 0.8 ◦C at a
concentration of 5 mg/mL.
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The TH activities of all mutagenic Cn-isoAFPs were lower than the wild-type Cn-isoAFP, and the
shapes that ice crystals adopted in the presence of these proteins fell into three categories: (1) hexagonal,
(2) bipyramidal-like, or (3) circular (Figure 5 and Figure S6). The V100Y mutant protein yielded ice
crystal forms similar to wild-type Cn-isoAFP. Ice crystals grown in the presence of Thr-substituted
mutant proteins (T41L, T196Y, and T232L) had a hexagonal shape. The ice crystal morphologies
induced by growth in the presence of V40S, E145L, and V239Y mutant proteins were bipyramidal-like.
In particular, I213S yielded ice crystals with a circular shape, which is characteristic of complete loss
of antifreeze activity. The TH activity of V100Y was half that of Cn-isoAFP, while the TH activities of
E145L, T232L, T196Y, and V239Y were one-fourth that of Cn-isoAFP (Figure 5A). V40S, T41L, and I213S
had a TH activity less than 0.1 ◦C, which indicated complete loss of TH activity.

2.7. Modeling of Cn-isoAFP Mutants Generated by Site-Directed Mutagenesis

The B-face of TisAFP6, which we used as a template for modeling Cn-isoAFP, was proposed to
be an ice-interacting surface based on the results obtained for mutant TisAFP6 proteins generated
by site-directed mutagenesis (Figure 4). We generated eight mutated Cn-isoAFPs. After homology
modeling using Modeller and PyMOL, individual amino acids were substituted with leucine, tyrosine,
or serine to predict crucial interactions for formation of an IBS. All predicted protein structures were
assessed to be reliable models based on Ramachandran plot analysis (97.3% Ramachandran-favored,
2.3% Ramachandran-allowed, and 0.5% rotamer outliers) (data not shown) [41]. No significant
topological modification of parts of functional groups was detected (data not shown). In addition to
topological analyses of specific amino acids (Figure 6), the electrostatic characteristics of the protein
surfaces of Cn-isoAFP and mutant proteins were investigated using the adaptive Poisson-Boltzmann
solver [42]. The B-face of the V100Y mutant protein showed electrostatic potentials similar to that of
Cn-isoAFP. The overall distribution of electrostatic potential fields on the B-face of V40S, T41L, E145L,
T196Y, T232L, and V239Y was characterized by a similar proportion of positive and negative charges
to that of Cn-isoAFP. In contrast, I213S mutated Cn-isoAFP had a large neutral electrostatic potential at
the center of the B-face. In addition, a negative electrostatic potential field was found to be present
across the B-face of I213S.
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Figure 6. Distribution of negative isosurfaces overlapped on electropotential surfaces analysis from
applied Poisson-Boltzmann solver tools. Colors of blue, white and red indicated positive, neutral and
negative charges, respectively. Negative isosurfaces were represented to the red smooth surfaces. All of
the Cn-isoAFP surfaces were illustrated to the B-faces. (A), Cn-isoAFP; (B), mutagenic proteins showing
hexagonal ice crystals (T41L, T196Y, and T232L); (C), mutagenic proteins showing bipyramidal-like
ice crystals (V40S, E145L, and V239Y); (D), mutagenic protein showing circular disc ice crystals
(I213S, complete loss of antifreeze activity); (E), mutagenic protein showing similar morphology of ice
crystals to Cn-isoAFP (V100Y).
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3. Discussion

Cn-AFP, an antifreeze protein from an Antarctic marine diatom, has been studied from a
physiological and structural perspective [25,26]. Like other AFPs which have a multiple gene
family [12–18], it was expected that C. neogracile would possess additional isoform AFPs. In this
study, we reported a new isoform of C. neogracile AFP gene (Cn-isoAFP) and characterized the protein
based on biochemical and physiological analysis. The Cn-isoAFP was strongly expressed under thermal
and high light stresses, and the pattern was almost similar to Cn-AFP. In addition, our comparative
results of protein functions and structural analysis between Cn-isoAFP and its site-directed mutants,
showed that B-face of Cn-isoAFP is an ice-binding surface (IBS).

The presence of additional AFP genes in C. neogracile was predicted based on Southern blot
analysis (Figure S3). We cloned the putative sequence using degenerate PCR method and compared
it to the previously reported Cn-AFP. The gene sequence of Cn-isoAFP was 74.8% identical to that
of Cn-AFP [25]. Alignment and phylogenetic analysis of the amino acid sequences of AFPs revealed
that Cn-isoAFP is closely related to AFPs from sea ice diatoms and psychrophilic microorganisms
(Figures S4 and S5). Surprisingly, the winter flounder genome encodes 30–50 AFPs [43,44], and the
wolffish has more than 80 AFPs [45]. Thus, the presence of multiple AFP genes suggests that they play
an important role in survival in a freezing environment. These results also indicate a possibility of
multiple gene encoded AFP for C. neogracile.

Gene expression analysis data demonstrated that Cn-isoAFP was upregulated not only in low
temperature stress condition, but also other stress inducing factors (Figure 2). Many light and
temperature-responsive motifs were detected by transcription factor analysis in the promoter region of
Cn-isoAFP (Figure 1). The up-regulated pattern of expression of Cn-isoAFP in response to environmental
stress condition was similar to that of Cn-AFP [26]. Therefore, Cn-isoAFP seemed to play an important
role in both antifreeze activity and resistance to environmental fluctuations.

Generally, AFPs inhibit ice crystal growth and lower the freezing point via an
adsorption-inhibition mechanism, called thermal hysteresis (TH) [4,19]. Measurement of TH is the
best method for quantitative assessment of antifreeze activity [46]. We obtained a maximum TH value
of 0.8 ◦C for 5 mg/mL Cn-isoAFP (Figure 5A). This TH value is lower than the TH value of Cn-AFP
(about 1.2 ◦C for 5 mg/mL, [26]) but much higher than that of TisAFP6 (0.2 ◦C for 8 mg/mL, [5]).
Generally the fish TH value is about 1.0 ◦C at a protein concentration of 10 mg/mL [47] and that
of AFP8 of a snow mold (T. ishikariensis) is 1.9 ◦C [48]. Hence antifreeze activity of Cn-isoAFP is
not significantly low. A “burst growth” in ice crystal formation was observed at Cn-isoAFP protein
concentrations higher than 0.5 mg/mL (Figure S6). Morphological patterns of single ice crystals grown
in solutions containing Cn-isoAFP were similar to those obtained in solutions containing Cn-AFP [26].
Therefore, Cn-isoAFP appears to have similar biochemical characteristics and antifreeze activity to that
of Cn-AFP.

The protein structures of AFPs have been actively investigated to identify ice-binding motifs and
determine ice controlling mechanisms [6,10,11,49,50]. However, little is known about the structure of
AFPs from diatoms. Through protein modeling, Cn-isoAFP was predicted to have three β-helical faces
(Figure 4). The B-face of Cn-isoAFP was very similar to that of TisAFP6, which has the α-helix covered
A-face and a flat B-face consisting of β-sheet [5]. The B-face of TisAFP6 is an IBS for its antifreeze
activity. It was hence assumed that the B-face of Cn-isoAFP may be a potential IBS. To verify the IBSs of
Cn-isoAFP, several mutant proteins were generated by site-directed mutagenesis through substitution
method to have steric structural hindrances conferred by Tyr residues (V100Y, T196Y and V239Y),
hydrophobic interruption by Leu residues (T41L, E145L and T232L), and disruption of hydrophobic
core by Ser residue (V40S and I213S). As a result, all site-directed mutated proteins had decreased TH
value than Cn-isoAFP. In case of Cn-AFP [26], except for the G124Y mutant, most of the Tyr residue
mutants (T19Y, T41Y, D175Y, T193Y, and T211Y) had decreased TH activity compared to that of Cn-AFP.
Therefore, our results suggest that the B-face of Cn-isoAFP is an essential region for ice-binding.
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The Poisson-Boltzmann solver (APBS) tool was applied to evaluate and compare the electrostatic
potentials of the wild-type protein and its mutants, as was done in previous studies [51–53].
Overall distribution of positive and negative charges and negative iso-surfaces of Cn-isoAFP and
the eight mutated proteins were analyzed (Figure 6). The center of the B-face of Cn-isoAFP was
shown to have large proportions of neutral and positive charges. To further compare amino acid
charges between Cn-isoAFP and mutated proteins, negative iso-surfaces on the B-face were examined.
Similar to the findings of the electrostatic potential results, negative and neutral charges on the B-face
of Cn-isoAFP were found to interact with the surfaces of ice crystals. Except for the V100Y mutant
protein, all mutant proteins demonstrated different patterns of negative iso-surfaces than Cn-isoAFP.
In particular, I213S had a large proportion of negative surfaces across its B-face, which might be related
to the complete elimination of TH activity. In addition, the secondary structure of I213S as analyzed
by circular dichroism spectroscopy showed a different spectrum from that of Cn-isoAFP (Figure S7).
Ile213 was found to be capable of forming hydrophobic interactions with M221 and V231 located on
the same β-loop (β6). Hydrophilic substitution of Ser for Ile could (1) disrupt the hydrophobic core
of Cn-isoAFP, (2) modify the electrostatic potential of the B-face (acting as the IBS), and (3) generate
a more irregular β-helix surface. Therefore, we suggest that hydrophobic interactions are crucial
molecular forces required to maintain the flatness of the B-face for antifreeze activity.

4. Materials and Methods

4.1. Cell Growth and Stress Treatments

Chaetoceros neogracile was grown in a low-temperature culture room (4 ◦C, 25 µmol
photon m−2 s−1 continuous light intensity) in modified f/2 medium [25]. In thermal stress treatment,
C. neogracile cells were cultured at 10 ◦C at 25 µmol photon m−2 s−1 light intensity for 0, 0.5, 1, and 2 h.
The sample of 0 h was collected at the moment when internal temperature of medium in a control
sample tube increased to 10 ◦C. For high-light (HL, 600 µmol photon m−2 s−1) stress treatment,
cells were incubated for 0.5, 1, 2, or 4 h at 4 ◦C. After 4 h of HL stress, cells were transferred to normal
light condition (25 µmol photon m−2 s−1) for 2 or 4 h. The cultures were frozen at −20 ◦C for 20, 40,
or 60 min in order to impose freezing stress.

4.2. Cloning of the Cn-isoAFP Gene and Phylogenetic Analysis

The C. neogracile AFP isoform gene (Cn-isoAFP) was amplified by PCR using degenerate primers
(Primers #1 and #2 in Table S1) and cDNA as a template. PCR reaction was carried out using Pfu
polymerase premix (Elpis, Taejon, Korea). PCR conditions were 95 ◦C for 4 min, followed by 30 cycles
of 95 ◦C for 30 s, 51 ◦C for 45 s, 72 ◦C for 1 min, and then 15 min at 72 ◦C. The 500 bp PCR product
was cloned into the T vector (Promega, Madison, WI, USA) and sequenced (Macrogen, Seoul, Korea).
The 5′-unknown sequence of the isoform AFP was obtained using a DNA walking kit (Seegene,
Seoul, Korea), and the 3′-unknown region was obtained using a 3′-RACE kit (Roche, Basel, Switzerland)
following the manufacturer’s instructions. DNA walking primer and 3′-RACE PCR primer sequence
information is provided in Table S1.

The amino acid sequence of the C. neogracile isoform AFP showed homology with C. neogracile
AFP (FJ505233) and other psychrophilic organism AFPs. Sequences for AFPs from the following
organisms were obtained from the NCBI database: Navicula glaciei, AAZ76251; Fragilariopsis curta,
ACT99634; Chlamydomonas sp., EU190445; Typhula ishkariensis, AB109748.1; Flammulina populicola,
ACL27144; Lentinula edodes, ACL27145; Leucosporidium antarcticum ACX31168; Leucosporidium sp. AY30
ACU30807; Psychromona ingrahamii, ZP 01349469.1; Colwellia sp., DQ788793; Deschampsia antarctica,
FJ663038; Lolium perenne, FJ663045. Sequence alignment was performed using ClustalW, and the
phylogenetic tree was constructed with MEGA5 using the neighbor-joining algorithm [54].
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4.3. Identification of the Predicted Promoter Sequence

Inverse PCR was carried out to identify the 5′-upstream sequence of Cn-isoAFP. Genomic DNA
(gDNA) of C. neogracile was extracted following the procedure outlined in Gwak et al. [25]. Genomic
DNA (0.1 µg) was digested with EcoRV for 2 h at 37 ◦C. The digested gDNA was ligated by T4 DNA
ligase (Thermo Fisher Scientific, Waltham, MA, USA) for 1 h at room temperature (25 ◦C). Ligated
DNAs were amplified by PCR with Cn-isoAFP inverse PCR primers (Table S1, #7 and #8) and Dream
Taq (Thermo Fisher Scientific, Waltham, MA, USA). PCR conditions were as follows: pre-denaturation
at 95 ◦C for 4 min; 30 cycles at 95 ◦C for 30 s, 63 ◦C for 45 s, 72 ◦C for 1 min; and elongation at
72 ◦C for 10 min. Then, the PCR products were ligated into a T-vector (Promega, Madison, WI, USA).
This cloned vector was subsequently sequenced (Macrogen, Seoul, Korea). The 5′-upstream sequence
of Cn-isoAFP was analyzed by several promoter prediction programs: PLACE [28], PlantCARE [29],
and PlantPAN [30].

4.4. Sourthern Blot and Northern Blot Assay

Purified gDNA of C. neogracile (10 µg) was digested with EcoRV, KpnI, and XbaI, separated on
a 0.8% agarose gel, and transferred to a Hybond™-N+ membrane (Amersham, Dayton, TN, USA).
Genomic Southern blot was conducted by standard protocols using the radiolabeled Cn-isoAFP gene
sequence as a probe [55].

Total RNA of C. neogracile was extracted using a Plant RNeasy mini kit (Qiagen, Hilden, Germany).
RNA (10 µg) was incubated at 65 ◦C for 5 min for denaturation and loaded on an agarose
gel (1.2% agarose, 10% 10X MOPS, and 4.75% formaldehyde). The RNA was then transferred
to a Hybond™-N+ membrane (Amersham, Dayton, TN, USA) and UV-cross linked for 10 min.
The Cn-isoAFP probe was amplified by 5′-upstream primers specific for Cn-isoAFP (Table S1,
#9 and #10). Probes were labeled with 32P-dCTP and hybridized in hybridization buffer (5X SSC,
5X Denhardt’s reagent, 0.5% SDS, 100 µg/mL herring sperm DNA) at 62 ◦C. The membrane was
washed twice with wash buffer (2X SSPE and 0.1% SDS) for 25 min. The washed membrane was
exposed to an X-ray film and developed.

4.5. Cloning for Expression of Recombinant Proteins

To obtain Cn-isoAFP pre-mature and mature genes, i.e., genes with or without a signal sequence,
respectively, gDNA of C. neogracile was amplified by two primer sets. Cn-isoAFP ORF with the signal
sequence and the Cn-isoAFP coding region without the signal sequence were amplified by primers
#11 and #13 and #12 and #13, respectively (Table S1). The 5′-forward primer contained the KpnI
restriction site, and the 3′-reverse primer included a HindIII site (restriction enzyme sites in the primers
are underlined in Table S1). Cn-isoAFPs were inserted into the pColdI vector (Takara, Kyoto, Japan).
Recombinant Cn-isoAFP proteins were produced following the instructions in the pCold induction
manual (Takara, Kyoto, Japan). Induced cells were collected by centrifugation and re-suspended in
20 mM Tris-HCl buffer (pH 9.0). E. coli cells were lysed by sonication (5 s pulse and 10 s delay for
90 s) on ice. Cell pellets were harvested by centrifugation (10,000× g for 30 min at 4 ◦C), and the
supernatant was discarded. Pellets were re-suspended in 20 mM Tris-HCl buffer (pH 9.0) and
sonicated again (3 s pulse and 5 s delay for 1 min, 4 ◦C). These sonicated samples were centrifuged,
and the supernatants were collected. The supernatants were purified by a His-tag affinity column
(Qiagen, Hilden, Germany). The final purified Cn-isoAFP recombinant proteins were concentrated
using a Centricon filter (Millipore, Bedford, MA, USA).

4.6. Antifreeze Activity Assay

Ice crystal morphology was observed using a photomicroscope system consisting of an
Olympus BX35 photomicroscope equipped with an ethyl alcohol type temperature controller
(Otago nanoliter-osmometer, Dunedin, New Zealand) and a CCD camera. A droplet (approximately
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0.5 µL) of the sample solution was frozen and then heated by manipulation of the temperature
controller until a single ice crystal was observed separately in the solution. Antifreeze activity was
analyzed following the method of Gwak et al. [25]. Purified recombinant Cn-isoAFP protein was
concentrated up to 5 mg/mL and then serially diluted to assess its antifreeze activity. A thermal
hysteresis measurement was conducted more than three times to obtain precise values.

4.7. Structure Prediction of Cn-isoAFP by Homology Modeling

Homology modeling was performed in order to predict the protein structure of Cn-isoAFP.
The amino acid sequences of the AFPs of other organisms with high structural homology to Cn-isoAFP
were selected and aligned using the PSIPRED program [56]. 3VN3 (antifreeze protein from the snow
mold, Typhula ishikariensis) was used as a template to model Cn-isoAFP in the Phyre2 program [57].
Homology models were generated using Modeller version 9.12 [58], and the best model was selected
by analyzing the Modeller Objective Function scores. The best model for Cn-isoAFP was visualized
using PyMOL v.1.3 (PyMOL Molecular Graphics System, Version 1.3 Schrödinger, LLC).

4.8. Site-Directed Mutagenesis of the Cn-isoAFP

Mutants of Cn-isoAFP were produced by site-directed mutagenesis using mutagenic primers
(Table S2). To identify residues involved in the IBS, three mutant proteins were generated (V100Y,
T196Y, and V239Y; #1 to #6 in Table S2). T41, E145, and T232 of Cn-isoAFP were changed to leucine to
determine if this decreased the affinity of the protein for ice lattice oxygen atoms (T41L, E145L and
T232L; #7 to #12 in Table S2). To confirm the importance of the hydrophobic core of Cn-isoAFP for
antifreeze activity, V40 and I213 were replaced with serine (V40S and I213S; #13 to #16 in Table S2).
All mutated genes were amplified using the gene without the signal peptide sequence (mature form of
Cn-isoAFP) as a template. PCR was performed using Pfu polymerase premix (Elpis, Taejon, Korea).
PCR conditions were 95 ◦C for 4 min; 95 ◦C for 30 s, 55 ◦C for 1 min, 72 ◦C for 5 min, 16 cycles;
and 72 ◦C for 15 min. The amplified DNA was digested with DpnI and ligated into the pColdI vector
(Takara, Kyoto, Japan) digested with the same enzymes. The mutated nucleotides were verified by
DNA sequencing (Macrogen, Seoul, Korea). Transformation, expression, and purification of each
plasmid with a mutation were performed as described above.

4.9. Evaluation of Structures of Cn-isoAFP and Its Site-Directed Mutants

The overall structures of Cn-isoAFP and its mutants were predicted using circular dichroism (CD)
analysis. Far-UV CD was performed at 293 K on a Chirascan CD spectrometer (Applied Photophysics,
Leatherhead, UK) between 200 and 260 nM using a 1-cm-pathlength cell. Five scans were recorded;
baseline spectra were subtracted from averaged spectra, followed by smoothing of the data.

To analyze the electrostatic fields of Cn-isoAFP and its mutated proteins, the adaptive
Poisson-Boltzmann Solver (APBS) was adopted in the PyMOL program [42]. The electrostatic
field of the proteins was demonstrated by setting the positive and negative iso-surfaces to
−1 and 1 kT/e, respectively.

5. Conclusions

In summary, we identified the Chaetoceros neogracile isoAFP (Cn-isoAFP) gene and characterized
its biochemical properties. Cn-isoAFP was shown to be closely related to the AFPs of other
psychrophilic organisms, especially sea ice diatoms. Lowering the freezing temperature below the
melting temperature is likely the main function of Cn-isoAFP and is facilitated by generation of a
protein hydrophobic core and a flat β-helix surface as the ice-binding surface.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/15/10/318/s1,
Figure S1: C. neogracile AFP isoform nucleotide and amino acid sequence. Under line indicated the signal peptide
and star marks exhibit the possible glycosylation site. The red color letters show the N-myristoylation site,
Figure S2: Alignment of C. neogracile AFP and AFP isoform. The alignment was carried out by ClustalW method.

www.mdpi.com/1660-3397/15/10/318/s1
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The Black squares show a consensus sequences. The identity of these two sequences is 74.8%, Figure S3: Genomic
Southern blot analysis. The gDNA of C. neogracile digest with EcoRV, KpnI and XbaI. The Cn-isoAFP ORF gene was
used as probe. The DNA size markers are shown to left side. E; EcoRV, K; KpnI, X, XbaI, U; Uncut gDNA, Figure S4:
Multiple alignments of Cn-isoAFP with other AFP, IBP and IRIP of psychrophilic organisms. The multiple
alignments were produced by Clustal W, and black squares revealed consensus regions. AFP; antifreeze protein,
IBP; ice binding protein, IAFP; ice antifreeze protein, IRIP; ice recrystallization inhibition protein, Figure S5:
Phylogenetic tree of selected AFPs, IAFP, IRIP, or IBP amino acid sequences from psychrophilic organisms.
The phylogenetic tree produced by MEGA5 and Neighbor-joining method. Bootstrap values obtained with
5000 repetitions. IBP; ice-binding protein, IAFP; ice antifreeze protein, IRIP; ice recrystallization inhibition protein,
Figure S6: Ice crystal morphology of Cn-isoAFP and its mutant proteins under various protein concentration.
The scale bar indicated 100 µm, Figure S7: Circular dichroism spectroscopy of purified Cn-isoAFP and its mutants.
Each spectrum is the average of five scans. A correction was made by subtracting the spectra obtained in the
presence of buffer only, Table S1: The primer information used in this study. The underline showed a restriction
enzyme site, Table S2: Information of site-directed mutagenesis primers. The bold letters indicated the site-directed
mutation sequences.
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