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Abstract

Under continuous, glucose-limited conditions, budding yeast exhibit robust metabolic cycles 

associated with major oscillations of gene expression. How such fluctuations are linked to changes 

in chromatin status is not well understood. Here we examine the correlated genome-wide 

transcription and chromatin states across the yeast metabolic cycle at unprecedented temporal 

resolution, revealing a “just-in-time supply chain” by which components from specific cellular 

processes such as ribosome biogenesis become available in a highly coordinated manner. We 

identify distinct chromatin and splicing patterns associated with different gene categories and 

determine the relative timing of chromatin modifications to maximal transcription. There is 

unexpected variation in the chromatin modification and expression relationship, with histone 

acetylation peaks occurring with varying timing and “sharpness” relative to RNA expression both 

within and between cycle phases. Chromatin modifier occupancy reveals subtly distinct spatial 

and temporal patterns compared to the modifications themselves.

Chromatin plays fundamental roles in DNA-related processes, including transcription, 

replication, recombination and repair1. For example, most histone acetylations and certain 

methylations (eg. H3K4me3, H3K36me3) are correlated with active transcription while 

deacetylation and other methylations are correlated with repression2,3. The pervasiveness of 

biological dynamics suggests that temporal interrogation of chromatin function is warranted. 
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Compensatory and homeostatic effects almost certainly limit understanding of chromatin 

functions from steady-state studies4. The discovery of histone “readers” and “writers” 

further suggests the dynamics of chromatin5,6, as do studies of bulk acetylation upon 

depletion of acetyl-CoA using a temperature-sensitive mutant7. Examination of chromatin 

state and RNA expression level at single genes upon activation reveals many dynamic 

changes, such as the sequential appearance of H2BK123ub and H3K4me3 at GAL1 during 

galactose induction8. Genome-wide ChIP-seq studies reveal temporally dynamic chromatin 

patterns in circadian rhythm, heart development, yeast meiosis and other dynamic processes. 

These patterns have been correlated with transcription factor binding and RNA 

expression9-11 and support a generally dynamic role for chromatin in gene regulation. 

However, no prior studies have sufficient temporal resolution to dissect the specific roles of 

individual histone modifications during distinct steps in transcription in vivo, and the scope 

of genes regulated in these paradigms on a fast time scale has been limited.

Here we exploit a uniquely informative dynamical system, the yeast metabolic cycle 

(YMC), to examine regulation of >3,000 genes in Saccharomyces cerevisiae 12. Under 

continuous glucose-limited conditions, yeast exhibits a ~4-5 hour respiratory cycle with 

>3,000 transcripts and dozens of metabolites oscillating at the same pace13. Although nearly 

all cycling genes share the same period of oscillation, the YMC can be broadly divided into 

three phases based on the defining expression profile: OX (oxidative), RB (reductive-

building) and RC (reductive-charging). The overall logic of the YMC is well-defined: 

growth genes, such as ribosomal and amino acid biosynthesis genes are activated in OX; 

mitochondria and cell cycle genes are expressed in RB; and genes responding to starvation, 

stress and survival are elevated in RC. These divergent expression profiles imply that the 

dynamic interaction between chromatin modifications and transcription across distinct 

biological processes can be queried in a single system. Additionally, acetyl-CoA, a most 

dynamically oscillating metabolite, is a critical metabolic signal driving the YMC via 

histone (and perhaps other proteins) acetylation14. Studies on acetyl-CoA, S-

adenosylmethionine and other metabolites directly involved in histone modification indicate 

that chromatin could play key roles in coordinating metabolism and gene expression7,15. 

Given such prevalent orchestration of expression and metabolites in the YMC, investigating 

the dynamic patterns of chromatin state could be useful for gaining a systems-level 

understanding of the YMC and beyond, such as how cells respond to a wide variety of 

nutrient and other biological stimuli through chromatin modifications. Discoveries made in 

the YMC could also extend our understanding of other cycling systems, such as circadian 

clocks.

We set out to do time-course ChIP-seq of histone modifications and modifiers in the YMC. 

We reveal the genome-wide landscape of 7 histone modifications across the YMC and 

compare it to a high-resolution RNA-seq profile and dynamic localization of 3 critical 

chromatin modifiers, Gcn5p, Esa1p and Set1p. High sampling frequency allowed definition 

of clear-cut sub-phases of gene expression in each phase, such as the sequential activation of 

ribosome biogenesis (ribi) and ribosomal protein (RP) genes during the growth phase. We 

also defined 7 distinct chromatin patterns associated with genes of different functional 

classes, revealing the diversity of histone modification pathways during transcription. We 
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also observed that binding of certain chromatin modifiers does not always correlate with the 

appearance of the corresponding histone modifications, suggesting sophisticated temporal 

regulation. Inspired by the pervasiveness of the changes on the H3 and H4 N-termini during 

the YMC, we evaluated mutants in H3 and H4 modifiable lysines and showed that only 

certain multi-lysine mutants abolish the YMC, implying high system redundancy. Together, 

these data provide a comprehensive and high temporal resolution view of the dynamics of 

transcription and chromatin states. As such, they reveal how transcription and chromatin 

modifications are coordinated for different classes of genes during distinct phases of the life 

of a yeast cell.

Results

Gene expression patterns in the YMC

Microarray-based transcriptome analysis revealed three superclusters of genes defined by 

expression pattern in the YMC12. Because of the short duration of the OX growth phase 

(~0.5 h), the previous sampling strategy used, (evenly-spaced every ~25 min and spread 

over 3 cycles) may have missed important transient regulatory events. To improve temporal 

resolution, we collected 16 samples across one cycle for RNA-seq by increasing the density 

of time points taken in the OX phase (Fig. 1a). The same three superclusters of genes were 

observed in excellent agreement with the prior data (Supplementary Fig. 1a, Supplementary 

Table 1). We also identified an additional ~500 genes with a clear expression peak in the 

OX phase from the “non-periodic” genes defined previously (Supplementary Fig. 1b, 

Supplementary Table 1). Gene Ontology (GO) analysis indicated enrichment of ribosome 

biogenesis genes. Many showed hints of periodic expression in the microarray dataset but 

evaded detection by the periodicity algorithm due to less frequent sampling.

Thanks to high temporal resolution, we resolved several temporal subclusters associated 

with distinct biological functions within previously defined OX, RB and RC super-clusters 

(Fig. 1b-d). OX phase genes were subdivided into OX1, defining an earlier and more 

transient peak of expression compared to OX2 (Fig. 1b, Supplementary Fig. 1c). OX1 

contained genes associated with ribosome biogenesis (ribi) and rRNA processing. 

Ribosomal subunit (RP), amino acid metabolism (aa) and cytoplasmic translation genes 

were enriched in OX2, and peaked ~5 min later. The subtle differences between ribi and RP 

genes were confirmed by reverse transcription followed by quantitative real-time PCRs (RT-

qPCRs) (Supplementary Fig. 2f). This observation suggested precise temporal control of the 

energetically-demanding process of ribosome biogenesis. Ribosomal assembly factors and 

RNA processing factors were expressed just before ribosomal proteins and translational 

factors, providing a possible example of “just-in-time” orchestration of a critical process in 

the YMC leading to increased translational capacity. Three temporal subclusters of RB and 

RC genes were also observed (Fig. 1c, d, Supplementary Fig. 1c). Cell cycle and 

mitochondrial genes were readily distinguished although the two processes both occur under 

similar metabolic states. Collectively, the RNA-seq results not only recapitulated known 

gene expression patterns, but also displayed elaborate and fine-grained temporal control of 

coordinated sequential processes.
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Accumulation of pre-mRNAs in the OX phase

Besides the temporal compartmentalization of gene expression, RNA-seq analysis also 

revealed an unexpected pattern in intron sequence accumulation. As discussed previously, 

RP genes are activated in OX, peaking at t5. Surprisingly, we observed a dynamic intron 

signal in several intron-containing RP genes consistently peaking at t4 (Fig. 2a). Several 

other intron-containing OX genes showed similar patterns (Fig. 2a).

We evaluated RNA-seq reads across exon and intron regions separately for all intron-

containing genes. Intron, exon and full-length signals were displayed in a heat map, 

identifying 6 clusters (Fig. 2b and Supplementary Table 2). Among them, only intron1 

showed temporal enrichment of intron signals in the OX phase. 89 of the 103 genes in 

intron1 are RP genes. Both the intron signals and the ratio of intron/exon signals peaked at 

t4 (Fig. 2b and Supplementary Fig. 2a).

During RNA splicing, intron 5’ ends are cleaved and join to the branchpoint in the intron, 

forming a lariat. To distinguish intron accumulation as lariats or pre-mRNA, we examined 

exon exon and intron-exon junctional reads of the 89 RP genes. As expected, exon-exon 

junctional reads were highest at t5, consistent with the timing of exon signals (Fig. 2c). 

However, 5’ intron junctional reads, representing the pre-mRNA form, peaked at t4 (Fig. 

2d). Additionally, we examined individual RP genes and discovered that the majority of the 

RP genes exhibited the same pattern (Supplementary Fig. 2b-d). RT-qPCR of 4 RP genes 

showed that the peaks of introns were consistently ahead of the peaks of exon signals by a 

mean time of 7.3 min (p value = 0.0286) (Supplementary Fig. 2f).

Interestingly, t4 marks a strikingly reproducible inflection point in the O2 curve of unknown 

functional importance occuring near mid-OX (Fig. 1a). These data suggested exquisite 

temporal control of RP gene splicing – RP genes appear to be transcribed at t4, but the 

corresponding mature spliced RP gene transcripts do not emerge until 5-7 min later at t5. 

Moreover, prior studies demonstrated accumulation of RP pre-mRNAs under stress 

conditions in yeast16,17. This delay in RP gene mRNA splicing in the YMC suggests that 

yeast might suffer a certain level of amino acid or other stresses during early OX (i.e., t4). 

Alternatively, RP mRNAs may be spliced only on cue, following proper assembly of the 

ribosome biogenesis machinery. These may lead to a transient pause in O2 consumption and 

the transient accumulation of RP pre-mRNAs precisely at this time point. Casein Kinase 2 

complex (CK2) is required for RP gene pre-mRNA accumulation16; we observed peak 

expression of CK2 components at t4, t5 (Supplementary Fig. 2e).

Dynamics of histone modifications across YMC

Given the transcriptome dynamics and close dependence of transcription on chromatin 

modification, we next investigated chromatin states across the YMC. A similar set of 16 

samples across one cycle were collected for ChIP-seq (Fig. 3a) and 7 histone modifications 

were assessed, including H3K4me3, H3K36me3, H3K9ac, H3K14ac, H3K56ac, H4K5ac, 

H4K16ac, and H3 as control. Most of these are associated with active transcription3,18. 

H3K56ac also functions in DNA replication and repair19 and H4K16ac is involved in 

silencing maintenance and lifespan20-22. The two time series were computationally aligned 
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by performing ChIP-seq for H3K9ac on both set of samples used for RNA and ChIP-seq 

(Online Methods).

Figure 3c shows the spatial and temporal signals at the RMT2 locus, encoding an arginine 

methyltransferase for ribosomal protein Rpl1223. Its expression peaked in mid-OX phase 

(Fig. 3b). Mapping of ChIP-seq signals across RMT2 revealed a typical spatial pattern5 

where H3K9ac, H3K14ac, H4K5ac and H3K4me3 signals peaked in the 5’ end whereas the 

H3K36me3 signal was located in the coding region (Fig. 3c). Although all positively 

correlated with transcription, the kinetics and relative timing were quite distinct at this locus. 

The H3K9ac signal was most dynamic, with a transient peak at t4. H3K14ac and H4K5ac 

signals also increased in OX with temporally broader peaks than H3K9ac. Instead, the 

H3K4me3 signal was much more stable than these acetylation marks, with clear-cut peaks 

across all 16 time points. It started to increase only in late OX at a modest level and peaked 

in early RB, well after acetylation peaks. No other modifications were obviously dynamic at 

RMT2.

Expanding examination to broader regions revealed another unexpected difference between 

modifications. Most H3K9ac peaks were observed in OX, despite the presence of nearby RB 

and RC genes, consistent with previous study showing that H3K9ac appeared preferentially 

at OX growth genes (Supplementary Fig. 3). RC/stress response genes were less dependent 

on H3K9ac14. Instead, H3K14ac, H4K5ac and H3K4me3 peaks were found at most genes 

indiscriminately. Strikingly, H3K9ac peaks seemingly appeared and disappeared completely 

coupled with transcription of neighboring genes while H3K14ac, H4K5ac and H3K4me3 

only displayed an adjustment of amplitude. The data suggests that H3K9ac is a very active 

modification that regulates mainly OX growth genes, possibly by directly sensing metabolic 

stimuli. Others, like H3K14ac, H4K5ac and H3K4me3, have a more general role in 

transcription regulation. For more examples see supplementary Fig. 4.

Next, we sought to determine average genome-wide chromatin patterns for various gene 

classes. First, we averaged the spatial signals of these modifications relative to the 

transcription start site (TSS) across the genome (Supplementary Fig. 5a). Gene-specific 

signals were calculated based on the their localization. A heat map was used to display the 

genome-wide interactive temporal patterns (Supplementary Fig. 5b, Supplementary Table 

3). Generally, acetylation signals were more dynamic and less noisy than methylation 

signals, consistent with acetylation shifts reflecting the immediate chromatin response under 

continuous glucose-limitation. Fourteen clusters were defined, suggesting complex dynamic 

relationships among these modifications across the YMC.

Intriguingly, H3K56ac exhibited very dynamic but noticeably different temporal patterns 

compared to other histone modifications. By comparing the results to previous work24, we 

clearly observed cell cycle-related dynamics of H3K56ac (Fig. 4). H3K56ac was strongly 

elevated in early S phase; similarly, YMC signals peaked at t8, the middle of RB phase, 

corresponding to S-phase entry. Correspondingly, DNA replication genes (RNA_RB1) were 

also expressed highest at t8 (Fig. 1c). The expression level of H3K56 acetyltransferase 

RTT109, peaked at t8 whereas RNA levels of H3K56 deacetylase HST3, began to increase 
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after t8 (Supplementary Fig. 1d). These data corroborated known involvement of H3K56ac 

in DNA replication in RB and supported the relationship between cell cycle and YMC.

Temporal association between transcription and chromatin

An important function for histone modifications is transcriptional regulation2. With this in 

mind, we examined the genome-wide temporal relationships between each chromatin 

modification and transcription. Given the correlation analysis (Online methods) and 

previous studies3, we focused on five modifications most clearly linked to transcription (Fig. 

5). We discovered 7 clusters of cycling genes (Fig. 5a, Supplementary Table 4). Are there 

different histone modification pathways associated with transcription of different gene 

clusters? To tackle this, we estimated relative timing of each modification peak relative to its 

corresponding RNA peak and examined GO enrichment on all clusters.

In clusters RNA_H1 and 2, the H3K9ac peak notably appeared just minutes before gene 

expression peak (9, 6.8 minutes in cluster 1, 2) whereas the H3K4me3 and H3K36me3 

peaked 10-30 minutes after the peak of RNA (Fig. 5b,c). Surprisingly, H3K14ac and 

H4K5ac signals appeared concomitantly with peak gene expression in RNA_H 2 (6.2 

minutes of H3K14ac and 10.8 minutes of H4K5ac), but in RNA_H 1 they were advanced by 

one hour relative to RNA (48 minutes for H3K14ac and 75 minutes for H4K5ac). Aa genes 

were enriched in RNA_H 1, whereas RNA_H 2 contained mostly ribi and RP genes. 

Combined with the RNA-seq analysis (Fig. 1), we could define three distinct chromatin-

transcriptional “programs” among OX growth genes. Ribosome biogenesis (ribi) and 

ribosomal protein (RP) genes shared the same chromatin pattern, distinct from that of aa 

genes. However, peak mRNA levels of RP genes and amino acid genes appeared later and 

lasted longer than those of the ribi genes. As discussed earlier, regulated splicing of RP 

genes might cause a delay of the peak level of mature RP mRNA (Fig. 2).

Among the RB clusters, RNA_H 3 contained primarily cell cycle genes and exhibited 

similar chromatin patterns to OX clusters relative to RNA dynamics (Fig. 5a). In contrast, 

the genes encoding mitochondrial proteins (RNA_H 4) behaved quite differently. Although 

they had a similar peak expression time, timing of the modification signals was out of phase. 

H3K14ac and H4K5ac increased in late RC and H3K9ac increased in late RC through OX. 

A motif sequence recognized by RNA-binding protein Puf3 was found in the 3’ untranslated 

regions (3’ UTR) of nearly all mitochondrial ribosomal genes12. This discrepancy between 

RNA level and chromatin states was consistent with the hypothesis that this gene class may 

be subject to post-transcriptional rather than transcriptional regulation.

The quantification of the relative timing of chromatin signals summarized different histone 

modification programs during transcription in yeast. In general, acetylation marks appear 

first, followed by RNA and then methylation marks, consistent with an overall initiation role 

for acetylation and an elongation role for methylation. Intriguingly, the fine-grained timing 

of different histone acetylation modifications could be a key factor to distinguish different 

transcription initiation mechanisms (Fig. 5d). In RNA_H 1, H4K5ac appeared at first, 

followed by H3K9ac and then RNA. This general sequence suggests that H4K5ac functions 

at an early stage of transcription initiation in these sets of genes, perhaps to “pre-set” their 

activation, while H3K9ac, which peaks much more sharply, may play a critical role in 

Kuang et al. Page 6

Nat Struct Mol Biol. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



triggering phase transitions, and may regulate a later initiation step or a transition to 

elongation. In RNA_H 2, H4K5ac and H3K9ac peaked together immediately before RNA 

peak, suggesting dispensability of a presetting stage during transcription of these genes.

The distinct patterns between chromatin and gene expression raised the question whether 

specific transcription factors (TFs) are associated with these clusters. TF motif analysis 

(Supplementary Table 4) revealed that binding sites for TFs involved in amino acid 

metabolism, like Gcn4p, Bas1p, Cbf1p, Leu3p, were enriched in RNA_H 1, whereas in 

RNA_H 2 we observed enrichment primarily of TF motifs related to RP gene expression, 

such as Stb3p, Sfp1p, Rap1p, Pbf1p, Pbf2p, Dot6p, Tod6p. RNA_H 3 contained several 

common cell-cycle related TF motifs including those for Xbp1p, Mbp1p, Fkh1/2p, Swi4p. 

Many TF motifs associated with stress response were enriched in RNA_H 6, a typical RC 

cluster, such as Gis1p, Msn2/4p, Adr1p, Crz1p. Collectively, these results revealed a 

complex, dynamic and interactive regulatory network of chromatin states, TF binding sites, 

and post-transcriptional regulation.

Landscape of chromatin-modifying enzyme occupancy in the YMC

To further understand the dynamic patterns of histone modifications, we analyzed genome-

wide occupancy of several chromatin-modifying enzymes in the YMC, specifically Gcn5p, 

Esa1p and Set1p5. Gcn5p is the major histone H3 tail acetyltransferase and Esa1p acetylates 

H4 tails, although other HATs also acetylate H3 and H4. Set1p is the catalytic subunit of 

COMPASS complex H3K4 methyltransferase.

To simultaneously evaluate all three enzymes, we constructed a doubly-tagged GCN5-

FLAG, SET1-3HA strain employing an anti-native Esa1p antibody. This allowed ChIP-seq 

of Gcn5p, Esa1p and Set1p in one set of samples (Fig. 6a). First, we examined 

spatiotemporal patterns of these enzymes by displaying ChIP-seq signals at sample regions; 

temporal patterns were quite distinct (Fig. 6b). All three enzymes were recruited to RP gene 

RPS27A (YKL156W) in OX but with subtly distinct kinetics. Gcn5p occupancy was detected 

only at t5, corresponding to t4 in the 16 time point ChIP-seq of histone modifications. 

However, Esa1p and Set1p signals preceded this peak, spanning mostly t2, t3, although 

Set1p occupancy lasted much longer, extending through early RB. Only Gcn5p and Set1p 

signals were detected at GPM1(RC) and SDH1(RB) loci, in a manner correlated with RNA 

levels (Fig. 6b). Interestingly, the signal of Set1p appeared 1-2 time points (5~20 minutes) 

before Gcn5p signal at GPM1, similar to RPS27A.

Given the complex spatiotemporal relationships between the three enzymes, we sought to 

assess the interactive patterns and their relationship to corresponding histone modifications 

and gene expression from a genome-wide perspective. We found 2369 Gcn5p peaks, 2225 

Esa1 peaks and 2279 Set1p peaks, including 1874, 1810 and 1629 with neighboring 

annotated genes (Supplementary Fig. 6a). Among these, ~1750 genes were bound by at least 

two modifiers and 1035 genes were bound by all three modifiers, suggesting that these 

enzymes were not necessary for expression of every cycling gene. Spatial analysis showed 

that Gcn5p and Esa1p were localized 200-300 bp upstream of the TSS while Set1p was 

localized within the transcribed regions (Fig. 6c,d,e). This supported the well-accepted 

hypothesis that Gcn5p and Esa1p function in transcriptional initiation whereas Set1p is 
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associated with elongation25. Intriguingly, the locations of the modifiers did not overlap 

completely with corresponding histone modifications. Although Gcn5p and Esa1p located 

upstream of the TSS, H3K9ac and H4K5ac were shifted downstream. This suggested that 

Gcn5p and Esa1p can “reach across” the TSS to act on the downstream nucleosome. The 

Set1p signal was slightly shifted downstream of the H3K4me3 peak, presumably because 

Set1p also produces mono- and di-methylation on H3K4 during transcriptional elongation.

Next, we assessed temporal patterns of chromatin-modifiers, focusing on annotated genes 

associated with all three modifiers. We defined 4 superclusters of temporal patterns by K-

means clustering (Supplementary Fig. 6b, Supplementary Table 5). The results suggested 

that all three modifiers are functional in all three phases and recruitment of modifiers is 

roughly in phase with corresponding gene expression.

However, chromatin modifiers, chromatin states and gene expression were not simply 

correlated. Here we focused on cell growth genes, including ribi, RP and aa genes26. Ribi 

and RP genes individually exhibited one pattern while aa genes showed three distinct 

patterns (Fig. 7a, Supplementary Table 5). Since RP genes showed the cleanest signal, we 

examined relative timing within this group (Fig. 7b). As described above, H3K9ac and 

H4K5ac appeared with the RNA peak whereas H3K4me3 exhibited a delay. Surprisingly, 

Set1p was recruited ~10 minutes prior to the binding of Gcn5p, and remained bound until 

dissociation of Gcn5p. This pattern was consistent at RPS27A, GPM1 (described above) and 

many other loci. The relative timing of histone modifications and modifiers at ribosome and 

aa genes were further confirmed by ChIP-qPCR in similar YMC experiment using 

Gcn5-3FLAG, 6HA-Set1 (supplementary Fig. 6d,e). The temporal discrepancy between 

modifiers and modifications suggested that Set1p is recruited prior to transcription in a state 

that is non-functional, at least for tri-methylation, until binding of Gcn5p occurs (Fig. 7c), 

whereas Esa1p is also recruited early but is immediately active.

Histone mutant analysis

Given the complex patterns of histone modifications and modifiers in YMC, we investigated 

the criticality of individual lysine residue modifications. Gcn5p mediates entry into the 

growth phase, as a mutant lacking it does not exhibit metabolic cycles14. To broaden our 

understanding of histone modifications in the YMC, we examined the dO2 oscillation 

phenotype of all histone H3 and H4 lysine mutants corresponding to residues at which 

acetylation or methylation have been reported. All single lysine to alanine or arginine 

mutants, including H3K4, H3K9, H3K14, H3K18, H3K23, H3K27, H3K36, H3K56, 

H3K79, H4K5, H4K8, H4K12, H4K16, exhibited normal cycles, suggesting that no single 

lysine modification on H3 or H4 is critical for the YMC (data not shown). Next, we 

combined lysine to arginine mutations in H3 or H4 tails, including H3K(9,14)R, 

H3K(9,14,18)R, H3K(9,14,18,23)R, H3K(9,14,18,23,27)R, H4K(5,8)R, H4K(5,8,12)R. 

Notably, we observed decreased growth on YPD with increasing numbers of lysine to 

arginine mutations, consistent with published reports (Fig. 8a)27. As the number of K to R 

mutations increased, the amplitude of the dO2 oscillation decreased (Fig. 8b-i). Strikingly, 

H3K(9,14,18,23,27)R, and H4K(5,8,12)R mutants abolished dO2 oscillation. These results 

supported the hypothesis that PTMs such as acetylation on the H3 and H4 tails are required 
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for normal cycling and support a role for acetyl-CoA in establishing the YMC14, although 

there is no essential role in the YMC for any individual lysine residue.

Discussion

In this study, we described the dynamic landscape of transcription and chromatin 

modifications across distinct metabolic states in yeast. We uncovered distinct combinatorial 

patterns associated with different functional groups of genes, emphasizing high-resolution 

timing of expression of distinct groups of genes and relative timing of histone modifications 

and modifiers within each group.

A “Just in time” supply chain?

Cellular processes are well organized spatiotemporally to maximize fitness especially in the 

face of limited nutrients. One interesting example is the sequential activation of promoters in 

bacterial aa biosynthesis pathways28. YMC transcriptional profiling revealed several 

examples of staged biosynthesis consistent with a “just in time” program. Ribi transcripts 

appeared just before those encoding RP and aa (OX phase) genes (Fig. 1b), supporting a 

“just in time supply chain” that maximizes efficiency of ribosome biogenesis and 

translation. The short pulse of ribi genes may also play a critical role in helping them 

achieve an efficient ramp-down of protein synthesis at the end of OX. The observation of 

transient RP gene pre-mRNA accumulation suggested the possibility of elaborate control of 

splicing in regulation of ribosome biogenesis. Alternatively, this staging may reflect the fact 

that ribi genes can be much larger and therefore take longer to translate than RP proteins, 

which are universally short. The translation of the longest ribi gene might require 3-4 

minutes more than the longest RP gene, consistent with the relative timing of ribi and RP 

expression. It is likely that the sequential activation of ribi and RP leads to concurrent 

synthesis of all ribosome biogenesis proteins. Likewise, cell cycle-related genes and 

mitochondrial genes, the two major groups that had an elevated RNA level in the RB phase, 

also exhibited subtle timing disparities (Fig. 1c), perhaps indicating two distinct YMC 

subpopulations – one that will enter the CDC, and one which will not29. Collectively, the 

evidence suggested a complex and precise orchestration of macromolecular biosynthesis 

processes in yeast during the YMC from a transcriptional perspective. It will be interesting 

to examine whether protein factors are also organized temporally.

Different histone modification programs at distinct genes

We defined seven different combinatorial clusters between histone modifications and gene 

expression, revealing several different regimes of chromatin states in transcription (Fig. 5a). 

Interestingly, different histone acetylation marks behaved distinctly in association with 

different groups of genes. H3K9ac, H3K14ac and H4K5ac all appeared coincident with the 

peak of gene expression of ribosomal genes. However, H3K14ac and H4K5ac were shifted 

earlier at aa (OX phase_aa2) genes (1 hour before the RNA peak). We hypothesized that 

H3K14ac and H4K5ac function in “pre-setting” the promoters, perhaps by chromatin 

remodeling. However, RP genes did not show evidence of this pre-activation phase from the 

perspective of chromatin states, perhaps because they are permanently pre-activated. RP 
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genes could be immediate sensors of critical metabolic and environmental stimuli, e.g. 

intracellular acetyl-CoA levels14. Conversely, aa2 genes appear to have a preparatory phase.

Dynamics of histone modifiers increase the complexity of chromatin states. In many cases, 

Set1p was recruited earlier than Gcn5p, in seeming contradiction to the order of appearance 

of H3K4me3 and H3K9ac (Fig. 7c). We hypothesize that Set1p may catalyze mono- or 

dimethylation in promoter regions to preset TSSs for activation. It is known that H3K4me1 

accumulates at the MET16 promoter prior to induction in yeast30. Additionally, 

H3K4me1/me2 precede transcription in cardiac development and T cell differentiation, 

suggesting that wiring of at least some chromatin-based programs are phylogenetically 

conserved31,32.

Roles of histone modifications in the YMC

Various histone modifications may function “solo” or in a combinatorial or cumulative 

manner33,34. These modifications either change the charge status of histone tails or provide 

platforms to recruit transcriptional regulatory complexes. The very different patterns 

between H3K9ac and H4K5ac suggested distinct functions during transcription. Histone 

mutant analysis revealed functional redundancy within each histone tail. The H3-5KR 

quintuple and H4-3KR triple mutant each totally abolished the oscillation, partially 

corroborating the evidence that the gcn5Δ strain does not support oscillation14. Surprisingly 

however, H3-5KA and H4-3KA mutants grew better than corresponding KR mutants and 

still exhibited O2 oscillation phenotypes (Supplementary Fig. 7), suggesting that charge 

status of H3 and H4 may play a fundamental role in the YMC21. Maintaining the positive 

charges on these histone tails may “lock” growth genes into a repressed state, resulting in 

inability to undergo bursts of growth characteristic of the YMC and cells in general.

Similar chromatin dynamics between YMC and circadian cycle

Remarkably, circadian rhythm in mammals and this yeast ultradian rhythm show several 

noteworthy similarities. Through systematic analysis of the transcriptome and chromatin 

state as a function of circadian clock in mouse liver, Koike et al. revealed similar temporal 

patterns of histone modifications9, although the genes under regulation are completely 

distinct and the time scales of the cycles are very different, suggesting phylogenetically 

conserved roles of histone modifications during transcription. More intriguingly, beyond the 

oscillatory phenomenon of transcriptome, metabolism and chromatin states in these two 

systems, the metabolism-epigenome-transcriptome loop is consistent in both systems, 

suggesting that the circular interactions among the three players actually sustain oscillations. 

Our findings on dynamics of chromatin modifications and temporal associations between 

epigenome and transcriptome suggest an active metabolism-epigenome-transcriptome loop 

in YMC. The observation that histone acetylation mutants abolished oscillatory respiration 

in yeast directly supports the indispensability of histone modification in sustaining metabolic 

cycles and by extension perhaps the circadian clock.

We have revealed a network of gene expression, chromatin state, and chromatin modifiers 

across the YMC as highly synchronized yeast cells transition between metabolic states akin 

to growth, division, and quiescence, at very high temporal resolution. Our study not only 
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demonstrates how chromatin states are related to and directing the timing of gene 

expression, but also provides examples of how these processes are coordinated in a dynamic 

fashion to achieve optimal growth, metabolic efficiency, and presumably fitness. This yeast 

study may help illuminate the exquisite temporal control of various dynamic biological 

processes.

Online Methods

Plasmids and histone mutagenesis

Plasmids carrying histone mutations were obtained from the histone mutant library 

described previously35. pJD233 and pJD234, each containing a hygMX selectable marker 

cassette, were used for making HHT1 and HHF1 mutants respectively. pZK8 was generated 

from pJD154 by replacing the URA3 cassette with a natMX cassette for mutagenesis on 

HHT2 and HHF2. Plasmids carrying multiple lysine mutations were generated by site-

directed mutagenic fusion PCR and subcloning in the indicated backbones, pJD233, pJD234 

and pZK8. Briefly, primers carrying the desired mutations were used to generate two PCR 

fragments containing the overlapping mutation regions. Fusion PCR was used to generate a 

single fragment and the product was digested and ligated to the indicated backbones, 

pJD233, pJD234 and pZK8 and verified by DNA sequencing.

Metabolic cycles

Metabolic cycle experiments were performed as previously described12 except for the 

timing of sampling for RNASeq and ChIP-Seq; samples were intentionally taken unevenly 

to more deeply sample the very rapidly changing OX phase, and less densely out side the 

OX phase. Fermentors were from New Brunswick Scientific (BioFlo 110 or BioFlo 3000). 

10 mL overnight saturated culture was inoculated to start each YMC run. Depending on the 

model, YMC runs were operated at an agitation speed of 400 rpm (Bioflo 110) or 475 rpm 

(Bioflo 3000), an aeration rate of 1 L/min, a temperature of 30°C, and a pH of 3.4 in 1 L 

YMC medium.

Once the batch culture was saturated, at least 4 hour of starvation was performed. After 

starvation, fresh medium was added continuously at a dilution rate of ~0.09~0.1 h−1.

RT-qPCR

2 OD BY5764 cells from the cycle were collected and flash frozen. RNA was extracted 

using the Qiagen RNeasy Mini kit (QIAGEN, 74104, Valencia, CA) with the standard 

protocol. First strand cDNA was synthesized using SuperScript III First-Strand Synthesis 

System for RT-PCR (Invitrogen, 18080-051, Grand Island, NY). Oligo(dT)20 primer was 

used for reverse-transcription. Fast SYBR Green Master Mix (Applied Biosystems, 

4385612, Foster City, CA) was used for real-time PCR and experiments were done on the 

platform of StepOnePlus Real-Time PCR System (Applied Biosystems, 4385612, Foster 

City, CA). PCR primers are listed in supplementary Table 6.
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RNA-seq

RNA was extracted across 16 time points of one cycle at the indicated time points and RNA-

seq was performed. With this strategy, the shortest interval between two OX phase time 

points is < 5 minutes, and across the entire cycle the samples were taken at intentionally 

uneven intervals. 1 mL BY5765 cells from the cycle (about 15 OD/mL) were collected and 

flash frozen. The pellet was resuspended in 200 μl RNA stat-60 (Tel-Test, Friendswood, 

TX) and disrupted in a Mini-Beadbeater-16 (Biospec, Bartlesville, OK) broken up three 

times with 100 μl glass beads in 1.5 ml conical screw cap tube (USA SCIENTIFIC, 

1415-8700, Ocala, FL). Supernatant was collected into a new microcentrifuge tube and 800 

μl RNA stat-60 was added to repeat bead beating one more time. The supernatants were 

combined and sit at room temperature for 10 min. 200 μl chloroform was then added and the 

tube was vortexed for 15 sec and left at room temperature for 10 min. The tubes were 

centrifuged at 4°C, 16000 rcf for 15 min and the supernatant was transferred to a new tube. 

500 μl isopropanol was added and mixed by inverting the tube several times. The mixture 

was incubated at room temperature for 10 min and centrifuged at 4°C, 16000 rcf for 15 min. 

The pellet was washed with 70% ethanol twice, air dried and resuspended in 100 μl H2O. 

Library construction and sequencing were performed using the Hiseq platform supervised by 

the UTSW Microarray Core Facility. Briefly, Samples were run on the Agilent 2100 

Bioanalyzer to ensure that high quality RNA was used. 4 μg total RNA was then prepared 

with the TruSeq™ RNA Sample Prep Kit (Illumina, San Diego, CA). mRNA was purified 

and fragmented before cDNA synthesis. cDNA was then end repaired and A-tailed. After 

adapter ligation, samples were PCR amplified and purified with AmpureXP beads 

(Agencourt, A63880, Brea, CA), then validated again on the Agilent 2100 Bioanalyzer. 

Before being run on the Illumina Hiseq 2000 samples were quantified by qPCR. Primers 

were within the adaptor sequence, which are as below:

P1: 5’ AAT GAT ACG GCG ACC ACC GA 3’

P2: 5’ CAA GCA GAA GAC GGC ATA CGA 3’.

Differential gene expression analysis was performed with TopHat and Cuffdiff following a 

standard protocol36. Briefly, the TopHat parameters used was: --bowtie1 -i 40 --genome-

read-mismatches 4 --no-coverage-search -G Saccharomyces_cerevisiae_Ensembl_EF2/

Saccharomyces_cerevisiae/Ensembl/EF2/Annotation/ Archives/

archive-2012-03-09-08-22-49/Genes/genes.gtf Saccharomyces_cerevisiae_Ensembl_EF2/

Saccharomyces_cerevisiae/Ensembl/EF2/Sequence/Bo wtieIndex/genome. K-means 

clustering and heatmaps were produced using an R. Previously defined three super-clusters 

of genes were obtained from a previous study12. A subset of genes from genes previously 

identified as non-cycling show elevated expression in the OX phase by hierarchical 

clustering using the dChiP package37. Previously defined and newly-identified OX phase 

genes were combined. FPKM values were imported into R and the list was intersected with 

the three superclusters. The values of each superclusters were then subject to K-means 

clustering using the function “kmeans”. Genes inside each subcluster were further ordered 

based on the timing of peak expression. 10 clusters were calculated by K-means clustering 

and ordered by the timing of peak expression from visualization. Genes inside clusters were 

further ordered by weighted mean time of peak of expression. Weights were calculated as 
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the percentage of RNA-seq reads at each time point over total reads across 16 time points. 

The weighted mean for each gene was calculated as the sum of weight x time at each time 

point. Intron-containing genes were defined from the SGD annotation file of 20100102 

corresponding to the mapping index. (http://downloads.yeastgenome.org/curation/

chromosomal_feature/ ). To display RNA signals in the CisGenome Browser38, RNAseq 

data was first mapped to Saccer2 by bowtie (-5 3 -3 8 –best saccer2). Results were imported 

into CisGenome browser package and were displayed in 20 bp windows in the browser. 

Signals at each window were first normalized by total number of mappable reads across 16 

time points and then displayed as the percentage of the maximum value of the 16 time 

points. Exon-exon junction reads were directly called from the files of junctions.bed by 

TopHat. Intron junction reads were identified using mappable reads of 39 bp (50 bp-3 bp-8 

bp) from bowtie. Each end of a junction read should extend at least 4 bp away from the 

junction site. Junction reads spanning the 5’ and 3’ ends of 89 RP gene introns at 16 time 

points were counted and hierarchical clustering and heatmaps were generated in R using the 

heatmap.2 function with default parameters. Boxplots were drawn using the boxplot 

function at every time point. The sums of the 16 time point junction reads were calculated 

and displayed using the barplot function.

ChIP-seq

Chromatin immunoprecipitation was performed as described previously14. ~5 OD ZKY329 

cycling cells per time point were collected for ChIP of single histone modification and ~50 

OD ZKY428 cycling cells (GCN5-FLAG::natMX, SET1-3HA::kanMX6) per time point were 

collected for ChIP of each chromatin modifying enzyme. Antibodies used are list as 

following: H3K9ac (Millipore 06-942), H3K14ac (Millipore 07-353), H3K56ac (07-677), 

H4K5ac (Millipore 07-327), H4K16ac (Millipore 07-329), H3 (Millipore 05-928), 

H3K4me3 (Millipore CS200580), H3K36me3 (Abcam ab9050), Esa1 (Abcam ab4466), 

FLAG M2 (Sigma, F1804), HA 12CA5 (Roche, 11583816001). Validation is provided on 

the manufacturer's website. 3 μg primary antibody was used per ChIP experiment. Briefly, 

cells were first fixed in 1% formaldehyde at 25°C for 15 min and quenched in 125mM 

glycine at 25°C for 10 min. Cells were pelleted and washed twice with buffer containing 100 

mM NaCl, 10 mM Tris-Cl pH 8.0, 1 mM EDTA, 1 mM PMSF, 1 mM benzamidine•HCl 

before freezing. The frozen pellet was resuspended in 0.45 ml ChIP lysis buffer (50 mM 

HEPES•KOH pH 7.5, 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% deoxycholate 

(DOC), 0.1% SDS, 1 mM PMSF, 10 μM leupeptin, 5 μM pepstatin A, Roche protease 

inhibitor cocktail) and lysed by bead beating. Lysate from 50 OD cells were split into two 

tubes each containing 280 μl lysate and sonicated for 16 cycles (30 sec on, 1 min off, high 

output) using a Bioruptor (Diagenode, Denville, NJ or Tosho Denki, Japan). The supernatant 

of the sonicated lysate was pre-cleared. 50 μl lysate was saved as input. For ChIP with 

histone antibodies, 50 μl whole cell extract (WCE) was diluted 1:10 and used for each ChIP. 

For ChIP of histone modifier proteins, 500 μl WCE and 3 μg antibody was used. After 

incubation overnight, 50 μl protein G magnetic beads (Invitrogen, Grand Island, NY, 

10003D) or protein A Sepharose beads (GE Healthcare Life Sciences, Piscataway, NJ, 

17-5280-01) resuspended in ChIP lysis buffer was added and incubated for 1.5 h at 4 °C. 

Beads were washed twice with ChIP lysis buffer, twice with DOC buffer (10 mM Tris•Cl 

pH 8.0, 0.25 M LiCl, 0.5% deoxycholate, 0.5% NP-40, 1 mM EDTA) and twice with TE. 
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125 μl of TES buffer (TE pH8.0 with 1% SDS, 150 mM NaCl, and 5 mM dithiothreitol) was 

added to resuspend the beads. Supernatant was collected after incubation at 65°C for 10 min. 

A second round of elution was performed and the eluates were combined. Reverse 

crosslinking was performed by incubation for 6 h at 65°C. An equal volume of TE 

containing 1.25 mg/ml proteinase K and 0.4 mg/ml glycogen was added to the samples after 

reverse crosslinking and samples were incubated for 2 h at 37°C. Samples were extracted 

twice with an equal volume of phenol and once with 25:1 chloroform:isoamyl alcohol. DNA 

was precipitated in 0.1 volume 3.0 M sodium acetate (PH 5.3) and 2.5 volume of 100% ice-

cold ethanol at -20°C overnight. Pellets were washed once with cold 70% ethanol and 

resuspended in 20 μl TE. Library construction and sequencing were performed following the 

Illumina protocol. Briefly, DNA was end repaired and A-tailed. Barcoded adaptors were 

ligated and DNA was run in 2% agarose gel. DNA fragments from 150 bp to 300 bp long 

were excised from gel and used for PCR. PCR products were gel-extracted again and 

quantified on an Agilent Bioanalyzer. Sequencing was performed on an Illumina GXII or 

Hiseq 2000 or Solid. Raw reads were mapped to the reference genome (sacCer2) by bowtie 

and peaks were visualized by the CisGenome Browser as described above.

Distribution of ChIP-seq signals relative to TSSs

Information on TSS locations was adopted from a previous study39. TSSs of genes of 

interest were aligned at zero of X-axis and ChIP-seq reads were counted for each 10 bp 

window from -1000 bp to 1000 bp relative to the closest TSS. Number of reads in each 

window were summed and plotted in R using the plot function.

ChIP-seq signals at genes

ChIP signals of histone modifications at genes were evaluated by counting reads 

overlapping defined regions of every gene using the CisGenome package. Briefly, a −100 bp 

to +400 bp window spanning TSS was used for H3K9ac, H3K14ac, H3K56ac, H4K5ac and 

H3K4me3. The H3K36me3, H4K16ac and H4 signals were calculated from TSS to TES. 

Peaks of chromatin modifiers were called by MACS peak-calling package with p 

value=10−02 40 and annotated by the nearest TSS. ChIP values of chromatin modifiers were 

calculated similarly by counting reads −250 bp to +250 bp windows spanning the center of 

peaks or −100 bp to +400 bp window spanning TSS. Ribosomal assembly (ribi) factors were 

described by Jorgensen et al.,26. The ribosomal protein (RP gene) list is from the website, 

http://ribosome.med.miyazaki-u.ac.jp/rpg.cgi?mode=orglist&org=Saccharomyces

%20cerevisiae. Amino acid metabolism genes are from the GO term “cellular amino acid 

metabolic process” of the SGD annotation file. ChIP values were normalized according to 

the total number of aligned reads. Time point 13 of H3K14ac and H4K5ac, time point 1 of 

H4K16ac and time point 5/7 of H3K36me3 show certain level of fluctuation. We tried to 

delete these samples or average these samples with neighboring samples and observed no 

significant differences in the downstream analysis. Based on the continuity of time course 

experiments, we smoothed these samples by averaging the signals with neighboring samples 

for visualization. K-means clustering and heatmaps were performed in R as described above. 

Hierarchical clustering was performed by dChiP package37.
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Data Pre-processing

For each sample, we normalized the observed value by the total number of aligned reads. 

For each modification, we then standardized the 16 observed values (log2 of read counts 

plus 1) within each gene. We were primarily interested in the trend of change over time, 

rather than the relative magnitude of expression among genes. So we standardized the 16 

values within each gene, i.e. we subtract the mean from the 16 values and then divide by 

their standard deviation. Then we pooled the data for all RNA-seq and ChIP-seq datasets 

together to get a data matrix, in which each row is a gene and each column is a time point.

Notations

For a given marker, we denote the matrixes as Y = [Ygj] as processed gene expression 

levels, where g = 1,...,N is the gene index, and j = 1,...,16 is the time point index. We denote 

tj as observation times.

Correlation between chromatin modifications and gene expression

A gene-specific correlation coefficient was calculated between 16-time-point gene 

expression values and each histone modification value. A 2-time-point shift was allowed to 

achieve the maximum correlation value. Basically, we calculated gene-specific correlation 

coefficient with time point shift of -2, -1, 0, 1, 2 and took the maximum correlation value as 

the output correlation coefficient. We note that some modifications are shifted forward or 

backward relative to RNA level and this could help get the accurate correlation value. A 

density distribution of correlation values was plotted across the whole genome or across 

subsets of interest (OX, RB, RC). We observed a positive correlation in the distribution of 

H3K4me3, H3K36me3, H3K9ac, H3K14ac and H4K5ac with RNA level (data not shown). 

Interestingly, the OX phase genes always showed the best correlation with expression, while 

RB phase genes showed a relatively poor correlation. We also noticed that H4K16ac and 

total H3 exhibit a slight negative correlation and H3K56ac shows no obvious correlation 

(data not shown).

Curve fitting

For each gene, we observed gene expression levels at 16 time points. To convert these 

discrete data into a continuous profile or function, we fit every set of 16 points into a smooth 

curve using a penalized B-spline41. We denote function fg(t) as fitted continuous profile 

from data [Yg1, ..., Yg16] and [t1, ..., t16]. fg(t) is a linear combination of B-spline basis 

functions (a definition of B-spline basis can be found in Eilers and Marx, 1996). Estimation 

of the coefficient of each basis function is obtained by a penalized optimization problem.

Time alignment (Batch effect removal)

We assume the dynamics of gene expression levels changes according to a biologically 

specified clock or time system. Such time systems can be affected by unknown or 

uncontrolled fluctuations in experimental conditions such as minute variations in medium 

composition, temperature, etc. When data are generated in multiple batches, the results can 

be biased by the different time systems.
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RNA-seq and ChIP-seq of histone modifications were generated in two batches. To 

minimize batch to batch variations, the histone modification H3K9ac, which is the most 

periodic, was independently measured in both batches. We used this information to align or 

“time warp” the two batches into a single me time system. We denote  and  as the 

fitted gene profiles for two different batches. Theoretically,  and  should be the 

same under the identical time system. Thus we seek a mathematical transformation s:[t1, ..., 

t16] -> [s(t1), ..., s(t16)], such that  and  are most alike for all genes. 

Mathematically, we need to minimize

We obtain the final result [s(t1), ..., s(t16)] using a simulated annealing algorithm.

As a result, the observation times of the raw RNA-seq data are replaced by [s(t1), ..., s(t16)], 

and we assume that the batch effect is minimized as much as possible given the current data.

Clustering genes

We cluster the genes using the processed gene expression levels. The K-means algorithm is 

used for its speed and robustness of dealing with large data. The K-means algorithm is 

affected by the choice of initial cluster centers. To minimize the dependency on initial 

cluster number, we repeated the K-means algorithm 50 times using different randomly 

chosen initial cluster centers, and kept the result with the smallest total within-cluster sum of 

squares.

To choose the number of clusters, we tried different options range from 1 to 30. Finally we 

selected 7 clusters since it had the best Bayesian Information Criterion (BIC) value: BIC is 

one of the most popular criteria for model selection42. Similarly we selected 14 clusters of 8 

histone modifications in supplementary Figure 5.

Finding the profile peak location of each cluster

For each cluster of genes we want to know when the expression profile reaches its peak 

value. For each gene, we can find the peak (highest point) of profile from the fitted smooth 

curve. The cluster peak location is defined as the average of peak locations for all genes in a 

cluster. Similarly we can calculate the standard deviation of the cluster peak location.

GO analysis

Gene ontology analysis was performed by the hypergeometric test using the SGD annotation 

file (http://www.yeastgenome.org/download-data/curation#.UQFqKhyLFXY). P values 

were adjusted by the False Discovery Rate (FDR).
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Analysis of H3K56ac

The analysis of H3K56ac in the cell cycle was performed following procedure similar to one 

described previously24. We adopted the same regions of nucleosomes in chromosome III 

and calculated H3K56ac signals at these nucleosomes as described above. We sorted 

nucleosomal H3K56ac signals by genomic location and fit our data with those of the 

previous study by generating heat maps in R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. High temporal resolution analysis of gene expression reveals meticulous temporal 
compartmentalization in yeast
(a) shows the oscillation of oxygen in the YMC and 16 time points of one cycle for RNA-

seq. The same color scheme is used for labeling the three phases throughout the paper: 

Magenta = OX phase, Green = RB phase, Blue = RC phase. (b-d) K-means clustering of 

OX, RB and RC phase genes separately reveals subtly distinct temporal patterns. Enriched 

GO terms are listed on the right of each sub-cluster. Each row of the heat maps represents 

one gene and columns represent the 16 consecutive time points from left to right. 3-color bar 

on top marks the three phases. The blue-yellow gradient represents RNA signals normalized 
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to read depth using Cuffdiff and centered to a mean of zero across 16 time points. (b) shows 

2 subclusters of OX phase genes; (c) shows 3 subclusters of RB phase genes; (d) shows 3 

subclusters of RC phase genes.
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Figure 2. RNA-seq analysis at introns reveals transient accumulation of pre-mRNAs during OX 
phase
(a) Relative RNA signals are displayed at intron-containing genes. Each track represents 

relative RNA levels at one of 16 time points, ordered sequentially from top to bottom. 

Signals are displayed as percentage of maximum value of the 16 time points at each 20 bp 

window. Red regions represent introns and blue regions represent exons. 3-color bars 

represent the 3 YMC phases vertically. Examples include genes in this cluster with the 

longest (DBP2), shortest (GIM5) intron and two introns (YGR001C). (b) A total of 280 

intron-containing genes were divided into 6 groups based on their temporal RNA signals at 

introns, exons, and intron+exon (full) regions, ordered by the phase of peak full-length RNA 

expression. 16 time-point signals (individual columns) of each region were grouped together 

consecutively as one joint column. Three regions were ordered as “Intron”, “Exon”, “Full” 

and separated by white lines. Each single row represents signals of one gene standardized to 

a mean of zero. Arrows mark the peak time point. (c) The total number of reads spanning the 

exon-exon junctions of RP genes from Intron1 cluster are displayed across 16 time points in 
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the bar plot. (d) The total numbers of junction reads spanning the 5’ end of RP introns from 

Intron1 cluster are displayed across 16 time points in the bar plot.
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Figure 3. Dynamic chromatin states across the YMC
(a) shows the oscillation of oxygen in one YMC. Cycling cells were collected at 16 

intentionally uneven time points over one cycle for ChIP-seq. (b-c) Temporal relationship 

between RNA level and histone modifications at the RMT2 locus. (b) shows the RNA level 

of RMT2 from normalized RNA-seq data. (c) CisGenome browser views of ChIP-seq of 

H3K9ac, H3K14ac, H4K5ac, H3K56ac, H3K4me3, H3K36me3, H4K16ac and H3 at RMT2. 

16 tracks represent 16 time points from top to bottom consecutively. RMT2 is encoded on 

the Crick strand, labeled by the red arrows pointing to the left.
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Figure 4. Temporal patterns of H3K56ac
Comparison of H3K56ac incorporation between the standard cell cycle and YMC. The left 

panel shows the ChIP-chip data of H3K56ac across the cell cycle from the study of Kaplan 

et al. 2008, and the right panel is the new ChIP-seq data of H3K56ac across the YMC. The 

H3K56ac signal was calculated for every nucleosome on chromosome III, sorted by 

chromosomal location and standardized to a mean of zero.
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Figure 5. Temporal combinatorial patterns of chromatin states and gene expression define 
functionally related genes
(a) is a heat map showing 7 clusters of cycling genes (combining OX, RB, RC phase genes 

ordered by the time of peak gene expression. RNA, H3K9ac, H3K14ac, H4K5ac, H3K4me3 

and H3K36me3 are included in this analysis and each is displayed in a joint column, 

separated by white lines. The data is standardized to a mean of zero. Pie charts on the left 

indicate composition of OX (Magenta), RB (Green), RC (Blue) phase genes in each cluster. 

Enriched GO categories are listed on the right. (b-c) Estimation of time in YMC when RNA 

and histone modifications in “RNA_H1” (b) and “RNA_H2” (c) reach the maximum. The 
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middle of the horizontal colored lines on the O2 curves represent the mean peak value of 

genes in each cluster and the lengths represent s.d. for 464 and 516 genes in (b) and (c). (d) 

Models of histone modification pathways during the transcription of aa and ribosomal genes. 

Purple ovals represent −1, +1 and subsequent ORF nucleosomes for the indicated gene. 

Hooked arrows represent transcription and spots represent histone modifications.
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Figure 6. Spatiotemporal patterns of chromatin modifiers and corresponding modifications
(a) shows the oscillation of O2 in one YMC and 14 intentionally unevenly spaced time 

points for ChIP-seq of Gcn5p, Set1p and Esa1p. (b) CisGenome browser views of the 

temporal ChIP-seq patterns of Gcn5p, Set1p and Esa1p at chromosome XI: 157000-173000. 

The 14 tracks represent 14 consecutive time points from top to bottom. Red arrows label the 

direction of interesting genes: from left to right are YKL156W (RPS27A), YKL152C 

(GPM1), and YKL148C (SDH1). (c-e) Spatial distributions of the chromatin modifiers and 

the corresponding modifications. ChIP signals were averaged from −1000 to +1000 bp of 

TSSs (transcription start site) derived from MACS detected peaks. Signals of each modifier 

are plotted together with its corresponding modification normalized by H3.
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Figure 7. Similar but not identical temporal patterns of chromatin modifiers and corresponding 
modifications
(a) is a heat map of the temporal patterns of RNA, histone modifications and corresponding 

modifiers for ribosome biogenesis genes, ribosomal protein genes and amino acid 

metabolism genes. (b) Averaged ChIP-seq signals of histone modifications and modifiers 

and RNA-seq signals for RP genes across the YMC. Error bars represent s.d. of 83 RP genes 

at each time point. (c) A model of Set1p/H3K4me3 and Gcn5p/H3K9ac during transcription. 

Purple ovals represent −1, +1 and subsequent ORF nucleosomes for the indicated gene. The 

hooked arrow represents transcription and small and big spots represent histone 

modifications and histone modifiers.
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Figure 8. O2 consumption traces of histone point mutants
(a) Strains were plated (1:10 serial dilutions) on YPD plates and grown at 30°C. H3 mutants 

represent H3K9R, H3K(9,14)R, H3K(9,14,18)R, H3K(9,14,18,23)R, H3K(9,14,18,23,27)R. 

H4 mutants represent H4K5R, H4K(5,8)R, H4K(5,8,12)R. (b-i) show O2 curves of histone 

mutants.
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