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Extensive fragmentation 
and re‑organization of transcription 
in Systemic Lupus Erythematosus
Vasilis F. Ntasis1, Nikolaos I. Panousis2,3,4,5, Maria G. Tektonidou6,7, 
Emmanouil T. Dermitzakis2,3,4,8, Dimitrios T. Boumpas7,8,9,10, George K. Bertsias11,12 & 
Christoforos Nikolaou1,12,13*

Systemic Lupus Erythematosus (SLE) is the prototype of autoimmune diseases, characterized 
by extensive gene expression perturbations in peripheral blood immune cells. Circumstantial 
evidence suggests that these perturbations may be due to altered epigenetic profiles and chromatin 
accessibility but the relationship between transcriptional deregulation and genome organization 
remains largely unstudied. In this work we propose a genomic approach that leverages patterns of 
gene coexpression from genome-wide transcriptome profiles in order to identify statistically robust 
Domains of Co-ordinated gene Expression (DCEs). Application of this method on a large transcriptome 
profiling dataset of 148 SLE patients and 52 healthy individuals enabled the identification of 
significant disease-associated alterations in gene co-regulation patterns, which also correlate 
with SLE activity status. Low disease activity patient genomes are characterized by extensive 
fragmentation leading to overall fewer DCEs of smaller size. High disease activity genomes display 
extensive redistribution of co-expression domains with expanded and newly-appearing (emerged) 
DCEs. The dynamics of domain fragmentation and redistribution are associated with SLE clinical 
endophenotypes, with genes of the interferon pathway being highly enriched in DCEs that become 
disrupted and with functions associated to more generalized symptoms, being located in domains 
that emerge anew in high disease activity genomes. Our results suggest strong links between the 
SLE phenotype and the underlying genome structure and underline an important role for genome 
organization in shaping gene expression in SLE.

Systemic Lupus Erythematosus (SLE) is considered the prototype of systemic autoimmune diseases due to highly 
heterogeneous manifestations, variability in symptoms, affected organs and alternating periods of dormancy and 
increased activity (flares)1. Several studies of SLE transcription profiles2,3 have reported consistent alterations 
in key biological pathways, with the Interferon (IFN) signaling pathway being the most prominent example4,5. 
A recent systematic transcriptomic and genetic analysis comparing SLE patients, with variable disease activity, 
against healthy individuals led to the definition of discrete susceptibility and severity gene signatures6. Beyond 
gene expression, changes have also been observed at the epigenetic and chromatin levels, with extensive DNA 
hyper-hydroxymethylation in SLE T-cells7 and altered chromatin accessibility in naive B-cells from SLE patients 
under flare status8.
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Given the complexity of the disease at both transcriptome and chromatin levels, an aspect that has not been 
adequately explored pertains to genome architecture. Over the last years, a number of genomic entities including 
chromatin loops9, topologically associated domains10, enhancer-promoter interacting domains11, cis-regulatory 
domains12,13 and domains of defined epigenetic characteristics14,15 have been shown to define an ever more com-
plex genomic landscape. In spite of their variable size, dynamics and the underlying principles governing their 
creation, a unifying property of these chromosomal entities is the co-ordination of gene expression16,17. At the 
same time, novel high-throughput methodologies have unravelled a strong link between nuclear compartments 
and transcriptional activity18,19. Positional effects in gene expression have been reported since relatively early 
and their evolutionary and regulation dynamics have been extensively studied16,20–22. The importance of gene 
clustering deregulation in disease has been demonstrated through epigenetics in the case of cancer23 and genetic 
associations in the case of Down syndrome24, but a comprehensive assessment of gene expression clustering has 
been lacking. Given the apparent extent and impact of genome organization, addressing gene expression changes 
from an architectural viewpoint could enhance our understanding of the genomic basis of complex pathologi-
cal conditions, especially those that are accompanied by widespread gene expression alterations, such as SLE.

In this work, we have employed a genomic segmentation approach on an extensive SLE expression dataset6, 
aiming to define regions of co-ordinated gene expression for the first time in the context of a complex disease. Our 
analysis leads to the definition of detailed patterns of transcriptional compartmentalization that vary significantly 
between SLE and healthy individuals. Interestingly, we find SLE patient genomes to exhibit more fragmented 
and thus, less structured co-expression patterns, a trend that correlates with the degree of disease activity. The 
defined Domains of Co-ordinated Expression (DCEs) exhibit intricate dynamics, that are associated with both 
molecular signatures and clinical features of the disease. This represents the first attempt to correlate the complex 
SLE phenotype with genome topology through detailed transcriptional analysis.

Methods
Analysis of gene expression.  We obtained RNA sequencing data from a total of 142 SLE patients and 
58 healthy individuals originally published in a SLE transcriptomics study6. Both groups contained individuals 
mainly of Caucasian ethnicity and an approximate ratio of 1:5 for male over female. The sequencing material was 
derived from whole blood samples. Εxtensive information regarding patient characteristics, mRNA extraction, 
sequencing protocol, quality control and mapping are thoroughly reported in6.

We used FeatureCounts25 to extract raw counts and quantify expression levels for a comprehensive set of 
human genes, as compiled under the GENCODE annotation v15 (https​://www.genco​degen​es.org/human​/relea​
se_15.html, GRCh37). A fragment was counted in case of any overlap with an exon feature and the counts were 
grouped based on the "gene_name" attribute of the annotation entities. Only fragments with both ends success-
fully mapped were considered for summarization. Fragments that were chimeric, overlapping multiple meta-
features (genes), not uniquely mapped, or having any read marked as duplicate were discarded.

The initial number of genes included in the raw count table was 51,716. A multi-step filtering approach was 
adopted. At first, the "type" of each gene was extracted from the annotation GTF file used in fragment sum-
marization. Then, genes belonging to any of the following types were filtered out: "pseudogene", "processed 
transcript", "polymorphic pseudogene", "antisense", "sense intronic", "sense overlapping", IG_V pseudogene", 
"IG_C pseudogene", "TR_V pseudogene", "TR_J pseudogene", "IG_J pseudogene", "non_coding", "Mt-tRNA" 
and "Mt-rRNA". The total number of genes belonging to those categories were 20,190. Subsequently, 167 genes, 
which had multiple entries in the annotation file, with the same "gene_name", but different chromosome attribute, 
and could therefore generate errors in the fragment summarization process, were removed from our dataset as 
well. The number of genes that passed the filtering procedure was 31,318. Of those 27,061 with non-zero values 
were included in our analysis.

At the final stage, a two-step normalization was implemented on raw counts (filtered for the different irrel-
evant gene types), using relative log expression (RLE), followed by normalization for gene length.

Stratification of the patient cohort.  We grouped patient samples according to a clinical SLE disease 
activity index (SLEDAI)26. A value of 0 for SLEDAI indicates inactive patients and it increases with higher dis-
ease severity. Patient samples were separated into three groups. A low disease activity group, with a maximum 
SLEDAI value of 2, an intermediate, with SLEDAI that ranged from 3 to 8, and a high disease activity group with 
SLEDAI greater than 8. The number of samples in each group were 55, 61 and 26 respectively. Both Differential 
and Topological analyses of gene expression have been performed on these three groups in comparison to the 
healthy group.

Differential gene expression analysis.  Differentially expressed genes (DEGs) were called using zero 
inflated generalized linear models provided by the MDSeq tool27. For this analysis we applied an additional 
filtering layer. Genes with a mean cpm value lower than 0.05 were excluded. The remaining genes were 18,447. 
Furthermore, we incorporated gender and drug treatment as covariates in our models. DEGs were identified 
based on both statistical significance and effect size. They were defined as genes with corrected p value lower 
than or equal to 0.05 and absolute log2(Fold-Change) value greater than or equal to 0.5.

Modular analysis of differential gene expression.  We followed a gene set enrichment approach, in 
order to investigate the over-representation of specific functional modules in our dataset. In a gene set enrich-
ment analysis, the objective is to detect functional modules, whose gene members tend to cluster towards the 
top (or bottom) of a ranked list. Here, we ranked genes according to absolute differential expression values 
(log2|Fold-Change|), and we tested the over-representation of functional groups of genes (modules). The tested 
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modules are closely related to blood tissue and immunity, as identified by two independent studies28,29, that 
analyzed a plethora of blood gene expression datasets in a variety of conditions. Finally, we assessed statistical 
significance by applying a CERNO test30. We filtered modules according to statistical significance (corrected 
p value ≤ 0.05) and their DEG content, i.e. at least 15% of gene members had to be DEGs according to our previ-
ous analysis.

Weighted gene co‑expression network analysis (WGCNA).  In order to detect modules of genes with 
correlated expression independently of their genome topology, we implemented weighted gene co-expression 
network analysis (WGCNA)31. Briefly, WGCNA represents genes as nodes in a network. These are connected to 
each other by edges, to which an adjacency score is attributed. The adjacency score of a node pair is calculated 
by a power function of the absolute value of the correlation of the corresponding pair of genes. Here, the soft 
threshold parameter (the power in the adjacency function) was selected to be 10, according to scale free topol-
ogy criterion, which suggests choosing the lowest possible value, such that approximate scale free topology is 
reached in the network. Modules of co-expressed genes were extracted from the network based on the hierarchi-
cal clustering of a topological overlap measure and the subsequent implementation of a dynamic cutter. Those 
initial modules were merged using hierarchical clustering of their eigengene vectors and by cutting the resulted 
tree at the height of 0.25. The final modules were functionally characterized by utilizing pathway enrichment and 
calculating the correlations of the module eigengene vectors with a variety of clinical traits.

Robust co‑expression matrix calculations.  Each chromosome was split in 10 kb bins, starting from the 
start of the first gene, till the end of the last gene. A mean gene count for every bin was then calculated from the 
normalized counts of the genes it contained. Bin counts were then grouped according to four sample categories 
(healthy, low, intermediate and high SLE activity). Next, we calculated the Spearman correlation matrix between 
all bins that resided in the same chromosome for all samples within each group. Chromosomal bins with zero 
expression were ignored for the rest of the analysis. This procedure produced a square correlation matrix for 
each chromosome. To statistically evaluate the correlation coefficients, a Monte-Carlo-like approach was imple-
mented. The bin counts, of each individual separately, were shuffled randomly and afterwards the correlation 
matrix was re-constructed. That procedure was repeated 1000 times for each chromosome. In every iteration 
the calculated correlation coefficients were compared to the original correlation coefficients that were calculated 
using the intact bin counts. The p value for each coefficient was set as equal to the fraction of those 1000 permu-
tations, in which the corresponding coefficient had the same or more extreme value compared to the actual one. 
The correlation coefficients with p value greater than 0.05 were discarded from the analysis (turned into 0 s).

Definition of domains of coordinated expression (DCEs).  To call domains of co-ordinated expres-
sion, we modified a methodology that was introduced for the definition of topologically associated domains 
(TADs)32, in our case, by using expression correlation data instead of chromosomal contact frequencies. Statisti-
cally robust expression correlation matrices (see “Methods” section) were used as input. Domains of co-ordi-
nated expression (DCEs) were defined as genomic regions of consecutive chromosomal bins with correlation 
above average, delimited by statistically significant boundaries. More specifically, DCE detection is a four-step 
pipeline, which is repeated for each chromosome and for every study group (see Fig. 1a).

1.	 First, we compute a signal that runs along the chromosomes and is indicative of the local average correlation 
of expression. We achieve this by sliding two juxtaposed windows of equal size along a chromosome with 
a single-bin displacement, until the whole chromosome has been covered. In every iteration, we use the 
correlation matrix that has already been constructed and statistically evaluated. We look up the correlation 
values concerning the relationship of the two regions and calculate their average. That value is assigned to 
the chromosomal bin located in the middle, more precisely, the downstream-most bin inside the upstream 
window.

2.	 Subsequently, the calculated signal is used to detect DCE boundaries. Hence, the second step of the pipeline 
is to compute a smoothed function of that signal, using a smoothing spline, and to detect all local minima 
of that function. DCEs are initially detected as regions between local minima with a value lower than 0.25, 
which is the average genome signal for the healthy, control group.

3.	 The third step is to statistically evaluate and refine the boundaries. We estimate the significance of the 
boundaries by utilizing a Mann–Whitney U test to compare "within" and "in-between" correlation coef-
ficients. In case any of the initially calculated boundaries does not reach the required statistical significance 
threshold (p value > 0.05), we "chop" that boundary by one bin towards the centre of DCE, and repeat the 
test. DCEs with any remaining non-significant boundary are discarded.

4.	 In the last step we fuse neighbouring DCEs, according to the following criteria: (a) they are separated by 
at most two bins with bin signal < 0.25. (b) The total number of such “intervening” low signal bins is less 
or equal to 2. This means that no more than three neighbouring DCEs may be fused in one and that fusion 
events cannot span intervening sequences longer than two bin sizes. This step enhances the robustness of 
the pipeline and decreases the noise in our data. The window size used in bin-signal calculation and in 
boundary evaluation was set to be equal to 3, based on the maximization of average intra-DCE correlation 
of chromosome 1 of the healthy group.

Cell type estimation and entropy calculation.  We used the results of CIBERSORT33 for the estima-
tion of the proportion of different immune cell types in whole blood. Shannon entropy was used as a metric, 
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in order to assess the variability/uncertainty in the proportions of the different cells types between healthy and 
SLE subjects.

where H is the Shannon (information) entropy, p(xi) is the estimated proportion of xi cell type in whole blood 
and n is the total number of estimated cell types. Entropy was calculated for every individual in the dataset. 
Subsequently, the difference between the distribution of entropies of healthy and SLE groups were statistically 
evaluated by a non parametric Wilcoxon–Mann–Whitney test.

DCE analysis.  Two different metrics were applied to explore the differences of DCE sets of different groups. 
DCEs were handled as a set of chromosomal intervals. The first metric used was the Jaccard similarity coeffi-
cient. DCE pairs between two different groups (e.g. healthy and patient groups) with chromosomal coordinates 
that overlap were detected. For every pair the Jaccard index was calculated. The second metric was the BP dis-
tance score34. BPscore takes into account the relative chromosome size and thus may provide a more nuanced 

H = −

n∑

i=1

p(xi) · log2(p(xi))

a b

c d e

Figure 1.   Differential patterns of domains of co-ordinated expression (DCEs) in healthy and patient groups. 
(a) The DCE detection pipeline is represented as a series of ‘transformations’ applied to the expression data. 
We start by calculating the expression profile of each chromosomal bin using the expression profile of the 
encompassed genes (i). We then calculate the correlation coefficients between the bins located on the same 
chromosome (ii). Next, the correlation profile of each chromosome is transformed into a one-dimensional 
binsignal profile (iii). We analyze that profile, detecting local minima and maxima in order to determine the 
borders of the domains. Finally, a statistical evaluation of those borders results in the final DCE coordinates (iv). 
(b) Domainograms depicting the distribution of DCEs for the healthy and the three patient groups studied. The 
color of DCEs represent the respective average binsignal of the chromosomal bins encompassed. (c) Violin plots 
illustrating the estimated distribution of DCE sizes in each group. Classic boxplots are included. The scale of 
the y axis is logarithmic (log(bps)). (d) Average bin signal (co-expression score) for each group. (E) Violin plots 
representing, for each chromosome, the percentage of chromosomal bins that contain genes, with non-zero 
expression value, and form DCEs. (c, e). The results of Mann–Whitney–Wilcoxon tests comparing each patient 
group to the healthy group are demonstrated by the significance level indicators.
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assessment of coordinate similarity. For the calculation of BP-score we used a publicly available python script, 
(https​://githu​b.com/rz6/bp-metri​c), that is provided by the authors.

"Disruptor gene" definition.  "Disruptor" genes are defined as those, which reside between two "patient 
DCEs" derived from a split of a "healthy DCE". More precisely, for each "split" characterized healthy DCE, attrib-
uted genes were listed. Subsequently, they were compared as a set with those genes, attributed to patient DCEs, 
that overlapped the initial healthy DCE. Genes absent from the patient DCEs and present in the healthy DCE 
were characterized as disruptors. Moreover, those genes were filtered, in order to capture only the genes located 
in the area between the patient DCEs (the locus of the "split" event). That process was repeated for every distinct 
patient group.

Results
Gene co‑expression patterns are fragmented in SLE patients.  Neighbouring gene expression cor-
relation and modelling16 have been recently introduced to define how gene expression propagates in space. We 
employed a topologically-inspired approach to quantify the correlation of gene expression genome-wide. After 
splitting each chromosome in fixed-size bins, we calculated the transcript count correlation and defined regions 
of significant co-expression based on a permutation test, followed by local minima localization (see “Methods” 
section). The domains of co-ordinated expression (DCEs) produced through this analysis are supported by per-
mutation analysis involving 1000 random reshuffling events of transcript counts along each chromosome (see 
“Methods” section, Fig. 1a). In this respect, they correspond to statistically robust chromosomal domains, within 
which gene co-expression is significantly higher, when compared to the surrounding regions.

Analysis of DCE patterns between SLE and healthy individuals shows significant differences, with SLE gene 
co-expression being organized into smaller and more fragmented regions. This finding is not confined to specific 
chromosomes, although gene-dense chromosomes with a more compact transcript pattern show increased overall 
signal (Fig. 1b). Notably, DCE patterns correlate with the activity of the disease (SLEDAI). We found that DCE 
sizes are smaller in low activity patients, where the percentage of the genome organized in DCE does not exceed 
9% as compared to 13% and 17%, for intermediate and high activity respectively, and 19% for healthy individuals. 
Decreased gene co-expression in SLE patients is evidenced by the: (a) significantly lower numbers of total DCE 
for low and intermediate disease activity (Fig. 1b), (b) smaller DCE sizes (Fig. 1c) (c) decreased co-expression 
signal (Fig. 1d) and, (d) smaller overall percentage of the genome covered by DCEs (Fig. 1e).

It is important to note, that the observed differences cannot be explained by batch effects in either sequenc-
ing output or the genomic distribution of reads. Sequencing throughput was very similar for all disease activity 
groups (Supplementary Figure 1), as was the overall distribution of mapped reads in the annotated transcriptome 
(Supplementary Figure 2). Differences in DCE patterns cannot be attributed to cell type heterogeneity either, 
as shown by an entropy analysis of cell type variability (Supplementary Figure 3). Thus, the more fragmented 
expression patterns in low activity SLE genomes are most likely due to generalized perturbations in gene regula-
tion, which could provide a mechanistical explanation for the recurrent flares that tend to develop in patients 
who are inactive. This may indicate that, while a desirable outcome, clinical remission may not necessarily be 
lacking a molecular fingerprint and the combination of the recently suggested susceptibility signature6 with our 
fragmented DCE pattern may provide an interesting framework for the assessment of its stability.

DCEs are dynamically redistributed in SLE.  To gain additional insight into the dynamics of DCEs, we 
classified DCE patterns into four main groups according to their changes between patient and healthy genomes. 
We used an implementation of the Jaccard Index to group the domains into: (a) DCEs that were left intact, (b) 
DCEs that were absent (depleted) in patients while present in healthy individuals, (c) DCEs that were only pre-
sent (emerged) in patients and, (d) DCEs whose coordinates were altered between patient and healthy genomes. 
The last group was further categorized into DCEs that were split (one fragmented into two or more smaller sub-
DCEs) or merged (two or more joined into one larger) and expanded or contracted.

Low and high disease activity patients showed the most extensive changes in the pattern of DCEs as compared 
to the healthy state (Fig. 2a). A detailed analysis shows that, in agreement with the changes observed at genome-
scale level (Fig. 1), there is extensive fragmentation and redistribution of domains in SLE versus healthy genomes. 
Contraction and depletion of DCEs are more pronounced in low activity patients, with contracted and depleted 
DCEs corresponding to nearly 73% of DCEs in low activity, as compared to 56% and 48% for intermediate and 
high disease activity genomes, respectively (Fig. 2a). Conversely, expanded and emerged DCEs comprise over 
30% in high activity versus less than 10% in low activity patients (Fig. 2a). These observations are suggestive of 
different modes of dynamic changes in co-expression domains, with low SLE activity genomes characterized by 
DCE fragmentation and high activity ones featuring a redistribution of co-expression with increased percentages 
of expanded and emerged DCEs. This redistribution was also supported by a simple value measure of DCE pattern 
similarity, calculated with the implementation of BPscore34, which showed that in spite of being comparable in 
genome coverage, the DCEs between high activity patients and healthy controls were radically different in terms 
of genomic localization (Supplementary Figure 4).

Gene expression changes are reflected upon DCE dynamics.  Changes in the patterns of co-expres-
sion may be linked to differential gene expression and underlying chromatin dynamics. To address this, we 
employed Modular and Weighted Gene Co-Expression Network Analysis (WGCNA)31 of differential gene 
expression on the three disease activity groups against healthy individuals. The results were strongly suggestive 
of quantifiable phenotypic variability between patients with different clinical activity states, in agreement with 
the previously defined susceptibility and severity gene signatures (Supplementary Figure 5). In addition, we were 
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able to define gene expression modules and to correlate them to clinical characteristics such as disease activity. 
Comparison of WGCNA results with clinical characteristics of the cohort samples allowed us to identifiy a “SLE-
DAI gene module”, which comprised 224 genes, enriched for innate and adaptive immune pathways, particularly 
signaling through the Fc-γ and B-cell receptors (BCR). A “Nephritis module” (184 genes) and an “IFN module” 
(282 genes) were also identified, the latter being highly associated with anti-nuclear and anti-DNA antibodies 
(Supplementary Figure 6).

In order to investigate how changes in the gene expression of these modules may be correlated to the pat-
terns of positional co-expression, we analyzed the degree of overlap between the different DCE categories and 
the WGCNA modules obtained from our dataset (Fig. 2b). The IFN module was over-represented in split DCEs 
across all SLE groups and was particularly enriched in DCEs that become depleted within the high activity group, 
implying that increased IFN pathway gene activity may be linked to loss of co-expression structure. Conversely, 
the nephritis/neutrophil-specific module was enriched in emergent DCEs from low disease activity genomes. 
This may be indicative of underlying tendencies in gene deregulation being present even in patients without 
developed symptoms but who may yet be predisposed to disease flares. Consistent with observations at the level 
of functional enrichments, the B-cell module was enriched in DCEs that are depleted and largely absent from 
high disease activity DCEs. Taken together, these findings indicate that functional aspects of gene expression 
pertaining to distinct clinical characteristics are reflected on the genome organization.

DCE dynamics are strongly associated with chromatin accessibility and chromosomal com‑
partments.  Transcriptional coordination in self-contained domains is tightly linked to underlying chro-
matin organization at various levels ranging from topologically associated domains (TADs) to more extended 
chromosomal compartments. We went on to correlate the dynamics of DCE patterns with underlying genomic 
features related to chromatin accessibility and chromosomal compartmentalization. By comparing the coordi-

a b

c

Figure 2.   DCEs are extensively fragmented and redistributed in SLE patients and correlate with functional 
signatures and epigenetic marks. (a) Heatmap presenting the different types of DCE reorganization. Numbers 
inside cells indicate the ratio of the number of DCEs, of the respective type, over the total number of DCEs 
for each patient group. Colour code is corresponding to column z-score of ratios. (b) Heatmap depicting the 
results of an enrichment test for DCEs in the functionally annotated WGCNA modules. (c) Heatmap depicting 
the results of an enrichment test for DCEs in different genome subcompartments. (a–c) Scaling and centering 
has been performed per column. Trees are illustrating the outcome of hierarchical clustering performed on the 
data. (b, c) Symbols inside cells demonstrate the significance level of the outcome of each test (*:0.05; **:0.01; 
***:0.001). Significance has been assessed by a non-parametric, permutation-based test.
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nates of stable and dynamic DCEs against ATAC-Seq peaks defined for B-cells in severe-case SLE against healthy 
individuals8, we found split, contracted and merged DCEs (of all disease activity groups) to be enriched in peaks 
of decreased chromatin accessibility (Supplementary Figure 7). Conversely, depleted and emerged DCEs of all 
SLE activity groups were enriched (although with a smaller effect size), almost exclusively, in over-accessible 
regions. This finding suggests a clear distinction between the DCEs that are locally modified, which tend to be 
confined in under-accessible regions, and those that are dynamically re-distributed, which are preferentially 
located in more accessible chromatin.

We performed a similar analysis at the level of chromosomal compartments (at 100kbp resolution) as defined 
in a B-lymphoblastoid cell line9. On a large scale, chromosomes may be organised into two broad compartments 
labelled A and B, corresponding to active and inactive chromatin, and also bearing other distinct properties. 
These may be further subdivided to A1 and A2 and B1 to B49. A chromosomal coordinate overlap enrichment 
analysis showed DCEs to be generally enriched in the euchromatic A compartment (Fig. 2c). When focusing on 
specific DCE subtypes, we found that regions, belonging to the most dynamic subsets of emerged and depleted 
DCEs, were enriched in the A2 subcompartment, which is associated with late-replicating, low GC content DNA, 
enriched in H3K9me3 and longer gene transcripts9. On the other hand, intact DCEs and in general, DCEs that are 
less dynamic, appear to be more enriched in the gene dense, early-replicating A1 subcompartment. Enrichments 
in the B4 subcompartments are probably due to the over-representation of particular DCEs in chromosome 19, 
which hosts the entirety of this very small subcompartment.

Together, the differential enrichments of split and contracted DCEs, compared to the dynamically redistrib-
uted emerged and depleted regions, in terms of chromatin accessibility and genome compartments, indicate an 
interplay between gene regulation and underlying chromatin environment. Regions of high gene density tend 
to have highly correlated gene expression, but this pattern changes radically with the splitting of co-expression 
domains in low disease activity and the emergence of new, probably re-arranged domains in high disease activity 
SLE patients. We hypothesize that epigenetic changes that increase chromatin accessibility, in particular in A2 
genomic compartments, may create a permissive environment for the redistribution of co-regulated genomic 
domains, which are, moreover, associated with functions characteristic of increased disease activity.

DCE splits disrupt enhancer‑promoter interactions of key biological functions.  While split 
DCEs represent no more than 5–10% of the total genome coverage, they are highly enriched among differen-
tially expressed genes and in particular with the IFN gene module. Given their additional enrichment in low 
disease activity patients and therefore, their possible implication in further disease progression, we performed 
a focused analysis of split DCEs and the genes lying on their boundaries (see “Methods” section). These were 
predominantly enriched among the targets of specific transcriptional regulators, a number of which belonged to 
the broad categories of zinc fingers (SALL1, Ikaros, ZIC3 etc.) and oncogenes (GLI1, ING4) (Fig. 3a). Members 
of the Ikaros transcriptional regulators have been genetically associated with SLE2, and interestingly, IKZF3 lies 
within a disrupted DCE in all SLE groups.

Based on the differences in the extent of split DCEs between low and high activity genomes, we next assessed 
their overlaps with the SLE susceptibility and severity gene signatures as previously defined for the same dataset6. 
We found significant differences between the two gene sets with susceptibility genes being highly enriched in 
split DCEs in contrast to a depletion of severity genes (Fig. 3b). Genes belonging to the susceptibility signature 
are also enriched in the subset of differentially expressed genes that are found in low disease activity split DCE 
boundaries (p = 0.0061). Protein and regulatory interaction network analysis of these genes, performed through 
STRING-DB35, revealed an IFN gene signature (Fig. 3c) and interestingly, a set of highly connected genes associ-
ated with DAP12 signaling (Fig. 3c, cyan polygon). DAP12 (TYROBP) is a key activator of NK cells, which are 
reported to have impaired function in SLE patients36. Smaller network modules were associated with neutrophils 
(lime) and B-cells (yellow). We may thus see how, by focusing on split DCE regions we may prioritize genes of 
the broader susceptibility signature and to investigate their functional connections.

Given the DCE definition as regions with increased regulatory interactions, it is plausible to expect that gene 
promoters are more likely to be associated with enhancers that are lying within the same region. To test this 
hypothesis, we obtained cell-type specific promoter-enhancer interactions for CD4, CD8 and CD14 and CD19 
cells from Enhancer Atlas37 and identified genes whose promoter-enhancer pairs were nested within the same 
DCE in the healthy state but disrupted in SLE. We found that a significant percentage of enhancers-promoter 
connections that are completely nested in healthy DCEs are disrupted by a DCE split or depletion in one of the 
SLE disease activity states. Thus, it seems that the redistribution of gene co-regulation domains in disease may 
also be disrupting the regulatory links between enhancers and their cognate promoters.

Functional enrichment of the genes, whose enhancer-promoter associations are disrupted in SLE, revealed 
relevant biological functions (Fig. 3d). More specifically, functions related to the immune system are, as expected, 
highly enriched in all disease activity groups. Others, such as protein metabolism, translation and protein turnover 
are particularly enriched in high disease activity patients. Interestingly, interleukin-15 (Il15) and interleukin-21 
(Il21) signaling are specifically enriched in high activity patients even though with low effect sizes (Fig. 3d). In 
the context of SLE, increased Il15 levels may regulate the function of NK cells and also enhance the expression 
of the costimulatory receptor CD40L (CD154) on T-cells via STAT538. Interleukin-21 is released by CD4+ T 
follicular helper cells and plays an important role in SLE pathogenesis by promoting the maturation of B-cells 
into autoantibodies-producing plasma cells39. More interestingly, the receptors of Il15 and Il21 share the com-
mon gamma chain (γc) subunit (CD132) and mediate intracellular effects through activation of the Janus kinase 
(JAK)-1 and JAK-3 kinases, which are implicated in SLE and are currently tested as putative therapeutic targets40.
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Discussion
Genome organization is intricately linked to gene expression and regulation in health and disease, with dif-
ferentially expressed genes creating clusters under various conditions. Our study, the first such conducted in 
SLE, shows that genes are organized in extended domains of coordinated expression but, moreover, that these 
domains are highly dynamic and extensively reorganized during disease progression. While high activity patient 
patterns are suggestive of a general re-organization of gene regulation that extends to broader chromosomal 
domains, increased fragmentation of gene co-expression is observed even in the genomes of patients with low 
disease activity. This may suggest that the observed disruptive patterns of gene expression are be related to the 
way initial cellular signals propagate in the genome in order to affect hundreds of abnormally regulated genes. 
Thus, the more disconnected co-expression in low activity SLE genomes could be linked to mechanisms, with 
which flares occur even in patients that are in remission.

While, the governing principles of such mechanisms are yet to be resolved, our analyses suggest a key role 
for the chromatin environment. Differential enrichment of DCE patterns between open and closed chromatin 
and chromosomal compartments pertaining to early and late-replicating chromatin, are strong indications of 
epigenetic patterns underlying the fragmentation and re-organization of gene co-expression. Epigenetic effects, 
downstream of environmental triggers are expected to lie at the basis of SLE aetiopathogenesis, given the limited 
association of genetic factors reported for the disease. Further investigation of the mechanisms linking chro-
matin structure and the organization of gene expression in SLE could be assisted by our approach, through the 
prioritization of chromosomal domains with increased regulatory potential.

Besides epigenetic phenomena, the formation of co-expression domains could occur more transiently as the 
result of differential expression in any given setting41, through the clustering of differentially expressed genes, that 
have been positionally constrained through evolution20,42. Such a notion is supported by our data in two ways. 
First through the association of the observed DCEs with functions that are known to be activated in SLE. Major 
pathways related to the intensity of the symptoms (such as the IFN signature) are associated with the disruption 
of co-expression, while downstream effects of SLE, related to the damage of organs (e.g. nephritis) are correlated 

a b c

d

Figure 3.   Functional analysis of the disruption events. (a) Enrichment analysis of ‘Disruptors’ in genes 
that are commonly regulated (suggested by the mutual regulatory motif matches—TRANSFAC database) 
by transcription factors indicated on y axis. The overlap between the query gene set and the corresponding 
Pathway members or TF-target genes are displayed on the x axis. The color of each bar illustrates the corrected 
p value of the corresponding enrichment test. (b) Average positional enrichments of susceptibility and severity 
genes6 against different types of DCEs. Significance levels of one hundred permutations (*:0.05; **:0.01). (c) 
Protein interaction networks for susceptibility signature genes that are found to be differentially expressed 
and overlapping split DCE boundaries, as obtained from STRING-DB35. Genes are grouped on the basis of a 
modularity analysis. Modules are shown with coloured polygons around genes (red: interferon signature genes, 
cyan: DAP12 signaling, lime: neutrophil module, green: B-cell module). (d) Pathway enrichment analysis of 
genes which correspond to enhancer-TSS links (CD4+ cells—Enhancer Atlas)37, that are nested in healthy group 
DCEs but disrupted in SLE. The top 20 most significant KEGG or/and REACTOME pathways are presented.
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with the general re-organization of co-expression in emergent domains. In addition gene signatures from both 
expression and genome-wide association data are enriched in various types of DCEs (Supplementary Figure 8), 
a strong indication that transcriptomic as well as genetic data may reveal a hidden layer of information when 
studied through the lens of genome organization.

The dynamics of co-expression clustering are also linked to differential expression, through the tendency of 
deregulated genes to occur in the boundaries of split DCEs. Inspection of the dynamics of DCE splits is, moreover, 
indicative of the general pattern of fragmentation and redistribution as is showcased in a number of examples 
where, compared to a contiguous DCE pattern in the healthy state, we observe splits in low disease activity and 
more generalized reorganization in high disease activity patients (Fig. 4). The fact that split/disrupted regions 
are more prominent in low disease activity genomes, combined with their proximity to genes belonging to the 
susceptibility signature, may come as an indication of an underlying hierarchy behind the gene deregulation 

a

b

c d

Figure 4.   Examples of alterations in the co-expression profile. Heatmaps of expression correlation for selected 
loci of characteristic cases of disrupted (top), expanded (middle), deleted (bottom left) and emerged DCEs 
(bottom right). Heatmaps were created with the Sushi package from Bioconductor (https​://bioco​nduct​or.org/
packa​ges/relea​se/bioc/html/Sushi​.html). Values in heatmaps correspond to bin signal, while the tracks below 
them show (from top to bottom) gene positions colour-coded for differential expression as log2(fold-change), 
DCE coordinates and enhancer-promoter associations that are entirely included in the same DCE (in blue) or 
not (in red). Names of differentially expressed genes in each locus are shown on the side of each panel.

https://bioconductor.org/packages/release/bioc/html/Sushi.html
https://bioconductor.org/packages/release/bioc/html/Sushi.html
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program. Indeed, we find enhancer-promoter associations of high relevance to be affected by the disrupted pat-
terns of gene co-expression, which is strongly indicative of DCE splits having a possible multiplicative effect on 
gene regulation. Overall, our findings suggest that disruption of co-regulation patterns may represent a hallmark 
of the disease and that, moreover, that this process is constrained by epigenetic factors and the overall chromatin 
conformation (Fig. 5). 

The approach we present here constitutes a first attempt to analyze gene expression at the level of genome 
organization in a complex disease and points to a number of interesting hypotheses linking the SLE phenotype 
with the underlying genome structure. Targeted conformation capture experiments on homogeneous cell cul-
tures could be implemented in order to test these hypotheses. At the same time, the implementation of single-
cell approaches at both transcriptome and genome conformation levels, could provide a data-rich framework 
for the application of our approach, with the final aim of obtaining cell-type specific co-expression profiles at 
increased resolution.

Data availability
Original RNASeq data6 have been deposited at the European Genome-Phenome Archive (EGA) under the acces-
sion number EGAS00001003662. Processed data and original code for all presented analyses may be found at 
https​://githu​b.com/vntas​is/SLE_spati​al_gene_expre​ssion​.
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