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Abstract

Aim—The transient receptor potential vanilloid type 1 (TRPV1) is responsible for pain perception 

in the peripheral nervous system (PNS). TRPV1 is thus considered a versatile target for 

development of non-opioid analgesics.

Results—Pharmacophore-based clustering of a publicly available data set of TRPV1 antagonists 

revealed a set of models, which were validated with data sets of inactive compounds, decoys and 

known drug candidates. The top ranked pharmacophore models were subsequently used for virtual 

screening. Based on a unique in-house protocol, a set of compounds was selected and biologically 

tested for modulation of TRPV1 in a voltage-clamp model.

Conclusion—Pharmacophore models extracted from large public data sets are a valuable source 

for identification of novel scaffolds for TRPV1 receptor modulation.

Transient receptor potential vanilloid type 1 (TRPV1) is a transmembrane non-selective 

cation channel primarily expressed in the sensory neurons of the PNS in humans. Binding of 

various endogenous (anandamide, arachidonic acid metabolites) and exogenous (capsaicin 

(1), resiniferatoxin (RTX), piperine) ligands to TRPV1, as well as exposure to heat (>42°C) 

and protons (pH <6.0) leads to opening of the channel pore and influx of Ca2+ ions into the 

cell [1]. Consequent depolarization of the cell membrane activates the neuron signaling 

pathways and results in the immediate sensation of ‘burning pain’ [2]. Although prolonged 

Ca2+ influx desensitizes the nociceptive neurons [3], the pain sensation on initial application 

hinders the clinical development of agonists [4–6]. Therefore, with the discovery of 

capsazepine [7] (2), the research of both academia [8–11] and pharmaceutical industry [12–

15] mainly focused on the development of antagonists as non-opioid analgesics for treatment 

of various pain conditions.

To date, thousands of chemical compounds are reported in the literature as competitive 

TRPV1 antagonists, and some of them undergo clinical trials [5,16]. The majority of the 
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compounds have been identified through high-throughput screening experiments [13–15,17]. 

Some of these compounds were further optimized by isosteric replacements of structural 

fragments [18–20] and by structure–activity relationship (SAR) studies [9–11,21–30]. Very 

recently, also a cryo-EM structure of human TRPV1 in a resolution of 3.4 Å has been 

published. Thus, considering the wealth of data available, in silico virtual screening methods 

could serve as an efficient and reasonable method for identifying new scaffolds and thus 

expanding the chemical space of TRPV1 ligands. Considering the type and quality of 

available public data [31], pharmacophore modeling seems the method of choice [32].

So far, several pharmacophore-like models were proposed for different classes of TRPV1 

antagonists. They were derived from a set of unique chemical scaffolds, and highlight three 

important pharmacophores of TRPV1 ligands: a polar head (A), a linker (B) and a 

hydrophobic tail (C) (Figure 1) [7,33–36]. In the work of Kim [37], the pharmacophore was 

derived from a 3D QSAR analysis of substituted capsazepines. The CoMFA maps showed 

sterically favored substitution in the C region and the possibility of a hydrogen bond 

interaction between the hydroxyl groups and the amino group of capsazepine derivatives 

with the receptor. Likewise, Kristam et al. [38] reported a pharmacophore model derived 

from a 3D QSAR model of imidazole and benzimidazole derivatives. Blumberg and Lee and 

co-workers [8,10,39–41] as well as Kim [42] further identified important ligand–protein 

interaction features from docking poses of SAR series of benzylthiourea [10,41] 

propionamide [39], propanamide [8,40] and phenylbenzyl amide derivatives [42], 

respectively. Additionally, for 12 compounds being in clinical trials, Kym [16] proposed 

three essential pharmacophore features in the linker region: a hydrogen-bond acceptor, a 

hydrogen-bond donor and a ring feature.

However, a model abstracting the pharmacophore features of highly active and chemically 

diverse TRPV1 ligands sharing the same binding site has not been reported to date. 

Therefore, we aimed to extract and systematize the pharmacophoric patterns from a large set 

of publicly available TRPV1 ligands independently from the ‘three region’ approach. 

Pharmacophore-based clustering of this data set led to an array of pharmacophore models, 

proposing different binding modes of TRPV1 antagonists. These models were 

computationally validated with data sets of inactive compounds, decoys and known drug 

candidates [16,43]. Finally, the five best performing models were used for virtual screening 

of the vendor database Life Chemicals 2012.3 (LifeChem) [61], and 12 compounds with 

novel scaffolds were selected for biological testing.

Experimental section

Hardware & software specifications

Pharmacophore-based clustering of the data set was performed using Ligandscout 3.1 

installed on the local personal computer running Ubuntu 12.04. Generation of conformers 

for the training set and validation sets, generation of the pharmacophore models and 

computational validation of the pharmacophore models along with virtual screening were 

performed using command line packages of Ligandscout 3.1 installed on the local server 

running Fedora 13: idbgen, espresso and iscreen, respectively. The shell scripts used to 

execute the calculations are provided in the Supplementary Material.

Goldmann et al. Page 2

Future Med Chem. Author manuscript; available in PMC 2019 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Preparation of the data sets

Chemical structures and bioactivity data of 2332 compounds reported as TRPV1 antagonists 

were extracted from ChEMBLdb v.13 [44] and filtered to 408 compounds blocking 

capsaicin-induced Ca2+ flux into HEK293 cells, as described previously [45]. Compounds 

were considered as actives if their IC50 value was comparable to the IC50 of reference 

compound 2 (100 nM) under the same assay conditions [15]. Thereby, a data set of 201 

TRPV1 antagonists sharing the same binding site, which are comparable with respect to the 

assays used, are highly active (IC50 values range from 0.21 to 100 nM), and are chemically 

diverse, were obtained.

The following data sets were used in the study: a starting data set comprising 201 active 

TRPV1 antagonists; training sets from 1A to 4C (Figure 2); a decoy set generated for each 

training set; a validation data set of 207 inactive TRPV1 antagonists; a clinical data set with 

17 compounds in clinical trials and a virtual screening data set LifeChem with 305 841 

compounds. For each ligand in the data sets 25 conformations were generated with OMEGA 

[46] algorithm implemented in Ligandscout. Up to 50 decoys were generated for each ligand 

of the training sets using DUD-E decoy generator developed by Mysinger et al. [47] and 

openly available [62].

Computational studies

Pharmacophore-based clustering was performed for a starting data set using the radial 

distribution function (RDF) code similarity algorithm of Ligandscout 3.1 with default 

settings (similarity set to 0.4, conformations set to 3). For each training set ten 

pharmacophore models were built with the RDF-code similarity algorithm. Shared feature 

mode was used in order to identify the pharmacophoric pattern present in all the ligands of 

each training set. Generation of exclusion volumes from the superposed ligands of the 

training set in the pharmacophore model was turned on. The latter allows definition of the 

boundary conditions for the size of the ligands. Other settings were set to default. In total, 

120 pharmacophore models were built.

Computational validation of the pharmacophore models and virtual screening of LifeChem 

was performed using the iscreen command line package of Ligandscout 3.1. Checking the 

match to exclusion volumes was turned on and screening mode ‘stop after first matching 

conformation’ was used. Other settings were set to default (i.e., omitted features of the 

pharmacophore models switched off). Each pharmacophore model was screened against the 

training set it was built on, the corresponding decoy set, the whole cluster to which the 

training set belonged, the clinical data set, and the inactive data set.

Molecular ACCess System (MACCS) finger-prints [48] were generated for the 12 purchased 

compounds, reference compound 2 and the most active representatives from clusters 1, 2 and 

3 (five per cluster) using the software package MOE v2011.10. Subsequently, pair-wise 

Tanimoto similarity matrix between the 12 purchased compounds and 16 compounds from 

the training set was computed in MOE.
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Expression of TRPV1 receptors in Xenopus oocytes & two-microelectrode voltage-clamp 
experiments

Oocytes were surgically removed from anesthetized Xenopus laevis frogs and then carefully 

shaken for about 60 min in a solution of 82.5 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 5 mM 

HEPES and 2 mg/ml collagenase. The Xenopus laevis stage IV-V oocytes were injected with 

rTRPV1 cRNA in a 1:10 ratio. After injection of cRNA, oocytes were stored at 18°C for 24–

48 h in ND96 solution containing penicillin G (10 000 IU/100 ml) and streptomycin (10 

mg/100 ml) [49].

Electrophysiological experiments on TRPV1 channels were performed by two-

microelectrode voltage-clamp method at a holding potential of -60 mV, making use of a 

TURBO TEC 01 C amplifier (npi electronic™, Tamm, Germany) and an Axon Digidata 

1322A interface (Molecular Devices™, CA, USA). Inward current through TRPV1 

receptors (ITRPV1) were measured at a room temperature (21 ± 1°C). Data acquisition was 

performed using pCLAMP v.9.2 (Molecular Devices). Currents were lowpass-filtered at 1 

kHz and sampled at 3 kHz. The bath solution contained 90 mM NaCl, 1 mM KCl, 1 mM 

MgCl2·6H2O, 1 mM CaCl2 and 5 mM HEPES (pH 7.4). Microelectrodes were filled with 2 

M KCl; 2.3 M CsCl, 0.2 M CsOH, 10 mM EGTA and 10 mM HEPES (pH 7.4, nAChR).

The oocyte was penetrated with two microelectrodes, the current electrode for voltage 

injection and the potential electrode for voltage sensing. The membrane potential measured 

by the sensing electrode was compared with a command voltage with the difference brought 

to zero by means of a control amplifier.

Materials

Stock solutions of capsaicin (1), capsazepine (2) and the test compounds (6–17) were 

prepared in 100% DMSO (100 mM for oocyte experiments, Dimethyl Sulfoxide). All 

chemicals were purchased from Sigma™, Vienna, Austria except where stated otherwise. 

The rat TRPV1 clone was kindly donated by Prof David Julius (Department of Cellular and 

Molecular Pharmacology, University of California, San Francisco, CA, USA).

Data analysis

Compound 1 (1 μM) was applied as control, followed by 5–6 min wash period and 

subsequent co-application of 1 and a respective test compound (100 μM). Current 

amplitudes evoked by control 1 were set as 100%. Currents evoked by hit compounds 

exceeding control suggested agonistic activity while smaller currents revealed TRPV1 

inhibition. Equal amounts of DMSO were present in all test solutions. The maximum DMSO 

concentration in the bath (0.3%) induced no significant effects on TRPV1. Data points 

represent mean ± SEM from at least three oocytes from ≥2 batches.

Concentration–response curves for modulation of TRPV1 channels were generated by 

plotting the peak currents evoked by co-application of 1 μM capsaicin (I1, control current) 

and different concentrations of the hit compound (Icompound) as function of the test 

compound concentration. Peak currents were normalized to I1 and expressed as percentage 

of control peak current: Icompound/I1*100.
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Half maximum inhibitory concentration (IC50) value and Hill Coefficient (nH) for test 

compounds were derived from sigmoidal curve fit using Origin 7.0 software(OriginLab®, 

Northampton, MA, USA).

Results & discussion

As a starting point for this study, we used the data set of TRPV1 antagonists we recently 

compiled and used for classification studies [45]. The data set has been carefully curated and 

contains 408 compounds, measured in one protocol. As a threshold for active compounds 

100 nM (pIC50 = 7) was defined, which led to a set of 201 actives and 207 inactives. The 

subsequent workflow for identifying new potential TRPV1 ligands included the following 

steps: pharmacophore-based clustering of the 201 TRPV1 antagonists, generation and 

computational validation of the pharmacophore models, virtual screening of a vendor 

database, prioritization of the hit list, biological testing of selected hits. An overview on the 

workflow is provided in Figures 2 & 3.

Pharmacophore-based clustering of the data set of TRPV1 antagonists

The pharmacophore-based clustering of 201 published TRPV1 antagonists, sharing the same 

binding site, was performed in Ligandscout 3.1 [32] using the RDF-code similarity 

algorithm [50]. We obtained three large clusters with 31, 63 and 87 compounds, respectively, 

and nine small clusters with 1–5 compounds each (Table 1). The chemical structures of 

cluster representatives, their ChEMBL_ID and their activity values are provided in Table 1 

of the Supplementary Material.

Cluster 1 contained 31 thiazolo-pyrimidine derivatives with IC50 values from 1 to 96 nM. 

Although these compounds belong to the same chemical series [22], we considered them for 

building pharmacophore models due to their potent activity values and to their diverse 

substitution pattern around the main scaffold.

Cluster 2 comprised 63 substituted isoquinolin-aralkyl-ureas and -amides [15], 

hydroxynaphtalen-ureas and -amides [17] and heteroaryl β-tetralin ureas [23] with IC50 

values ranging from 2 to 100 nM. A potent clinical candidate, ABT-116 (IC50 7 nM) [51], 

with an indazole-urea scaffold, was also present in this cluster.

The highest populated and most diverse cluster (cluster 3) contained 87 heterocyclic 

compounds with IC50 values from 0.21 to 100 nM. It comprised heterocycles [5,12] and 

various arylurea, biarylamide, aminoquinazoline [18,21], pyrimido-azepine [52], piperazine-

benzimidazole [19] and thiazolo-pyrimidine [22] derivatives.

Small clusters contained piperidine carboxamide [35] and azetidone [53] derivatives, as well 

as benzamide [14] and isoquinoline [15] derivatives with IC50 values from 2.4 to 100 nM. 

Noteworthy, a potent preclinical candidate SB782443 [54] (IC50 49 nM) was a singleton, 

though it contains a thiazolo-pyrimidine in its structure (as compounds from cluster 1). 

Surprisingly, reference compound 2 (IC50 100 nM) represented a unique pharmacophoric 

pattern in our data set, though the majority of the published studies were based on its 

structure or used its pharmacophore features as a starting point. In order to obtain a 
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pharmacophoric pattern characteristic for these diverse compounds, we united all the 

representatives of the small clusters into one additional cluster (cluster 4). However, we 

excluded iodo-resiniferanotoxin [55] (IC50 = 27 nM), which also appeared as singleton, due 

to its highly different physicochemical properties compared with other antagonists in the 

data set (molar refractivity and molecular weight are more than 4 standard deviations away 

from their mean values for compounds in cluster 4).

As the clusters show a broad variance in the biological activity values (2 orders of 

magnitude), we further divided each cluster into three subsets based on the IC50 values. This 

should allow extracting pharmacophoric patterns for highly active representatives of each 

cluster (see Figure 2 for composition of the clusters).

Generation & computational validation of the pharmacophore models

Consequently, ten ligand-based pharmacophore models were generated for each subset, in 

other words, training set, using shared feature mode and the RDF-code similarity algorithm 

of Ligandscout 3.1, thus resulting in 120 pharmacophore models. The ability of the models 

to differentiate between active and inactive TRPV1 antagonists was assessed using several 

different data sets. As a positive control, a data set with all compounds from the cluster to 

which the training set belonged, and a data set of active compounds from other clusters were 

used. As a negative control served a data set of 207 inactive compounds evaluated in the 

same assay setup [45] and a data set of decoys generated for each training set [47]. We refer 

to those data sets as positive and negative validation throughout the manuscript. Finally, a set 

of 17 compounds that have been in clinical trials [16,43] was established in order to also 

assess the performance of the pharmacophore models to identify compounds which are 

structurally different from the initial training sets.

In general, models built on the highly active representatives of the different clusters (Figure 

4A) had higher number of features then those derived from less active representatives 

(Figure 4B) and those built on molecules from the whole cluster (Figure 4C). It is also worth 

to note that the pharmacophores generated were based on stretched conformations of the 

ligands, which indicates an elongated binding pocket. This is in agreement with the recently 

published cryo-electron microscopy structure of the receptor [56].

The pharmacophoric patterns of cluster 1 differed only slightly between highly active, 

middle active and lower active TRPV1 antagonists (Figure 4, row 1). All 30 models 

performed excellent in positive and negative validation, but failed in retrieving compounds 

that entered clinical trials (Supplementary Figure 2 row 1). Remarkably, models built on the 

highly active thiazolo-pyrimidines (training set 1A) showed the same pharmacophoric 

pattern as reported earlier in the literature [35] for piperidine carboxamide derivatives. 

Finally, we selected the model based on training set 1C (model M1) for virtual screening 

experiments, as it contains the lowest number of pharmacophore features (Figure 5).

The pharmacophore models built on clusters 2 and 3 provided the richest spectrum of 

information about main features responsible for activity of TRPV1 antagonists. Three types 

of pharmacophoric patterns were obtained for the highly active isoquinolin-aralkyl-ureas of 

cluster 2 (training set 2A) (Figure 4A, row 2, models 1–4, 5–8 and 9–10). However, for the 
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middle active representatives (training set 2B), only a single pharmacophoric pattern was 

identified (Figure 4B, row 2). This pharmacophore mimicked the feature pattern described 

by Blumberg et al. [33,41] for benzyl-thiourea derivatives, with two lipophilic areas and two 

H-bond acceptors. Noteworthy, all 20 models built for the training sets 2A and 2B showed 

excellent performance in both positive and negative validation (Supplementary Figure 2, row 

2). We selected model 8 (M2) from the training set 2A and model 9 (M3) from training set 

2B for further virtual screening of the vendor database because they retrieved more active 

representatives of the family cluster as well as several clinical candidates (ABT102 [16], 

GRC6211 [16] and AMG425619 [43]) (Figure 5 & Table 2).

The 10 models from training set 3A showed one distinct pharmacophoric pattern (Figure 4A, 

row 3) and performed excellent in positive and negative validation (Supplementary Figure 2, 

row 3). We selected model 1 (M4) built from the training set 3A for virtual screening, 

because, when compared with the other nine models from this cluster, M4 identified all 

compounds from the initial training set 3A and one compound from the clinical data set 

(NGD8243 [16]) (Figure 5 & Table 2). The pharmacophoric patterns identified for the 

training set 3B (Figure 4B, row 3) were found in 4 compounds from the clinical data set 

(AMG425619 [43], A993610, BCTC, NGD8243 [16]) and representatives of other clusters 

(Supplementary Figure 2, row 3). Finally, model 3 (M5) outperformed other models in the 

validation with the decoy set therefore we selected this model for virtual screening (Figure 5 

& Table 2).

Models obtained for the training sets 2C and 3C contained four and three pharmacophore 

features, respectively, (Figure 4C, row 2) and thus were quite unspecific. They showed high 

false positive rates in the validation with the decoy data sets (Supplementary Figure 2, row 2 

and row 3) and were thus excluded from further considerations.

Finally, the models built on different training sets of cluster 4 contained from two to four 

pharmacophore features. Two distinct pharmacophoric patterns were identified for the 

training set 4A (Figure 4A, row 4). One of them also included three features reported [16] 

earlier for a data set of TRPV1 antagonists in clinical trials, namely an aromatic ring, an H-

bond donor and an H-bond acceptor. However, due to a lower amount of features, the 

pharmacophore models built on representatives of cluster 4 performed poorly in positive and 

negative validation (Supplementary Figure 2, row 4). Therefore, none of the models were 

selected for further virtual screening of the vendor database. Noteworthy, models containing 

two pharmacophore features (Figure 4B & C, row 4) could not undergo validation screening 

because the pharmacophore alignment algorithm requires presence of at least three features.

Virtual screening & selection of compounds for biological testing

Virtual screening of LifeChem with the 5 selected models, M1, M2, M3, M4 and M5, led to 

a hit list of 1909 compounds (Table 3). Each compound mapped all the pharmacophore 

features of the respective model and did not interfere with the exclusion volume of that 

model. Finally, 12 compounds were selected for the experimental validation following the 

protocol described below (Figure 3).
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The LifeChem compound library used for virtual screening comprises 3046 diverse 

chemical series, where each chemical series corresponds to a certain compound scaffold 

with 1 to 6201 derivatives. The 1909 compounds from our hit list clustered in 578 chemical 

series with 1 to 43 representatives. Consequently, we were interested to pick compounds 

from those chemical series, which had numerous representatives in the hit list as well as in 

LifeChem. Therefore, the amount of derivatives for each chemical series in the LifeChem 

(LC) and in the hit list (S) was retrieved and the frequency (f) of each chemical series in the 

screening results was calculated according to (Equation 1).

f = S
LC Equation 1

Thus, a higher frequency for a certain chemical scaffold indicates that the number of 

representatives in the hit list for this scaffold is close to the number of representatives in the 

LifeChem database. Noteworthy, chemical series with less then 20 representatives in 

LifeChem were excluded from the analysis. Consequently, we purchased the top-ranked 

compound of those series showing a frequency greater than 5% (Figure 6). Occurrence of all 

chemical series in the hit list is provided in Supplementary Table 3.

Results of biological testing

The biological activity of the 12 selected compounds on a rat TRPV1 clone was analyzed by 

means of the two-micro-electrode voltage-clamp technique. HPLC and 1H-NMR spectra of 

the compounds tested are provided in Table 4 and Figures 5-16 of the Supplementary 

Material.

Current amplitudes evoked by 1 μM 1 as control were set as control for reference (100%). 

When currents evoked by co-application of 1 (1 μM) and tested compounds were smaller 

than the control, this indicated inhibitory activity. Interestingly, also increase of currents was 

observed (though statistically not significant), which would indicate either partial agonistic 

activity or positive allosteric modulation of the receptor. Additionally, we used a TRPV1 

antagonist (2) as a reference (Figure 1). In a first screening round all compounds purchased 

were tested at a concentration of 100 μM. Two compounds (13 and 16) induced significant 

inhibition of the activated TRPV1 receptor (p < 0.01) while the increase of the current 

response observed upon co-application of 11 and 12 was not significant (p > 0.05) (Figure 

7A). Application of 100 μM 11 and 12 in the absence of 1 induced no inward currents.

Analysis of the concentration-dependent inhibition of the inward currents through TRPV1 

by 13 and 16 revealed IC50 values of 27.3 and 36.1 μM, respectively (Figure 7B & C). Mean 

and SE values of IC50 curves are reported in Table S17. Considering the fact that drugs are 

commonly less potent on ion channels expressed in Xenopus oocytes as compared with 

channels expressed in either mammalian cells or native tissues [57], these compounds may 

represent interesting scaffolds for further studies. It is also important to emphasize that 

having identified TRPV1 inhibitors, though with low μM affinity, we consider this as a proof 

of concept, that pharmacophore modeling is an efficient method for mining data sets 

collected from public data sources.
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Compounds 13 and 16 were identified by models M5 and M3, respectively. The substances 

matched all the pharmacophore features of the respective models: compound 13 passed five 

features of model M5 and compound 16 passed seven features of model M3.

One of the common approaches to prioritize compounds for biological testing includes 

similarity search to the most active representatives of the training set. However, this results 

in selection of highly similar compounds. Therefore, in order to confirm that the 

pharmacophore-based search indeed identified new chemical scaffolds, we calculated the 

similarity between the 12 purchased compounds and the reference antagonist 2 using 

MACCS fingerprints [48] and the Tanimoto similarity metrics. Tanimoto coefficients 

obtained were between 0.29 and 0.46 (Table 4). This confirms that the compounds identified 

are indeed chemically different from the reference compound. Furthermore, also the 

similarity of the hits to the highly active representatives of each cluster (Supplementary 

Table 18) was checked. In this case, Tanimoto coefficients were below 0.6 for 95% of the 

values. These results once more support the applicability of pharmacophore models for 

scaffold hopping.

Conclusion

The public availability of large data sets for development of in silico models provides new 

opportunities for identification of novel hit compounds. However, due to the heterogeneity 

of these data, they need careful manual curation. With this manuscript we show that 

pharmacophore-based clustering of a large set of TRPV1 ligands extracted from the public 

domain combined with thorough computational and experimental validation allows to 

identify new TRPV1 inhibitors. This approach could be further projected on the chemical 

space of other biological targets, which possess abundant pharmacological data but lack 

structural information.

Future perspective

A major side effect of blocking TRPV1 is its implication in thermosensation and 

thermoregulation pathways. Related side effects, such as impaired heat sensation and 

hypothermia, often led to withdrawal of compounds from clinical trials [58]. However, very 

recently two independent groups have reported chemical structures of preclinical candidates, 

which do not elevate the body temperature [59,60]. These studies confirm the possibility to 

separate the analgesic effect from hypothermia while modulating TRPV1 with small 

molecule antagonists. Interestingly, compounds V116517 [59] and A-1165442 [60] fitted 

models M5 and M3 reported in this work (Figure 8), which further supports the validity of 

our pharmacophore models.

Since pharmacophore modeling is already an established approach for efficient identification 

of novel scaffolds for various biological targets, the approach proposed here could be further 

optimized and adjusted to the needs of a certain research question. In case of TRPV1, 

application of pharmacophore-based clustering to potential pyridine-carboxamide [59] and 

isoquinolin-urea [60] derivatives and subsequent pharmacophore modeling would allow to 

identify ensemble of pharmacophore features inducing modulation of the receptor by those 
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molecules. Further, one could compare these models with pharmacophore patterns present in 

compounds failing the body temperature studies and compounds withdrawn from clinic. It 

would identify pharmacophoric ensembles causing these side effects in candidate molecules.

In addition, recently published structures of TRPV1 allow application of molecular docking. 

Combined with pharmacophore modeling, docking would suggest protein–ligand 

interactions at the place in the binding site derived from the pharmacophore features of the 

small molecules. Therefore, it would be possible to distinguish pharmacophoric interactions 

between the protein and its ligands with both safe and unsafe profiles. Further, lead 

optimization of the series with established pharmacophores would focus on development 

candidates with less undesirable side effects. Taken together, an elaborated pharmacophore 

approach would allow generation of novel chemical entities with the desired profile.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key terms

Capsaicin: Pungent component of chili peppers, an agonist of TRPV1.

Capsazepine: First discovered antagonist of TRPV1 acting competitively to capsaicin.

Pharmacophore: Ensemble of steric and electronic features of a ligand molecule which 

determines optimal interactions with a specific biological target.

Binding mode: Certain ensemble of interactions between ligand and the receptor at the 

specific binding site.

LifeChem: Life Chemicals, a vendor database of small organic molecules and molecular 

fragments.
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Executive summary

Pharmacophore-based clustering of the data set & computational validation of the 
pharmacophore models

• This study gives a profound systemized classification of the pharmacophoric 

patterns present in publicly available TRPV1 antagonists sharing the same 

binding site. Identified pharmacophores reflect the complexity of the binding 

site in TRPV1, which can accommodate structurally diverse ligands of 

different size.

Virtual screening & results of biological testing

• The applicability of two pharmacophore models for virtual screening was 

confirmed and led to the identification of novel scaffolds for TRPV1 receptor 

modulation.

• Two out of 12 compounds tested inhibited TRPV1, two other compounds 

showed modulation of TRPV1 in coapplication with capsaicin.

• Pharmacophore modeling is an efficient approach to mine large data sets 

composed of local structure–activity relationship series

Future perspective

• Prosperous models are provided as pml files in the Supplementary Material 

along with the article and can be freely used by the academic community in 

the future.

• The experimentally validated ligand-based pharmacophore models presented 

will be further implemented in house in structure-based studies on the 

recently released structure of the receptor.
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Figure 1. Three important pharmacophores of TRPV1 ligands.
Pharmacophoric comparison of (1) capsaicin [7], (2) capsazepine [7], (3) benzylthiourea 

derivatives [33], (4) piperidine carboxamide derivatives [35], (5) 1,3,4-thiadiazole 

derivatives [36] according to three structural sections of TRPV1 ligands: (A) polar head, (B) 
linker and (C) hydrophobic tail.

Goldmann et al. Page 17

Future Med Chem. Author manuscript; available in PMC 2019 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Model generation and computational validation.
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Figure 3. Selection of compounds for biological testing.
LC: LifeChem; S: Hit list.
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Figure 4. Pharmacophore models built for 201 TRPV1 antagonists.
Ten models built for each training set are superposed on the chemical structure of the most 

active representative of the respective cluster. (A) Models built on highly active 

representatives of the clusters. (B) Models built on highly active and middle active 

representatives of the cluster. (C) Models built for the whole cluster. (D) The most active 

representative of each cluster. Pharmacophore features: yellow: lipophilic substitution; blue: 

Aromatic ring; red: H-bond acceptor; green: H-bond donor.

For colour images see online: www.future-science.com/doi/full/10.4155/FMC.14.168
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Figure 5. Pharmacophore models M1-M5 selected for virtual screening of the LifeChem 
database.
Pharmacophore features: yellow: lipophilic substitution; blue: aromatic ring; red: H-bond 

acceptor; green: H-bond donor.

For colour images see online: www.future-science.com/doi/full/10.4155/FMC.14.168
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Figure 6. Twelve compounds selected for biological testing.
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Figure 7. Biological testing of 12 selected compounds.
(A) Inhibition of capsaicin (1 μM) induced inward currents trough TRPV1 expressed in 

Xenopus oocytes, illustrated as mean ±SE residual current in % of control. Test compounds 

and capsazepine (2) were applied at 100 μM (n = 3–10). (B&C) Concentration-dependent 

inhibition of TRPV1 currents by test compounds 13 and 16, respectively. The p-value for 

compound 13 and 16 is less than 0.01 where the p-value for compound 11 and 12 is greater 

than 0.05.
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Figure 8. Preclinical candidates in the validated pharmacophores.
(A) Compound V116517 [59] in pharmacophore M5, 3D and 2D view. (B) Compound 

A-1165442 [60] in pharmacophore M3, 3D and 2D view. Pharmacophore features: yellow: 

lipophilic substitution; blue: aromatic ring; red: H-bond acceptor; green: H-bond donor.

For colour images see online: www.future-science.com/doi/full/10.4155/FMC.14.168
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Table 1
Amount of compounds in each pharmacophore cluster.

Cluster Representatives

1 31

2 63

3 87

4 5

5 5

6 3

7 2

8 1

9 1

10 1

11 1

12 1
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Table 3
Results of virtual screening of a vendor database LifeChem.

Model Amount of hits

M1 46

M2 23

M3 182

M4 32

M5 1626
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Table 4
Tanimoto similarity between 12 tested compounds and reference compound 2.

Compound Similarity

6 0.2985

7 0.3415

8 0.3649

9 0.2879

10 0.4583

11 0.2879

12 0.3919

13 0.3571

14 0.3684

15 0.3043

16 0.4024

17 0.4375
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