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Abstract 

Episodic memory is thought to be preferentially encoded by sparsely distributed memory-eligible 

“primed” neurons with high excitability in memory-related regions. Based on in vivo calcium imaging on 

freely behaving mice, we developed an analytical method to determine the neuronal activity hierarchy and 

establish hippocampal primed neurons. Neurons with high activity and memory-associated burst 

synchronization are identified as primed neurons. When a trace fear memory is being formed or retrieved, 

the major pattern of the calcium dynamics is predominantly mediated by primed neurons and highly 

correlated with mouse freezing behaviors. In cilia knockout mice that exhibit severe learning deficits, the 

percentage of their primed neurons is drastically reduced, and any burst synchronization is strongly 

suppressed. Consistently, the first principal pattern of cilia knockout neurons does not fully distinguish 

itself from other minor components or correlate with mouse freezing behaviors. To reveal how a portion 

of neurons get primed, we developed a numerical model of a neural network that incorporates simulations 

of linear and non-linear weighting synaptic components, modeling AMPAR- and NMDAR-mediated 

conductances respectively. Moderate NMDAR to AMPAR ratios can naturally lead to the emergence of 

primed neurons. In such cases, the neuronal firing averages show a right-skewed log-distribution, similar 

to the distributions of hippocampal c-Fos expression and the activity levels measured by in vivo calcium 

imaging. In addition, High basal neuronal activity levels speed up the development of activity hierarchy 

during iterative computation. Together, this study reveals a novel method to measure neuronal activity 

hierarchy. Our simulation suggests that the accumulation of biased synaptic transmission mediated by the 

non-linear weighting synaptic component represents an important mechanism for neuronal priming.   
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Introduction 

It is well-known that a small portion of sparsely distributed memory-eligible “primed” neurons (or engram 

cells) in memory-related regions, including the hippocampus, that mediates episodic memory formation 

1-5. These neurons are recruited to encode memory information and can sustain long-term synaptic 

modifications to store memories 5,6. A long-held view on episodic memory formation posits that the 

memory-eligible neurons “activate” during learning to acquire memory information and the same group 

of neurons “re-activate” during recall to retrieve the memory 3,4,6,7. This engram concept was originally 

proposed over a century ago 8-10, advanced by contextual fear conditioning experiments 3, and supported 

by engram cell manipulation experiments 4,6,7,11-15.  

While the activation and re-activation engram model has greatly advanced our understanding of 

contextual fear memory and spatial memory 6,12,13,16-18, it has limitations in fully explaining the network 

mechanisms of episodic memory that does not critically depend on spatial information. First, by detecting 

the expression of immediate early genes such as c-Fos 3, the “neuronal activation” only captures the 

cellular step of memory consolidation or the “nuclei activation” of memory-eligible neurons 3, rather than 

the exact process of memory acquisition. Second, this model does not include the contribution of synaptic 

components to constructing the neural network of memory. Third, mounting evidence has demonstrated 

that there is an excitability hierarchy among principal neurons in memory-related regions 19-21. It is the 

neurons with increased excitability, namely “primed neurons”, in memory-related brain regions 19,22-25 that 

are preferentially recruited to acquire or retrieve a memory. It has also been documented that the same 

group of memory-eligible neurons can maintain a high activity status for many days 26-28. If simply the 

activation of memory-eligible neurons encoded a memory, it could not allow for the same subset of 

neurons to encode different memories within the same period. Fourth, our recent deep-brain in vivo 

calcium imaging in conjunction with trace fear conditioning 28 has demonstrated that multiple cycles of 

aversive foot shock stimuli fails to stimulate relatively “silent” hippocampal CA1 neurons to actively 

engage in trace fear memory formation. This suggests that it is unlikely for hippocampal principal neurons 

to directly activate from the silent state to encode a memory. We have also found that the overall activity 

levels of hippocampal neurons exhibit a right-skewed log-distribution, and a portion of “primed” 

hippocampal neurons develop burst synchronization when a trace memory is being formed or retrieved 28.  

It is recognized that a neuronal activity hierarchy is crucial for hippocampal memory formation 19-

21. However, an in vivo neuronal activity hierarchy has yet to be quantitatively determined. Based on deep-

brain in vivo calcium imaging taken during freely behaving trace fear conditioning experiments, we sought 

to develop a new method to measure the neuronal activity hierarchy and quantitatively differentiate primed 

and non-primed neurons. Empirically we have determined two criteria that are the most useful to 
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distinguish primed neurons from non-primed neurons: (1) high basal activity levels prior to training with 

increased activity through training; (2) the ability to form memory-associated burst synchronization during 

trace fear conditioning and recall testing. We included these criteria in our computations. We also 

employed a novel use of principal component analysis (PCA) to the calcium dynamics of all imaged 

neurons to extract the major activity pattern, which can then be compared to the calcium dynamics of the 

primed neurons. We found that primed neurons clearly exhibit distinct features which differentiate them 

from those of non-primed neurons. To confirm this quantification methodology, we also used a strain of 

primary cilia knockout mice which exhibit severe learning deficits. As expected, cilia knockout mice have 

a lower activity hierarchy and much fewer primed neurons, do not develop memory-associated burst 

synchronization, and do not form a major pattern associated with training that can be fully distinguished 

from other minor patterns 

To date, little is known about how a neural activity hierarchy is developed to enable a fraction of 

neurons to be preferentially recruited to encode a hippocampal memory. To explore the mechanisms of 

neuronal priming, we developed a simplified neural network simulation model that consists of a two-

dimensional array of neurons. It incorporates simulation of synaptic transmission that has linear and non-

linear weighting components. Linear and non-linear weighted components simulate the AMPAR- and 

NMDAR-mediated conductances, respectively, in the post-synapses. One crucial difference between the 

AMPAR- and NMDAR-mediated conductances is the voltage-dependent magnesium-blockade of the 

NMDAR29,30. In addition to glutamate binding, NMDAR requires the depolarization of membrane 

potential to unbind the magnesium blockade and fully open the ion channel 30,31. This means that 

NMDARs in active or depolarized neurons are more responsive to glutamate stimulation than those in 

inactive neurons, thereby generating a non-linear weighting component of the excitatory synaptic 

transmission. This scenario favors effective synaptic communication to active (or depolarized) neurons 

over inactive neurons. Our simulation shows that the presence of NMDAR is critical for the development 

of neuronal priming and a moderate ratio of NMDAR to AMPAR can naturally lead to the emergence of 

primed neurons in the course of 12,500 computational iterations. In such cases, the overall neuronal firing 

averages show a right-skewed log-distribution, similar to the right-skewed distribution measured by c-Fos 

expression and by our in vivo calcium imaging 28. We further found that the basal neuronal activity also 

affects the development of the neuronal activity hierarchy and that a high initial neuronal activity speeds 

up the formation of the activity hierarchy. This simulation is the first to show that the accumulation of 

non-linear synaptic transmission, likely mediated by the NMDAR conductance, represents an important 

mechanism for neuronal priming.  
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Methods 

Mice 

All animal-related procedures were approved and conducted in accordance with the guidelines of the 

Institutional Animal Care and Use Committee of the University of New Hampshire. Mice were maintained 

on a 12-h light/dark cycle at 22°C and had access to food and water ad libitum. The Ift88 floxed mouse 

strain 32 was cross-bred with UBC-Cre/ERT2 as previously reported (C57B1/6j genetic background, 

mixed genders) 33. At the age of 8-10 weeks, Ift88 flox/flox: UBC-Cre/ERT2 mice were orally 

administrated with tamoxifen (0.2 mg/g body weight, consecutive 7 days) to induce Cre recombinase 

expression to ablate Ift88 and generate Ift88 cilia KO mice, or with vehicle (corn oil) to make vehicle 

control mice. Ift88 flox/+ (or Ift88 +/+): UBC-Cre/ERT2 mice with the same tamoxifen treatment were 

used as genotype controls. We observed that vehicle control and genotype control mice exhibited very 

similar results and their data were combined into one control group. Ift88 cilia KO mice exhibit normal 

acoustic and foot-shock responses. To verify that primary cilia were efficiently deleted in cilia KO mice, 

we also assessed the efficiency of cilia ablation with immunostaining using AC3 antibody (1:4000, Cat# 

RPCA-ACIII, EnCor). More than 90% of primary cilia in the hippocampus were ablated (see Fig. 2A) 

using this inducible ablation protocol, consistent with our prior report that deleted AC3 33. For behavioral 

tests, mice were handled by investigators for 5 days to allow them to adjust to the investigators before 

starting the experiments. 

 

Mice surgery and AAV viral vector injection 

Surgery was performed one week after tamoxifen/vehicle administration, as previously described28. Mice 

were anesthetized by 1.5-2% isoflurane and mounted on a stereotaxic frame (David Kopf Model 940). A 

special canula implant (Mauna Kea Technologies, Paris, France) was installed above a small window 

through the skull (coordinate: AP: −1.95 to −2.05 mm relative to the Bregma, ML: −1.6 mm relative to 

the midline). The cannula implant allowed the injection of viral vector (0.5 µl AAV1-Syn-GCaMP6m, 

Addgene, ID 100841) into the hippocampal CA1 region (coordinate: DV: −1.45 to -1.55 mm from the 

skull) to express calcium indicator and allow a fiber-optic imaging microprobe to go through (Fig. 1A, 

Created with BioRender.com.). Mice were used for in vivo calcium imaging and trace fear conditioning 8 

weeks after the canula implantation surgery.  

 

Imaging acquisition 

In vivo calcium dynamics were acquired by a Cellvizio Dual-Band 488/660 imaging system (Mauna Kea 

Technologies, Paris, France). A CerboflexJ NeuroPak deep-brain fiber-optic microprobe (having over 
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7600 optical fibers) collected the green florescent signal of GCaMP6m from hippocampal CA1 region 

(coordinate relative to the Bregma: AP: −1.95 to −2.05 mm, ML: −1.6 mm, DV: −1.75 to -2.55 mm). 

GCaMP6m fluorescent signals were acquired every training or recall cycle to monitor the real-time 

calcium dynamics. Imaging sessions were also recorded prior to training and recall, after training, during 

resting and under isoflurane-induced anesthesia. Acquired imaging data (25 Hz, 66 seconds for training 

cycles, 55 seconds for others) were analyzed off-line using IC Viewer 3.8 (Mauna Kea Technologies, 

Paris, France). Regions of interest (ROI) of the calcium signals for individual cells were manually selected 

to cover at least 3 fibers. ROIs from background areas covering 50 fibers without GCaMP6 expression 

were selected to detect the background pattern, which, in turn, was used to eliminate imaging noise and 

artifacts. 70 - 140 individual cell ROIs and 12 background ROIs were collected from every animal (Fig. 

S1C). Representative calcium traces throughout the manuscript are the calcium intensity relative to the 

basal level (%ΔF/F) computed as the GCaMP6m fluorescence intensity divided by the intensity average 

of 1 second (25 frames) before tone for every recording. All calcium traces used for computing 

synchronization and other analysis were first transformed to 5-second moving SD traces and the 

background artifacts were removed (Fig. 1K and Fig. S1).  

 

Background noise elimination  

The lightweight of the fiber-optic imaging microprobe permits animals to behave freely. However, free 

behaving imaging may generate certain motion artifacts and background noise. To detect background 

imaging noise, 12 background ROIs were selected from areas without GCaMP6 expression (Fig. S1C). 

Any consistent fluctuations in these background ROIs were considered imaging noise or motion artifacts 

(Fig. S1D). To remove any background noise patterns, the calcium traces from the background regions 

were first transformed by computing a standard deviation over a 5-second moving window (Fig. S1D). 

While the SD trace over a 5-second window does “smear” the data over those 5-seconds, this has the 

benefit of reducing the effect of any white noise in the data in addition to eliminating potentially spurious 

phase information (Fig. S1A-B). The final calculations are not particularly sensitive to the precise choice 

in the length of the window as long as the same process and window lengths are used for both the 

background regions and the individual neurons. The background 5-second SD traces were normalized and 

then analyzed through a PCA analysis, which is used to identify any patterns consistent among the 

background regions (Fig. S1D-ii). The principal components in the PCA analysis with scores that were 

above the average (approximately 4-5 patterns) were then deemed to be artifacts in data and were used as 

the background artifact/noise patterns (Fig. S1D-iii). The identified artifacts were then eliminated from 

all individually neuronal calcium signals’ 5-second SD traces (Fig. S1E-F) by calculating the projection 
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of the individual signal patterns onto the identified artifact patterns and subtracting that projection from 

the individual neuron’s SD trace, thus orthogonalizing all the individual neuron’s SD traces to all artifact 

patterns (Fig. S1F).  

 

PCA analysis and the calculation of the neural synchronization levels 

Once the 5s-moving SD trace of each individually measured neuron had been computed and all artifact 

patterns removed, a second PCA was performed to determine the major pattern in the individual neuron 

responses. Here we looked at the singular vector with the largest singular value (or the principal 

component with the largest score) which represents a signal pattern that was exhibited more often in the 

neurons than any other pattern. Since this major pattern was constructed after the SD traces of all the 

individual neurons have had any background artifacts removed, the major pattern is orthogonal (or 

completely uncorrelated) to any of the identified background artifacts patterns (Fig. S1F).  

After the major pattern for neuronal signals has been identified, correlations between the SD traces 

of all individual neurons and the major pattern can be computed (results reported in Fig. 4A). Similarly, 

the correlation between any given pair of SD traces can be computed in the heatmaps (results reported in 

Fig. 3). Values for these correlations which are above 0.7 signify strong correlations 34. When the principal 

component score corresponding to the major pattern was significantly larger than the next largest score, 

many individual SD trace signals were found to have high correlations in our imaging data (Fig. S2). 

These high correlations with a single major pattern are a clear indication of neural priming. The extent to 

which the neuron is primed can be estimated by the number of neurons exhibiting a strong correlation 

with the major pattern. 

We collected calcium images of individual neurons under different conditions, including under 

anesthesia using 2% isoflurane. The neuronal calcium dynamics under anesthesia served as the internal 

reference for normalization, used to eliminate individual variance in signal detection and GCaMP6m 

expression and to allow for quantitative comparison between different animals. The activity levels of 

individual neurons were calculated as the ratio of the SD-of-SD value during training cycles to the SD-of-

SD value under anesthesia. In our previous report 28, the neuronal activity levels were estimated using the 

ratio of variances of the calcium traces during training relative to those under sleep (Fig. S3B). That 

method could distinguish silent neurons from primed neurons clearly but was unable to accurately separate 

intermediately active neurons from primed neurons (Fig. 4B). We define primed neurons as high-activity 

neurons with strong responses to learning cues and able to form burst synchronization with each other. 

Some intermediately active neurons be exhibit relatively high activity but while their calcium traces 

showed consistent high amplitude, they were not as responsive to learning cues in that their SD traces 
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remained relatively uncorrelated with the major pattern (Fig. S1B). The second order activity level 

measured by the SD-of-SD more accurately separates primed neurons from intermediately active neurons 

than the first order activity level measured by variance. Using the SD-of-SD value highlights, in particular, 

bursting signals and using it we can differentiate bursting signals from consistent high-amplitude 

fluctuations and efficiently distinguish primed neurons from intermediate and silent neurons (Fig. 4C). 

 

Immunofluorescence staining  

Mice were euthanized, and brain tissues were extracted and fixed with 4% paraformaldehyde at 4°C 

overnight. After sliced, brain samples were subjected to fluorescence immunostaining using primary 

antibodies against ACIII (1:4000, Cat# RPCA-ACIII, EnCor), GFAP (1:500, Cat# Z0334, Dako), and c-

Fos (1:500, Cat# MCA-2H2, EnCor), followed by secondary antibodies (conjugated with Alexa Fluor 488, 

546, or 647, 1:500) to verify GCaMP6 expression, imaging site and c-Fos expression, reactive astrogliosis 

(GFAP staining) in the hippocampal CA1 region. The number of c-Fos positive neurons normalized to the 

nuclear number and GFAP/DAPI intensity ratio were compared between the surgical and non-surgical 

hemispheres in 12 slices collected from 4 animals. 

Control mice (n = 5, including vehicle control and genotype control at nine weeks after 

tamoxifen/vehicle administration) were euthanized 45 minutes after trace fear conditioning following the 

protocol above. Sliced brain samples (50μm) were subjected to fluorescence immunostaining using 

primary antibodies against c-Fos (1:5000, Cat# RPCA-c-Fos, EnCor) and secondary antibodies 

(conjugated with Alexa Fluor 488, 1:500) to measure neuronal activity level in the hippocampal CA1 

region. The fluorescent intensity of c-Fos signal from the single cell was compared to the average of all 

c-Fos positive neurons in the same image for the neuronal activity level distribution. All fluorescence 

images were captured using a Nikon A1R HD confocal microscope acquired using the same setting 

including exposure time, gain and laser power settings. Images were processed and analyzed by Fiji 

ImageJ 35. 

 

Electroencephalogram (EEG) surgery and recording under isoflurane-induced anesthesia 

Mice at 3-4 months old age (mixed sexes) were implanted with EEG/EMG headmounts, performed as 

described previously 36 and followed the manufacturer’s instructions (Pinnacle Technology, Lawrence, 

Kansas). Briefly, mice were anesthetized by isoflurane before being aligned in a stereotaxic surgery 

apparatus. After exposing the mouse skull surface, headmount was centered along the sagittal suture, with 

its front edge 3.5 mm anterior to bregma. EEG headmount was secured to the skull with stainless steel 

screws, which also served as EEG electrodes. After a one-week recovery from surgery in home cages, 
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mice were tethered to EEG commutators and housed in circular cages individually. Mice were adapted to 

the EEG connecting wire in a free-moving condition for 2 days. Afterwards, mice were subsequently put 

in a closed chamber containing 3% isoflurane to monitor EEG brain waveform over the course of 

anesthesia. EEG was amplified 5,000 times and sampled at a rate of 400 Hz. EEG waveforms were 

analyzed using Sirenia software offline (Pinnacle Technology, Lawrence, Kansas). 

 

Trace fear conditioning test 

Trace fear conditioning was performed using Ift88 cilia KOs and controls 8 weeks after tamoxifen/vehicle 

administration. The mouse was placed in a fear conditioning chamber (VFC-008CT-LP) with a grid floor 

(VFC-005A, Med Associates Inc, Vermont). Trace fear conditioning was conducted as previously 

described 28 after 10 minutes of exploration and acclimation with minor modifications. A neutral tone (3 

kHz, 80 dB, 15 s) was used as a conditioning stimulus, followed by a mild electric foot shock (0.7 mA, 1 

s) as an un-conditioning stimulus. There was a 30 s trace period between tone and shock to slow the direct 

association between CS and US. The training cycle (10 s prior to tone, 15 s tone, 30 s delay, 1 s foot shock, 

10 s post shock, and 190 s interval) was repeated 7 times to form a trace memory. The video was recorded 

for 20 mins after the 7th training cycle to monitor the difference of mouse prior- and post-training behaviors. 

After the training procedure, the mouse was placed in a resting box with ab libitum bedding and feeding. 

Normal mouse behaviors, including nesting, grooming, feeding, and drinking, sleeping, were observed 

during a 2-hour resting period. Afterward, memory retrieval was tested by recall procedure in a new 

environment (solid plastic walls and floor) after 10 mins of exploration and acclimation. A modified tone 

(3 kHz, 80 dB, 5 s) was used as the cue for recall. The recall cycle (10 s prior to tone, 5 s tone, 30 s delay, 

absence of foot shock, 10 s post shock, and 110 s interval) was repeated 5 times. Trace fear conditioning 

training and recall procedures were videotaped (25 frames per second). Videos were tracked by Noldus 

Ethovision XT (version 11.5) for real-time moving velocity, freezing, and locomotion. Freezing was 

defined as real-time velocity lower than 1 mm/s, automatically measured by Enthovision XT. 10 pairs of 

cilia KOs and controls (mixed genders) were used for comparison in the trace fear conditioning test. 

 

Morris water maze test  

A behavioral paradigm of the Morris water maze test was used to determine if cilia KOs exhibit impaired 

spatial memory. A 150 cm-diameter circular pool was filled with 25 cm-deep water (23 ℃) with white 

tempura paint. Four shapes (square, circle, triangle and star) were labeled in the cardinal directions of the 

tank periphery as start points. A 10 cm-diameter circular platform was hidden 1.5 cm below the water 

surface in the target quarter. Three 120-second trials from different start points were conducted daily for 
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5 consecutive days. When a mouse failed to find the hidden platform within 120 seconds, it would be 

placed on the platform for 20 seconds. One day following training, mice were put back into the tank 

without the hidden platform for 120 seconds in the probe test (4 trials in the 6th day). The trials were 

videotaped (25 frames per second). Noldus Ethovision XT (Version 11.5) was used to track the latency to 

find the hidden platform, velocity, and duration in every quarter. Means of daily trials were compared 

between 10 pairs of (mixed genders) cilia KO and control mice. 

 

Bursting analysis of time-frequency plots of imaging 

While SD traces only capture the magnitudes of fluctuations in the signal, some information on the 

frequency of the fluctuations can be obtained. The maximum frequency that can be directly observed is 

limited to 12.5 Hz (due to the 25 Hz sampling rate) while any higher frequencies will be aliased and appear 

as a frequency from 0 to 12.5 Hz. Time-frequency plots were generated by computing short-time Fourier 

transforms using the “stft” algorithm in MATLAB. The fast Fourier transform (FFT) length was set to 

512 with an overlap of 252 and a 256 length Kaiser-Bessel-derived window with a parameter beta of 10. 

The frequency as function of time can then be displayed as a heat map (results in Fig. 3). Synchronization 

and bursting patterns can still be observed even if the frequency data is aliased and the precise frequencies 

in the signal exhibiting the bursting behavior cannot be determined. 

 

Neural network simulation 

A two-dimensional computational array of 𝑁𝑟 = 2000 rows (cell number per layer) by 𝑁𝑐 = 30 columns 

(or layers) of neurons was simulated through 12,500 computational iterations. The model serves as a 

relatively simple demonstration of a possible mechanism for neural priming. As the precise configuration 

of a grouping of neurons in the brain is unique and extremely complex, many simplifying assumptions 

were made to make the simulation tractable, though extensions and generalizations of this model will be 

explored in future work. The parameters used in the model were modified through trial and error to obtain 

the results shown, and using different parameters can yield significantly different results and distributions, 

although alternate parameters can also yield similar results.  

Several properties are kept track of for each neuron at each time cycle. The activation level of the 

neuron in the ith row and the jth column is labeled 𝐴𝑖𝑗, representing the activation level of the neuron. The 

net charge in the neuron was scaled to a unit interval so that if 𝐴𝑖𝑗 reaches or exceeds the value of 1, the 

neuron will fire which will result in a charge being received by neurons in column 𝑗 + 1. The value 𝐹𝑖𝑗 is 

the amount a given neuron has fired over approximately the last 2,500 time cycles and represents the 
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recent firing activity level of the neuron. To accelerate the simulation, 𝐹𝑖𝑗 was updated once every 50 

iterations. This simulation was initialized with all values of 𝐴𝑖𝑗 randomly and uniformly selected from the 

interval [0,1] and all values of 𝐹𝑖𝑗 set to zero. A given neuron in layer 𝑗 is assumed to be connected to all 

the neurons in layer 𝑗 + 1 (that is when a neuron in layer 𝑗 fires, the activation level of all 2000 neurons 

in layer 𝑗 + 1 will increase to varying degrees). The connection strength, 𝑆𝑘𝑖 between a neuron in layer 𝑗 

and row 𝑖 to a neuron in layer 𝑗 + 1 and row 𝑘 is independent of 𝑗 and given by  

𝑆𝑘𝑖 =
𝑒−0.003𝐷𝑘𝑖

∑ 𝑒−0.003𝐷𝑘𝑖𝑘
, 

 where 𝐷𝑘𝑖  is given by the minimum of three quantities |𝑘 − 𝑖|, |𝑘 − 𝑖 − 𝑁𝑟|, and |𝑘 − 𝑖 + 𝑁𝑟|. These 

definitions enforce a periodic boundary condition so that the bottom row is considered to be just above 

the top row. While a given neuron in layer 𝑗 does connect to all neurons in layer 𝑗 + 1, 𝑆𝑘𝑖 decays rapidly 

as the rows 𝑘  and 𝑖  become further separated and so each neuron in layer 𝑗  will only have a strong 

connection with a relatively small number of neurons in layer 𝑗 + 1 (less than 100). 

At the beginning of each cycle, 120 neurons (6%) were randomly selected from the first layer and 

the corresponding values for the activation level of those 120 neurons were set to 1. Then, layer by layer, 

the entire mesh is checked to see if 𝐴𝑖𝑗 ≥ 1 and all the neurons with an activation level greater than or 

equal to 1 are fired, before moving on to the next layer.  

As each neuron fires, two separate calculations for the signal transmission are computed, modeling 

the production and transmission of neurotransmitters, being passed to the next layer.  

For the linear AMPAR-mediated synaptic conductance, when the neuron in row 𝑖 and column 𝑗 

fires, the activation levels for the neurons, 𝐴𝑘(𝑗+1) for all 𝑘, are increased by an amount 

𝐴𝑘(𝑗+1) = 𝐴𝑘(𝑗+1) + 0.725𝐴𝑖𝑗𝑆𝑘𝑖. 

This increase is only affected by the strength of the connection between the neurons and is independent 

of the activity level of any neuron. A secondary, non-linear synaptic NMDAR-mediated conductance for 

all 𝑘 is calculated as 

𝐴𝑘(𝑗+1) = 𝐴𝑘(𝑗+1) +
0.275𝐴𝑖𝑗𝑆𝑘𝑖(𝑓(𝐹𝑘(𝑗+1)) + 0.00001)

2

∑ 𝐴𝑖𝑗𝑆𝑘𝑖(𝑓(𝐹𝑘(𝑗+1)) + 0.00001)
2

𝑘

, 

where the function 𝑓 is a monotonically increasing form of a logistic function given by 

𝑓(𝑥) =

1
1 + 𝑒−0.015(𝑥−250) −

1
1 + 𝑒3.75

(1 −
1

1 + 𝑒3.75)
. 
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The logistic function guarantees that as the firing activity level of the target neuron increases, so does the 

proportion of the charge that neuron receives up until the point where the NMDAR gates can be considered 

effectively fully open at which point 𝑓(𝑥) will be equal to 1. For example, 𝑓(600) and 𝑓(700) have 

nearly identical values and both are extremely close to 1. The value 0.00001 is merely chosen as a small 

value that will generally have little impact on the calculation but prevents the denominator from being 0 

before any neurons have fired.  

The two transmissions of charge above, corresponding to AMPAR- and NMDAR-mediated 

conductances (net of any impendence), respectively, together sum over 𝑘 to be precisely the value of 𝐴𝑖𝑗 

which ensures the stability of the algorithm. If they summed, in general, to be greater than 𝐴𝑖𝑗, then in 

each subsequent layer the number of times the neurons will fire grows exponentially and unphysically. If 

they summed, in general, to be less than 𝐴𝑖𝑗, then in each subsequent layer the number of times the neurons 

will fire shrinks exponentially and neurons may almost never fire in the furthest layers, which is also 

unphysical. After the values of 𝐴𝑘(𝑗+1) have been updated, the value of 𝐴𝑖𝑗 is set to zero and the algorithm 

moves on to the next neuron to fire. For neurons firing in the last layer, there is no transmission, and we 

need only to set 𝐴𝑖𝑗 to zero. The AMPAR conductance does not depend on how active any neuron is, 

while the NMDAR conductance increase as the receiving neuron becomes more active relative to the other 

connected neurons. Even though the NMDAR conductance is only 27.5% of the total, this is sufficient for 

neural priming to be observed. 

 

Statistical analysis and graphic data presentation 

If the data’s sample sizes were more than 50, or if the sample size were less than 50 but they passed 

normality tests, statistical analyses were carried out using Student's t-test for a two-group comparison, or 

ANOVA test for multiple-group comparison. If the data's sample sizes were less than 50 and they failed 

to pass normality tests, a nonparametric test was used for two-group comparison or for multiple-group 

comparison. ns, not significant, *P < .05, **P < .01, ***P < .001, and ****P < .0001. A difference in data 

comparison was considered statistically significant if P < .05. Values in graphic data presentation are 

shown as the means ± the standard error of the mean. 

Results  

One-day fiber-optic in vivo calcium imaging avoids pathological neuronal activation, uniquely 

suited to determine neuronal activity hierarchy.  

It is critical to ensure no pathological neuronal activation before in vivo calcium imaging, as this helps 

maintain neural activity at the physiological state to allow for the determination of the neuronal activity 
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hierarchy and the quantitative identification of primed neurons. We combined a deep-brain fiber-optic 

confocal (FOC) fluorescence endomicroscopy with mouse trace fear conditioning experiment in a time-

locked manner. One limitation of this imaging system is that although it can maintain imaging stability 

for over 7 hours, it does not permit repetitive imaging for multiple days 28. However, this instant one-day 

imaging approach instead confers one advantage: it omits the need for GRIN lens implantation into the 

brain and thereby avoids pathological activation and hippocampal inflammation caused by GRIN lens 

implantation and tissue injury (Fig. 1A). Indeed, the mouse hippocampus did not display pathological 

activation weeks after canula installation surgery and AAV injection, as evidenced by comparable c-Fos 

expression and GFAP staining in the surgical and non-surgical hemispheres (Fig. 1B-E). In contrast, 2-3 

days after completion of imaging, GFAP expression was found to be strongly elevated in the imaged 

region, compared to the non-imaged hemisphere (Fig. 1F). This demonstrates that the mouse hippocampus 

can stay very close to the physiological conditions right before imaging, but not after imaging that could 

cause certain injury.  

The imaging microprobe has an inner diameter of 300 µm, encasing a bundle of ~7600 optic fibers 

of 1 µm. It has a lateral resolution of 3 µm, which allowed for tracking calcium dynamics at a cellular 

resolution 28. We also developed several empirical strategies to ensure that our imaging data was collected 

from single cells (Fig. 1H-J). ROIs encircling multiple fibers (minimal 3 fibers) (outer part, red) or 1 fiber 

(inner part, green) were manually drawn respectively, and their calcium traces were compared. 1-fiber 

ROIs covered a smaller, central part of the soma, whereas multiple-fiber ROIs covered a larger area (~ 7 

x 10 µm) (Fig. 1I). The fluorescence intensity at the center is brighter than the edge, which helped separate 

the two neurons. We also compared active neurons with several relatively inactive neurons surrounding 

it. During training, neural synchronization occurs among active neurons which generally seat distantly, 

and rarely among neighboring neurons (Fig. 1I). We mostly used multiple-fiber ROIs data in our 

subsequent analysis because this yielded a better signal-to-noise ratio (Fig. 1I). However, multiple-fiber 

ROIs may potentially cover a region covering two neurons. To address this, if a multiple-fiber ROI’s 

activity pattern was very similar to all individual 1-fiber ROIs within the area, we deduced that the 

multiple-fiber ROIs cover a region from the same neuron as those 1-fiber ROIs (Fig. 1J). If the activity 

pattern of multiple-fiber ROI was different from individual 1-fiber ROIs, we reasoned this multiple-fiber 

ROI may cover a region for more than one neuron (Fig. 1J), whose data were then excluded in our analysis, 

or the ROI could be re-drawn until a single neuron was clearly defined. Further, we excluded imaging 

regions if two neurons’ imaging intensity contrast could not be clearly separated. Hence, we were able to 

collect imaging data from ROIs of single neurons and exclude ROIs that cover more than one 
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neuron. Together, this deep-brain imaging at the cellular resolution in freely behaving mice free of prior 

pathological activation is well-suited to determine hippocampal neuronal activity hierarchy in vivo.  

 Fluorescent traces of cellular calcium signals were collected and transformed into 5 second 

moving standard deviation (SD) traces, followed by artifact/noise elimination, then compute 

synchronization levels and perform other statistical analysis (Fig. 1K). More specifically, we first 

converted neuronal calcium traces into 5-second moving SD traces to smooth white noise and amplify 

bursts (Fig. S1A-B). Next, we calculated the projection of the individual neuronal SD traces onto the 

identified background noise patterns (which result from PCA to the SD traces of 12 background ROIs), 

and subtracted that projection from individual neuron’s SD traces, thus orthogonalizing individual 

neuron’s SD traces to all background patterns (see Method and Fig. S2C-F). After eliminating background 

patterns, the SD traces of individual neurons were used for the subsequent statistical analysis, including 

extracting synchronized patterns among all neurons (or among selected neuron groups) to generate the 

major pattern of the PCA, to compute the synchronization levels of individual neurons with the major 

pattern (Fig. 3), to calculate the correlation between mouse freezing behaviors and the major pattern (Fig. 

4), and to compute the SD-of-SD that reflects neuronal activity levels (Fig. 5), as well as sort out primed 

neurons using synchronization levels and the SD-of SD values (Fig. 6).  

 

Ift88 cilia KO mice exhibit severe deficits in spatial learning and trace fear conditioning and 

suppressed EEG waveform activity.  

To help verify our methods to determine neuronal activity hierarchy and determine primed neurons, we 

used Ift88 cilia KO mice (Ift88 flox/flox; UBC-Cre/ERT2 mice), which represent a temporally induced 

primary cilia loss-of function animal model 32,37 (Fig. 2A). We subjected cilia KO and control mice to a 

trace fear conditioning test and trained animals to associate the innocuous tone with aversive mild electric 

foot shock. During training, control animals had a markedly increased freezing score starting from the 3rd 

or 4th training cycle, consistent with previous reports 28, whereas cilia KOs displayed a much slower 

response to training. Cilia KOs displayed significantly reduced freezing behaviors during the trace period 

of the 7 training cycles (Fig. 2B). Aversive memory formed during the conditioning can last several 

minutes. We compared cilia KO and control mouse freezing behaviors for 10 minutes after training 

relative to 10 minutes prior to training. Trace conditioning significantly increased the relative freezing of 

controls, but not cilia KOs (Fig. 2C). In recall testing, cilia KOs also displayed weaker tone-reduced 

freezing than control mice (Fig. 2D). This data indicate that cilia KO mice exhibit severe deficits in 

associative learning.  
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Next, we subjected the mice to a Morris water maze test to evaluate their ability to form a spatial 

memory. In the Morris water maze test, all mice had 5 days of training with a hidden platform at a fixed 

position. During these training days, control mice showed significantly decreasing escape latency every 

day, whereas cilia KOs performed much worse (Fig. 2E). In the subsequent probe test, control mice 

revealed a high preference for the target quarter than other quarters, whereas cilia KOs were unable to 

distinguish the 4 quarters (Fig. 2F-G). These data demonstrate that cilia KOs exhibit impaired spatial 

navigation.  

To monitor if the general electrical activity in cilia KOs is suppressed, we used the mice for the 

EEG recording and induced them to reach the isoelectric (brain-death) anesthetic stage using 3% 

isoflurane. First, we found that cilia KOs exhibited drastically reduced EEG waveform activity (Fig. 2H). 

The EEG amplitude of cilia KOs was much smaller than controls (Fig. 2H). Second, cilia KOs needed 

much shorter time to be induced by 3% isoflurane to reach the isoelectric (brain-death) stage (Fig. 3I). 

Moreover, the duration of slow wave oscillation (Fig. 2J), the spike number during slow-wave (frequency 

< 1 Hz), and bursting numbers (Fig. 2H), and duration of burst suppression (Fig. 2K) under isoflurane-

induced anesthesia are drastically decreased in cilia KOs compared to littermate controls (Fig. 2H-K). 

These data suggest that the general brain activity of cilia KOs is markedly reduced. Due to its severe 

defects in memory behaviors and EEG brainwaves, this mouse model is very useful in helping evaluate 

our method to determine primed neurons.  

 

Burst synchronization is a key feature associated with trace fear conditioning memory 

We subjected control and cilia KO mice to trace fear conditioning in conjunction with in vivo calcium 

imaging. We monitored the calcium dynamics of the hippocampal neurons during the whole conditioning 

procedure including training and recall testing, prior to training and prior to recall, as well as under 

isoflurane-induced anesthesia for normalization. Prior to training, both control’s and cilia KO’s calcium 

traces exhibit irregular dynamics (Fig. 3A-B). At training cy1, calcium traces of the control animal started 

to show some bursts, but the correlation among neurons was very weak. Starting from the 4th training 

cycle, animal behavior shows a strong difference between control and KO mice and calcium traces from 

the control animals formed obvious synchronization. The major pattern of all neurons from the control in 

the 4th training cycle displayed clear bursting, whereas that of cilia KO mouse did not. A strong burst 

synchronization correlating with animal behavior (freezing bar) was formed among the control neurons at 

the 7th training cycle. Its major pattern displayed clear bursts responding to tone-on and tone-off (Fig. 3A). 

After resting for 2 hours, these calcium traces went back to randomly active, similar to that prior to training. 

Upon recall, they underwent tone-induced synchronization quickly (Fig. 3A). In contrast, cilia KO mouse 
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cannot form a clear synchronization during training or recall (Fig. 3B). We also constructed time-

frequency plots using these calcium traces. Consistently, control neurons exhibit bursting pattern at 

training cy4 - cy7 as well as during recall testing, whereas cilia KO neurons failed to show bursts.   

Next, to examine if neural synchronization is maintained among the same group of neurons, we 

built heatmaps using pair-wise neural correlation from training to recall testing. All neurons were ranked 

following the sum of their synchronization levels with the major pattern of PCA (at training cy4, cy7 and 

a successful recall testing), the same factor used for neuron classification (details explained the next 

section). These neurons were put at constant position in the heatmaps from training to recall and neurons 

with higher synchronization values were put on the top. In the control mouse, neurons in the top-left corner 

were highly synchronized with each other. Pair-wise neural synchronization started to take shape in 

training cycle 4 and formed a stronger correlation when the mouse was well-trained in cycle 7. Moreover, 

the pair-wise neural synchronization partially re-emerged during recall testing (Fig. 3C-top). In contrast, 

cilia KO neurons had much fewer changes in pair-wise neural synchronization during training and recall 

testing (Fig. 3C-bottom). These data suggest that neuronal synchronization correlates with mouse freezing 

behaviors of control mice, which is defective in cilia KOs.  

One concern is that after hours rest, the neural synchronization during recall is not very strong. To 

enhance memory formation and achieve a stronger neural synchronization during recall testing, a 

reinforced trace fear conditioning was applied to the control animals. This group of animals were subject 

to two rounds of trace fear conditioning prior to recall testing. Indeed, this enhanced training markedly 

increased the pair-wise neuronal correlation during recall testing (Fig. 3D). Together, these results support 

the notion that burst synchronization is closely associated with trace fear memory formation and retrieval. 

 

Sorting out primed neurons based on memory-associated synchrony levels  

We observed that trace fear conditioning modified the dynamics of high-activity neurons from irregularity 

to synchronization. This also resulted in changes of the synchronization level distribution (Fig. 4A). In 

control mice, the synchronization levels of all neurons displayed a relatively linear distribution prior to 

training, meaning these neurons were evenly distributed on the 1st principal component. After being 

trained, high-activity neurons synchronized with each other to dominate the major pattern and also 

increased the synchronization level. In contrast, cilia KOs did not exhibit many changes over training and 

recall testing and their synchronization levels of all neurons kept relatively linear (Fig. 4A). Fig. 4A also 

demonstrates that the trace fear conditioning remarkedly increased the percentage of neurons with 

synchronization level higher than 0.7 in control mice, but not in KO mice.  
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All individual neurons were classified based on their synchronization levels compared to 

corresponding major pattern of all neurons. As a rule of thumb, the synchronization levels higher than 0.9 

were counted as very highly correlated; the synchronization levels between 0.7 to 0.9 were counted as 

highly correlated; the synchronization levels between 0.5 to 0.7 were counted as moderately correlated 34. 

Here we postulated that high-activity neurons started to show burst synchronization in the middle of 

training (e.g. cy4) and can last until the end of training (cy7). In recall, tone-induced synchronization is 

crucial for memory retrieval. Thus, we summarized the synchronization levels in the middle of training 

(generally the 4th training cycle), after well-trained (generally the 7th training cycle) and successful recall 

(whichever 1st or 2nd recall testing) of every neuron to be the level for identification. The cut-off was set 

as: individual neurons with sum of synchronization level higher than 2.0 was defined as primed neurons; 

others were non-primed neurons, including silent neurons (sum of synchronization level between -1.5 to 

1.5) and intermediately active neurons (sum of synchronization level between 1.5 to 2.0). The activity 

level of these 3 neuronal groups was compared in terms of their variance and their SD-of-SD values to 

verify this identification (Fig. 4B-C). Interestingly, these primed neurons dominated their corresponding 

major patterns extracted by PCA analysis when mice were actively engaged in a trace memory (Fig. S2). 

In contrast, KO mice did not have many primed neurons, and they did not dominate the major pattern 

associated with trace fear memory (Fig. S2).  

 

Synchronized activity of primed neurons highly correlates with the freezing behaviors of control 

mice, but not cilia KOs.  

To understand how hippocampal neurons collectively engage in trace fear conditioning, we ran a PCA 

using all neurons collected from control and cilia KO mice to extract the major calcium dynamic patterns 

of every imaging cycle. These patterns revealed the major bursting responses of all neurons, which were 

dominated by the group of primed neurons. We compared the correlation level between these major 

patterns with mouse freezing behaviors. Behavior results were also displayed as moving SD traces, 

following the same time-window (0.5 s) as calcium SD traces. The representative pattern of moving SD 

traces for calcium dynamic and mouse behaviors of a control animal exhibited strong coherence 

responding to tone during trace fear conditioning and recall (Fig. 4D Top). However, the major pattern of 

cilia KO neurons displayed no bursts or correlation with behaviors (Fig. 4D Bottom). We quantified and 

compared the correlation levels of mouse behaviors with the corresponding major patterns between control 

and cilia KO mice. Prior to training, both control and cilia KO mice had only a weak correlation between 

behavior and the major pattern. Control mice exhibited increasing correlation levels during training or 

recall testing, whereas cilia KOs had little changes over the training and recall (Fig. 4E).   
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If our classification of primed neurons is sound, then candidate primed neurons should dominate 

the correlation with mouse freezing behavior. To test it, we employed PCA to extract the major pattern 

selectively from the primed neurons’ signals. We also extracted the major pattern using SD traces selected 

from the bottom 50% non-primed neurons. We conducted a correlation analysis between major patterns 

of primed and non-primed neurons with mouse locomotion behavioral data, respectively. Fig. 4F shows 

that the correlation between primed neurons’ major pattern with animal locomotion markedly increased 

with training, then returned to the basal level during rest, and increased again upon recall testing, while 

non-primed neurons did not show such an increase with training or upon recall. Note that we were unable 

to determine enough primed neurons from each cilia KO mouse to permit PCA to extract any pattern. 

Together, these data confirm that the synchronized activity of primed neurons highly correlates with the 

freezing behaviors during the training of controls. 

 

Ift88 cilia KO mice display drastically reduced hippocampal neuronal activity 

We converted neuronal calcium traces into 5-second moving SD traces, which reflect the magnitude of 

the fluctuations of calcium dynamic. A trace with a bursting pattern has significant variation in the SD 

trace over time. The variation in the SD trace in time can be measured by taking another standard deviation 

of the entire SD trace. This new quantity, which we name SD-of-SD, gives an indication of the variation 

in the activity level over the course of the cycle of the experiment (Fig. S1B). We noted that some high-

activity neurons tend to form a burst when responding to stimulus or spontaneously when a mouse is 

trained to engage in trace fear memory 28 (Fig. 1&3). The SD-of-SD, as a measure of “bursting” can be 

used as alternative method to approximate neural priming. For instance, a neuron that exhibits “bursting”, 

forming a peak when responding to learning cues or spontaneously occurring, followed by a period of low 

activity, have a high SD-of-SD, while neurons that are either consistently active, consistently inactive, or 

simply white noise at any amplitude have low values for the SD-of-SD (Fig. S1B). Since the computation 

of neuronal activity levels was changed from variance to SD-of-SD, the apparent distinctions between 

primed neurons and intermediately active neurons required a heavier skewed tail, which switched fitting 

functions from log-normal probability density function to log-logistic probability density function 38. Fig. 

S3 presents the differences of log-normal and log-logistic fittings. Apparently, a log-logistic probability 

density function better fits the SD-of-SD histograms with a prominent long tail, which is filled with 

imaging data from high-activity neurons (Fig. S3). 

We plotted the histograms of the activity levels of individual neurons measured by the SD-of-SD 

under different conditions (Fig. 5A). Similar to our previous report 28, the neuronal activity histograms are 

clearly right skewed. Based on the histograms, most neurons having low activity levels were classified as 
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non-primed neurons, whereas a small portion of neurons with SD-of-SD ratio higher than 3 were 

considered candidates for primed neurons (Fig. 5A). In control mice, the fitting curves were significantly 

shifted to right by training, suggesting an increase in activity levels (Fig. 5A-i). It is worth noting that in 

the right-skewed tail, the number of high-activity neurons was dramatically increased, because of neuronal 

bursting caused by training. Similar to training, recall testing also led to a clear rightward shift in the 

neuronal activity levels in control mice (Fig. 5A-ii).  

We used cilia KO mice as a negative reference to corroborate our estimation of primed neurons. 

The activity histograms (measured by SD-of-SD) of cilia KOs are weakly right-skewed, indicating that 

the number of candidate primed neurons was much fewer in cilia KOs than in control mice. Moreover, 

trace fear conditioning still caused a rightward shift in the histogram in cilia KOs, but not as strong as 

controls (Fig. 5A-iii). These data were consistent with impaired memory behaviors (Fig. 2). In recall, 

neurons in KO mice showed little rightward shift (Fig. 5A-iv). To further compare the activity levels of 

high-activity neurons that fall into the right-skewed tail, we calculated the cumulative distribution for the 

SD-of-SD and focused on the top 10% active neurons (Fig. 5B). The extended line from the intersection 

of each curve and the subline for y = 90% revealed the activity level of top 10% neurons in each group. 

In control mice, the cut-off for top 10% highly active neurons was increased from 2.22 (prior to training) 

to 2.98 (when trained) in trace fear conditioning. In cilia KOs, this reduced increase was from 1.49 (prior 

to training) to 1.63 (trained). Prior to recall, the top 10% cut-off for control mice was 2.0 and increased to 

2.38 by the recall cycle. However, cilia KOs exhibited a weaker increase from 1.68 to 1.71 in recall. The 

violin plots of SD-of-SD in Fig. 5C further confirm a similar result that the neuronal activity levels of 

control animals shifted dramatically by training and recall, whereas cilia KO neurons have little change.  

Since both high neural activity levels and memory-associated burst synchronization are key 

features of primed neurons, we combined these two factors to make plots of SD-of-SD vs Synchronization 

to verify the sorting of primed neurons. In Fig. 6, the cut-offs were set as SD-of-SD higher than 3 and the 

synchronization level higher than 0.7. In control animals, a cluster of primed neurons were sorted out and 

they appear in the upper-right corner in training cy4 to cy7 and re-appear in recall testing. In contrast, cilia 

KO animals failed to find many primed neurons in the upper-right corner throughout the training and 

recall cycles, demonstrating significantly lower number of primed neurons.  

 

Accumulation of non-linear weighting synaptic transmission naturally leads to activity hierarchy in 

a simulated neural network 

To understand how a small fraction of neurons become more active than others (we term it neuronal 

priming), we developed a simplified computational model consisting of a two-dimensional array of 
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neurons, in which electrical signals are assumed to propagate from left to right through the array. Each 

neuron, except in the rightmost column, is assumed to have axon terminals connected to the dendrites of 

neurons on its right with a variable connection strength Ski (Method, Fig. 7A). Postsynaptic conductance 

in the brain is mostly mediated by AMPA receptors and NMDA receptors 39, which we simulate as linear 

and non-linear weighting synaptic transmission components, respectively. The simulation was initialized 

with each neuron being equivalent (other than starting at random initial activation levels) and every 

connection of equivalent strength and efficiency. A subset of the left-most neurons was randomly chosen 

to fire each computational iteration. As signal accumulates and the holding potential depolarizes, neurons 

in subsequent columns reached the threshold for firing and the iterations were continued to see if primed 

neurons with high firing rate appear. We found that a moderate ratio of non-linear to linear conductance 

ratio does produce significant priming patterns and the resulting firing rates show a right-skewed log-

logistic distribution (Fig. 7B). Neuronal activity hierarchy naturally developed from left to right, right 10 

columns were recruited into firing rate distribution, whereas as the left edge was enforced to be random 

by the simulation. Fig. 7B right panel presents the firing rate of the entire neuron array during 

computational iterations, showing that as the impulse signal progressed from left to right, that preferential 

pathways appear. Fig. 7B left panel shows the histograms of the firing activity level for the last ten layers 

on the right edge during iterations, demonstrating a significantly right-skewed distribution. The right-

skewed log-logistic distribution mimics the neuronal activity distribution measured in our in vivo calcium 

imaging experiments (Fig. 5).  

If the priming pattern formation has something to do with the non-linear, the NMDAR gate's 

opening, then those gates require certain activity levels to open, thus, the low firing activity level will 

suspension pattern formation. When the patterns do form, the strength of the patterns and speed at which 

they form is tied to the firing activity level. We also found that basal neuronal activity levels also affect 

the progression of neuronal priming. We changed the initial basal activity levels in our simulation (from 

6% neurons firing in the first layer per cycle to 2% neurons), and we found that no neuronal priming 

occurs, and the distribution of the firing activity is not significantly skewed nor is there much variation in 

the firing activity levels (Fig. 7C). Supplemental Video 2 has all the parameters the same as Supplemental 

Video 1, except the initial activity level on the left side was reduced from 6% to 2%. As Video 2 shows, 

no neuronal priming patterns emerge over the simulation, while in Supplemental Video 1 (6%), we can 

start to see the patterns forming by as early as at 5,000 computation iterations, and a very clear right-

skewed distribution by 12,500 iterations.  

To further correlate our simulation results to the realism of hippocampal memory-eligible neurons, 

we imaged the expression level of c-Fos that reflects immediate early gene expression in response to 7 
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cycles of trace fear conditioning. Fig. 7D show that trace fear conditioning significantly increased the c-

Fos positive neurons in the CA1 region. Interestingly, we observed that the expression level of c-Fos 

presents a similar situation that a small portion of cells with very high signal, whereas other neurons had 

low expression level. We collected more than 1,600 c-Fos positive CA1 neurons out of 5 control mice to 

construct a histogram. Similar to the right-skewed distribution of calcium dynamics that measured by SD-

of-SD, the c-Fos expression levels demonstrated a right-skewed log distribution that can be well fitted by 

a log-logistic probability density function (Fig. 7E).  

 

Discussion 

This report presents multiple critical findings on hippocampal memory-eligible primed neurons: (1) Based 

on neural activity levels and memory-associated burst synchronization, we have quantitatively determined 

neuronal activity hierarchy to establish trace memory-eligible “primed” neurons (Fig. 6). (2) PCA of 

calcium dynamics has revealed that when a trace fear memory is being formed or retrieved, the major 

pattern of PCA is predominantly mediated by primed neurons and correlated with mouse freezing 

behaviors. Conversely, when an animal is not actively engaged in mnemonic activity, the major pattern of 

PCA does not fully distinguish itself from other minor patterns. (3) Cilia KO mice, which exhibit severe 

learning deficits, have far fewer primed neurons, cannot develop memory-associated burst 

synchronization, and trace fear conditioning fails to induce a major pattern that is clearly distinguishable 

from other minor patterns. (4) In our neural network simulation model that incorporates both linear and 

non-linear weighting synaptic components, primed neurons can naturally develop after 10,000 iterative 

computations. We found that basal neuronal activity levels also regulate the formation of an activity 

hierarchy. This simulation suggests that accumulation of non-linear synaptic transmission plays a key role 

in developing neuronal activity hierarchy.  

To better elucidate the cellular and network mechanisms of trace fear memory formation, it is 

necessary to identify memory-eligible primed neurons and track their real-time dynamics associated with 

memory acquisition under the physiological condition. However, to date, there is a lack of experimental 

approaches or numerical methods to determine neural activity hierarchy and quantitatively determine 

primed neurons that are actively engaged in trace fear conditioning. The previous method relying on c-

Fos labeling has limitations. For instance, c-Fos is often pathologically activated by unspecific stimuli 

such as neuronal injury 40. Not all c-Fos positive neurons are directly linked to memory formation in some 

in vivo experimental settings, including a two-photon imaging system. It is also noted that c-Fos is 

expressed 30-60 minutes after neuronal stimulation 3,41,42, reflecting immediate early gene transcription 

for the cellular-level memory consolidation, however, its expression is transient and does not time-locked 
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with neural dynamics for memory acquisition. Additionally, while the c-Fos-based engram cell labeling 

method is widely used in contextual fear memory or spatial memory 5,43,44, its expression dynamics are 

not well characterized in trace fear conditioning paradigm that requires repetitive training.   

Our deep-brain in vivo fiber-optic confocal imaging system in conjunction with freely behaving 

trace fear conditioning avoids GRIN lens implantation injury or pathological neuronal activity, which 

helps maintain hippocampal neuronal activity very close to the physiological state (Fig. 1). While the 

imaging system does not yield very clear images of hippocampal neurons, the lateral resolution of the 

system reaches 3 µm. We have also employed several empirical methods to ensure that ROI data were 

collected from single cells (Fig. 1I-J). Therefore, this imaging approach is well-suited to determine 

neuronal activity hierarchy in vivo. We combined burst synchronization with the SD-of-SD to establish 

primed neurons. After eliminating background patterns, we performed a PCA of all imaged neurons to 

extract a major activity pattern that is associated with fear conditioning and then measure the correlation 

level of individual neurons with the major pattern. The correlation level of each neuron with the major 

pattern yields a ranking of hierarchy (Fig. 3-4). We supplemented this method with the SD-of-SD 

computation (Fig. 5), which clearly differentiates bursting neural activity from low activity and consistent 

high-amplitude fluctuation and distinguishes primed neurons from non-primed neurons. Nevertheless, it 

should be noted that the concept of primed neurons, if solely defined by highly active, might be too general. 

Some active neurons may not be necessarily engaged in a specific type of learning. Including a factor of 

synchronization and bursting helps refine the scope of primed neurons that actively participate in trace 

fear memory formation. We used the SD-of-SD that highlights training-induced bursting of primed 

neurons and found that the SD-of-SD measurement aligns very well with synchronization levels of primed 

neurons with the major pattern, because primed neurons largely cluster in the upper-right corner in the 

plot of SD-of-SD vs synchronization levels (Fig. 6). This upper-right cluster becomes pronounced with 

repetitive training, disappears during rest, and re-appears in a successful recall (Fig. 6). Mouse freezing 

behaviors correlating with the major pattern of primed neurons also endorses the accuracy of our sorting 

method (Fig. 5).  

 

Estimation of the percentage of prime neurons. Based on individual neurons’ synchronization levels 

with the major PCA pattern, this study has yielded an estimation of primed neuron percentage in the mouse 

hippocampus. If the summed value of one neuron at training cy 4, cy7 and a successful recall is more than 

2.0, then the neuron is sorted as primed neurons (Fig. 4). We have calculated that the percentage of 

hippocampal primed neurons is about 9.4  3.4% in control mice (Table 1). This number is very close to 

other estimations 3,7,45. It is worth noting that the estimation of primed neuron percentage in the 
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hippocampus is affected by many variables, such as animal strains and how animals are trained. If mice 

are repetitively trained for more cycles, more neurons may be counted as primed neurons (Fig. 3D). Indeed, 

we observed that repetitive training may impact the neural dynamic and priming of hippocampal neurons 

and recruit more neurons to engage in memory formation. These results also suggest that the pool of 

primed neurons is not fixed but subject to change. The calculated number of synchronized neurons 

increases with training cycles, and more neurons remain highly active and synchronized during recall 

testing (Fig. 4C-D). Conversely, cilia KO mice were found to have lower activity hierarchy and exhibit 

severe learning deficits. Cilia KOs have drastically reduced neuronal activity and reduced primed neurons 

with a percentage of 1.9  1.5%. Additionally, cilia KO mice cannot develop much trace memory-

associated synchronization, demonstrating the importance of the synchronization among primed neurons 

in trace memory formation. This also suggests that the decreased number and reduced activity of primed 

neurons may account for their memory impairment. Cilia KO mice serve as a negative reference in this 

study to identify primed neurons. The results collected from cilia KO mice is in line with our neural 

network simulation work, showing that reduced initial neuronal activity affects the development of neural 

activity hierarchy (Fig. 7). We acknowledge there are many ways to regulate neuronal activity hierarchy. 

Ablation of primary cilia (Fig. 2) represents just one way out of many that affect the basal neuronal activity 

in the brain, which consequently modulates the development of neuronal activity hierarchy.  

 

Right-skewed log-normal vs right-skewed log-logistic distributions. We have shown previously that 

hippocampal neuronal activity levels exhibit a right-skewed log-normal distribution 28. That measurement 

was based on the variance of the calcium traces of individual neurons. To highlight hippocampal primed 

neurons that engaged in trace fear memory and help distinguish primed neurons from non-primed neurons, 

we have formulated a SD-of-SD method to measure relative neuronal activity. We discovered that before 

training, the activity histogram of SD-of-SD was well fitted either by a right-skewed log-normal or log-

logistic function (Fig. S3). However, when mice are well trained and primed neurons display burst 

synchronization, the histogram of SD-of-SD starts to have a longer tail on the right. A log-normal function 

no longer fits, while a log-logistic function, which has an additional degree of freedom, still does. Log-

normal and log-logistic distributions are often used for analyzing skewed data 38. They have similar shapes 

of their probability density functions in a certain range, but log-logistic distribution can have heavier tails. 

For the activity histogram having a right-skewed distribution, either of them can be used to fit our data. 

Here we chose a log-logistic distribution for increasing the weight of right-skewed tail filling with primed 

neurons during later training cycles (Fig. S3). Our neural network model, which did not include training 

simulation, revealed the appearance of primed neurons. After 10,000 iterative computations, the neural 
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firing average can be fitted by a right-skewed log-logistic functions (Fig. 7), which is similar to the right-

skewed distribution measured by in vivo calcium imaging and the c-Fos expression levels (Fig. 7E).  

 

Why the hippocampus needs to form and maintain a neuronal activity hierarchy? This study, along 

with many other studies 3,4,6,7, raises an interesting question: why neuronal activity hierarchy is so crucial 

for hippocampal memory formation or why need the hippocampus form and maintain a neuronal activity 

hierarchy. There is not much evidence that has addressed such a question. We speculate: (1) An animal 

does not encounter all sorts of sensory stimuli at one time. Its nervous system may only transduce a small 

portion of sensory input into the hippocampus for information processing. Thus, only a small portion of 

hippocampal neurons become active due to limited sensory inputs at a time. (2) There is a high-density of 

neurons in hippocampal laminae (DG, CA3 and CA1), which facilitate information association. However, 

it would lead to neuronal over-activation or epilepsy if all neurons in the hippocampus were highly active. 

(3) If hippocampal neurons were equal in excitability and all were highly active to engage in memory 

formation, it would cause a huge demand for energy and nutrient support. Glucose or energy supply could 

not be guaranteed. Glial support such as neurotransmitter synthesis or recycling could not be sufficiently 

provided. (4) An animal or human acquires new experiences every day, it may need a different cohort of 

neurons to take turns to encode different memories. (5) Neuronal activity hierarchy may help to encode 

memory information. Hypothetically, there is some sort of rotational mechanism for hippocampal neurons 

to become active to participate in hippocampal memory formation. (6) Neuronal activity hierarchy may 

enable the construction of electrical conduits for information flow and likely build unique neural 

connectivity in the hippocampus 28. (7) Neuronal activity hierarchy could facilitate neuronal 

communication and synaptic plasticity among high-activity primed neurons. Due to increased neuronal 

excitability, communications between primed neurons are strongly enhanced such that they could 

coherently develop synchronization. This consequently facilitates activity-dependent synaptic plasticity, 

critical for memory formation 46-48. (8) Because of primed neurons and formation of burst synchronization 

among primed neurons, encoded memory information in the hippocampus could be more easily entrained 

to the neocortex for the system-level memory consolidation and long-term memory storage in the 

neocortex. (9) We further speculate that maintaining neuronal activity hierarchy to a certain degree is also 

crucial for mental health and intellectual ability. Together, neuronal activity hierarchy within a healthy 

range confers many advantages for information processing and hippocampal memory formation. 

One innovation of this study is that we show in our simulation model that non-linear conductance 

may be crucial the development of neuronal activity hierarchy during iterative synaptic transmission. So 

far, little is known about the development of neural activity hierarch and the dynamics of neuronal priming, 
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our neural network simulation study reveals that non-linear synaptic conductance may play a crucial role 

in the development of neuronal hierarchy. Our simulation data suggest that the NMDAR to AMPAR ratio 

must be a key factor that impacts the development of neuronal activity hierarchy during iterative 

computation. In the simulation, if sufficient NMDAR conductance is present, even slight changes in neural 

activity levels will over time lead to the priming of the most active neurons, while those that have lower 

activity levels will become relatively silent. Non-linear NMDAR conductance is well known to mediate 

some forms of hippocampal synaptic plasticity49,50. Why is the non-linear, NMDAR conductance so 

important? This is because of the magnesium-blockade of NMDA receptors. The voltage-dependency of 

NMDAR 31makes its current-voltage response non-linear, the more active a neuron is, the more easily it 

sheds the magnesium blockade to allow even stronger NMDAR conductance, resulting in an intensifying 

effect 51. 

 

Limitations of this study: (1) Limitations of the experimental system. (i) This study did not employ an 

engram cell labeling technique 52,53 to selectively label memory-eligible neurons, thereby this work cannot 

directly link what have identified “primed neurons” to c-Fos positive cells. To validate the quantification 

of neuronal activity hierarchy or the identity of primed neurons, future experiments will require the use of 

chemogenetic or optogenetic tools in conjunction with engram cell labeling technique to manipulate 

memory-eligible cells. (ii) Another limitation of the fiber-optic imaging approach is its low imaging 

sensitivity. This imaging approach can detect strong calcium influx into a neuron, but cannot distinguish 

weak calcium entry or resolve individual calcium spikes. The fiber-optic imaging system converts weak 

calcium signals into basal fluctuation. High fluctuation or strong bursting indicates high neuronal activity, 

while flat calcium trace denotes low neuronal activity (not necessarily completely silent). Therefore, this 

limitation does not prevent us from determining activity hierarchy. (iii) This study we have only used 

mouse trace fear conditioning as a behavioral paradigm to quantify neuronal activity hierarchy. The 

conclusion may be biased by trace fear conditioning, which is a temporal aversive memory association. 

Other types of memory-related behavioral paradigms should be employed in future studies to test the 

generality of this method.  

Our neural network model simulates neural communication and neural priming seemingly 

consistent with our experimental results. However, the model does not fully account for exact processes 

for AMPAR, NMDAR, and voltage-gated ion channels that mediate synaptic transmission and action 

potential. Another limitation in the model is that it is a fast-scale algorithm and does not incorporate slow-

scale effects such as neural plasticity and that after significant activity primed neurons will rest. By not 

letting active primed neurons rest, continuing well past 12,500 iteration, with the parameters used in our 
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study, can lead to a slight bifurcation in neural activity will too many heavily primed neurons and fewer 

intermediate. It is believed that an appropriate algorithm for resting long active neurons is implemented 

in the simulation, histograms such as those obtained at 12,500 iterations will be maintained indefinitely. 

Implemented and testing this hypothesis is part of our future work. While some parameters that would be 

needed for a precise model are, as yet, unknown, and some aspects of the model, such as the neural 

connectivity structure could never precisely imitate nature, future simulation work will further evolve this 

model to: (i) increase its realism by incorporating equations for ion channels; (ii) further test effects of 

other factors on the development of primed neurons and thereby refine the theories; (iii) introduce greater 

generality in the simulation to better understand other regulatory processes behind neural communication; 

(iv) include a factor of training to model the development of burst synchronization of primed neurons.  

 

In summary, we report a novel method to measure neuronal activity hierarchy and sort out trace fear 

memory-eligible primed neurons. We found that cilia KO mice have a reduced percentage of primed 

neurons and exhibit severe learning deficits. Our simulation work further revealed that accumulation of 

non-linear synaptic transmission, likely mediated by NMDAR-mediated conductance, may explain how a 

small group of hippocampal neurons are primed to preferentially engage in memory formation. 

Determination of neuronal activity hierarchy in the hippocampus and elucidating the mechanisms of 

neuronal priming will help understand how neurons are selectively recruited and interact within the 

network to encode and store hippocampal memories. Additionally, it will guide future experiments to 

manipulate these memory-eligible primed neurons to reveal their emergence and disappearance dynamics. 
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Table 1: Comparisons of primed neurons with non-primed neurons 

 
Primed 

Neurons 

Non-Primed Neurons 

Intermediate Silent 

Variance of calcium traces 

Prior to training (basal) High High Low 

Trained Higher High Low 

Recall testing High High Low 

SD of 5s-SD traces 

(SD-of-SD) 

Prior to training (basal) High Mid Low 

Trained Higher Mid Low 

Recall testing High Low Low 

Position in right-skewed log distribution  Right tail between Middle & left 

Form significant burst synchronization during 

conditioning? 
Yes Weak No 

Form significant burst synchronization during recall? Yes Weak No 

Synchronization level with 1st PCA component High Middle Low 

Correlation with mouse freezing behavior during 

training 
Yes Weakly No 

Correlation with mouse freezing behavior during 

recall testing 
Yes No No 

Calcium burst responding to tone or foot shock when 

trained 
Strong  weak No 

Engage in trace memory formation and retrieval? 
Highly 

engaged 
Weakly or not engaged 

Percentage in control mice  
9.4%  

 3.4% 

16.8%  

 9.2% 

73.7% 

 11.8% 

Percentage in cilia KO mice (low hierarchy) 
1.9% 

 1.5% 

6.4% 

 2.9% 

91.7% 

 4.3% 
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Figure Legends:  

Fig. 1. Minimally invasive surgery and one-day imaging at the cellular resolution avoids 

hippocampal inflammation and pathological neuronal activation. (A) Top: Illustration of the surgical 

setup where the imaging window (d = 0.8 mm) aligned with an imaging cannula, which were stabilized 

by screws and dental cement. Bottom: A cross-section of the surgical setup. Cannula implantation surgery 

was installed above the skull and surgery only slightly affected the surface of neocortex and did not the 

hippocampus. (B) Immunofluorescence staining using c-Fos antibody on hippocampal slices 8 weeks after 

AAV-Syn-GCaMP6m injection and canula stereotaxic surgery but right before in vivo fiber-optic imaging. 

Left: non-surgical hemisphere showing c-Fos positive neurons. Right: surgical side from same brain slice 

with GCaMP6m expression (green), showing similar levels of c-Fos expression (magenta). (C) GFAP 

staining (an indicator for reactive astrogliosis) shows no differences between the surgical and non-surgical 

hemispheres. (D-E) Statistics of c-Fos-positive neuron number (D) and GFAP fluorescence intensity (E) 

relative to DAPI in non-surgical and surgical hemispheres. There was no difference between non-surgical 

and surgical hemispheres, paired Student T-test. (F) Three days after imaging, imaged hippocampal 

tissues (right) displayed signs of astrogliosis, as evidenced by heightened expression of GFAP. The left 

non-imaged hemisphere had no signs of gliosis. (G) A mouse carrying an imaging probe could behave 

freely. (H) A whole view of endoscopic image. 3 distantly located areas (white boxes) were selected and 

enlarged in (I) to demonstrate the single cell resolution of imaging. (I) In each area, one primed neuron 

(red ROI and red trace) was surrounded by several non-primed neurons (grey ROIs and grey traces). Green 

traces were calcium signals collected from one fiber located at the center of primed neurons. One-fiber 

signals (green ROIs and green traces) had a lower signal-to-noise ratio, but their dynamics were very 

similar to multiple fibers signals (red traces) that covered a larger area. Primed neurons were randomly 

active prior to training but developed a bursting pattern when the mouse was trained and engaged in 

conditioning. These separately distributed primed neurons (red) also synchronized with each other (i, ii 

and iii), whereas neighboring non-primed neurons (grey) showed little bursting patterns or 

synchronization after being trained. (J) An empirical method to identify single cell ROIs. An 8-fiber ROI 

covering a large area and more than one neuron (golden). Individual fibers are shown in the left image. 

Calcium traces of each fiber (#1-8) are shown in the right, which can be classified into two groups (A and 

B). Neuron A encompasses fiber 1-4 (all showing similar calcium dynamics), while neuron B contains 

fiber 5-8 (all showing another pattern). Thus, the 8-fiber ROI was interpreted to cover 2 neurons (A and 

B). (K) A scheme showing the procedure of imaging data pre-processing and subsequent data analysis.  
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Fig. 2. Ift88 cilia KO mice exhibit severe learning deficits in trace fear conditioning tests and Morris 

water maze, and decreased EEG activity under anesthesia. (A) Immunofluorescence staining using 

AC3 antibody on hippocampal slices. 8 weeks after tamoxifen administration to induce cilia ablation in 

Ift88 cilia KOs. Top: The hippocampus of control animal has cilia; Bottom: KO mice showed absence of 

cilia. (B) Trace fear conditioning test. Freezing scores of mice (moving speed < 0.1 cm/s) in trace periods 

during training. n = 10 pairs, mixed sexes. Cilia KO mice exhibited severe learning deficit and their 

freezing scores are much lower than controls. Bonferroni’s multiple comparisons test of two-way ANOVA, 

controls vs KO mice. (C) Mouse freezing scores ratio between 10 mins after and 10 mins prior to training. 

Control mice had a significantly higher ratio than cilia KOs, unpaired Student T-test. (D) Freezing scores 

of mice in recall. Control mice exhibited significantly higher tone-induced freezing than cilia KOs in 2nd 

recall cycle, Bonferroni’s multiple comparisons test of two-way ANOVA, controls vs KOs. (E-G) Morris 

water maze test. Cilia KO mice exhibit spatial memory in Morris water maze test. n = 10 pairs, mixed 

sexes. (E) Control mice learned quicker in the training part of Morris water maze. Repeated measure one-

way with post hoc Tukey's multiple comparisons test between training day1 and every other day. 

Bonferroni’s multiple comparisons test of two-way ANOVA, controls vs KO mice (above X-axis). 

(F) Representative Morris water maze probe test of control and cilia KO mice. (G) Morris water maze 

probe test: cumulative durations of control and cilia KO mice in each quadrant. Control mice spent a 

significantly longer time in the target quadrant than the other 3 quadrants whereas cilia KOs revealed no 

difference. Repeated measure one-way with post hoc Tukey's multiple comparisons test between target 

quadrant and other 3 quadrants. (H-K) Cilia KOs need much less time than controls to be fully 

anesthetized and reach the isoelectric stage (brain death). (H) EEG recording monitoring brain waveform 

during isoflurane-induced anesthesia. 3% isoflurane (ISO) was used to induce anesthesia. Left: Control; 

Right: cilia KO. EEG traces at different anesthesia stages are enlarged below. (i), before ISO (awake); (ii-

iii), slow wave oscillation and burst suppression (BS) period; (iv), the isoelectric brain-death 

stage. Quantification of the time to reach the isoelectric (brain death) stage (I), duration of slow 

oscillation (J), and duration of burst suppression (K). Anesthetic EEG data were collected from 12 control 

mice and 9 cilia KO mice (mixed sexes). Unpaired Student T-test between control and cilia KO mice. ns, 

not significant; *, p<0.05; **, p<0.01; ***, p<0.001.   

 

Fig. 3. Primed hippocampal neurons of control mice, not cilia KO mice, develop memory-associated 

burst synchronization. (A) (Top) Representative traces of 7 high-activity neurons from a control mouse. 

White bars: mouse moving; black bars: freezing. (Middle) The major patterns (1st principal component of 

PCA) extracted from all individual neurons out of the same animal. (Bottom) Time-frequency plots of 
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calcium dynamics of 7 high-activity neurons. (B) (Top) Representative traces of 7 high-activity neurons 

from one cilia KO mouse. (Middle) The major patterns (1st principal component of PCA) extracted from 

all individual neurons out of the same KO mouse. (Bottom) Time-frequency plots of calcium dynamics. 

High-activity neurons of control mice can form burst synchronization in late training cycles or early recall 

testing, whereas those of cilia KO mice don’t display bursts or a specific pattern. (C) Heatmap of 

correlation levels between every two neurons from a control mouse (top) and a KO mouse (bottom) same 

as (A-B). The same neuron was placed at the same position in these heatmaps. In the control mouse, the 

same group of neurons displays high correlation levels during both training and recall testing, whereas 

neurons in the cilia KO mouse have weak synchronization and no clear pattern. (D) Enhanced training 

promotes neuronal synchronization during recall in controls. Reinforced trace fear conditioning paradigm: 

7 cycle training (not imaged) - 2 hours rest - 7 cycle training again (imaged) - 3 hours rest - recall (imaged). 

Pairwise neuron synchronization levels are indicated warm color.  

 

Fig. 4. Sorting out primed neurons; synchronization of primed neurons is correlated with trace fear 

conditioning in control mice, but not in cilia KO mice. (A) Synchronization level distribution of two 

controls and two cilia KO mice at different training or recall conditions. Synchronization level distribution 

in control animals increases with training and recall testing, whereas those of KO animals have little 

change with training and recall. (B-C) Bar graph of neuronal activity levels of three groups of neurons 

under different conditions. The variance (B) and SD-of-SD (C) of raw calcium dynamics. SD-of-SD for 

individual neurons allowed for distinguishing the primed neurons from the intermediate neuron group at 

later training cycles (Fig. 2B). Data were collected from ~500 neurons from 5 control animals. Ordinary 

one-way ANOVA with post-hoc Tukey’s multiple comparison. (D) Top: 0.5s-moving SD trace of all 

neurons major pattern (orange) and freezing behavior (black) of one control mouse. The control animal 

had a clear response to tone and shock when trained. Moreover, the major pattern showed a response to 

stimulus and a strong correlation with behavior. Bottom: 0.5s-moving SD trace of all neurons major 

pattern and freezing behavior from one cilia KO mouse. The major pattern of this cilia KO animal cannot 

develop an obvious burst. (E) Correlation between neurons’ major pattern and behavior data (n = 5 pairs, 

mixed genders). The correlation levels of control animals were increased by training and recall. The 

correlation levels of cilia KO mice showed no difference over training and recall testing. Repeated 

measure one-way ANOVA with post hoc Tukey's multiple comparisons test between prior to training and 

each other cycle. Paired Student T-test between prior to recall and successful recall. (F) Correlation 

between primed neurons’ and bottom 50% neurons’ major patterns and behavior data in control animals 

(n = 5, mixed genders). The correlation levels of primed neurons were significantly higher than the bottom 
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50% neurons in training and successful recall. Bonferroni’s multiple comparisons test of two-way 

ANOVA, primed neurons vs bottom 50% neurons. ns, not significant; *, p<0.05; **, p<0.01; ***, p<0.001.  

 

Fig. 5. Reduced hippocampal neuronal activity in Ift88 cilia KO mice. (A) Activity histograms of 

individual neurons in control mice (left, green) and cilia KO mice (right, red). The SD-of-SD for individual 

neurons prior to training (top, dashed), at training cycle 7 (cy7) (top, solid), prior to recall (bottom, dashed), 

and during recall (bottom, solid) normalized to those under anesthesia. The fitting curves fitted log-logistic 

distribution; the K-S test was used to compare the difference. Control: n = 506 neurons from 5 control 

animals. K-S test between Prior to training and the end of training, ***, p < 0.001; prior to recall vs 

successful recall, ***, p < 0.001. Cilia KOs: n = 541 neurons. K-S test between prior to training and the 

end of training, **, p = 0.004; prior to recall vs successful recall, ns, p = 0.13. (B) Cumulative distribution 

of the activity level of individual neurons in controls (green) and cilia KOs (red). The guides were set on 

y = 90% to highlight the neurons having the top 10% of activity levels. The extended lines labeled the 

intersections between every curve and the guides. The highlighted boxes were zoomed in at the bottom. 

(C) Violin plots of SD-of-SD of calcium dynamics at different training cycles. Left, controls; Right, cilia 

KOs. Data were collected from 506 neurons out of 5 control animals and 541 neurons out of 5 cilia KO 

animals. The SD-of-SD shows a rightward shift over training or upon recall in control animals, but not in 

cilia KOs.  

 

Fig. 6. Plotting synchronization levels against SD-of-SD to identify primed neurons. Plots of the 

synchronization (to the major pattern) vs the activity level of individual neurons. Controls (left) and cilia 

KO mice (right). X-axis is the SD-of-SD of individual neurons normalized to the basal level of isoflurane-

induced anesthesia, Z-scored. Y-axis is the synchronization level of individual neurons compared to the 

major pattern of PCA. Dashed lines at Y = 0.7: neurons with synchronization levels higher than 0.7 were 

consider high synchronization; Dashed lines at X = 3: neurons with activity levels (SD-of-SD) higher than 

3 were viewed as high activity. Neurons in the top-right (with high synchronization and high activity) 

were defined as primed neurons. Based on the combined calculation from cy4, cy7, and a successful recall, 

control mice have markedly more primed neurons than cilia KO. 

 

Fig. 7. Accumulation of non-linear weighting synaptic transmission naturally leads to activity 

hierarchy in a simulated neural network. (A) Neural network simulation. A fired pre-connected neuron 

(Nij at row i, column j) releases neural transmitters from pre-synapse, the post-synaptic conductance of the 

next layer neuron (Nk(j+1)) mostly mediated by AMPA receptor (linear component) and NMDA receptors 
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(nonlinear component). The connection strength Ski is dependent on the distance between neurons. The 

efficiency of NMDAR is dependent on the opening rate of NMDA gate which are affected by post-

synaptic activity. (B) Firing rate for the entire simulation after 7,500, 10,000 and 12,500 computation 

iterations, showing pattern development and neural priming resulting in the amplification as signal travels 

toward the right of random differences in activity levels on the left (right). Firing average observed in the 

right-most ten columns of neurons in the simulation with moderate NMDAR to AMPAR expression ratio 

(27.5% NMDAR and 72.5% AMPAR) after different computational iterations. Left: The histogram 

contributed by the firing rate of neurons in right-most ten columns after different computing iterations. 

Activity histograms are similar in appearance to those that have been measured in calcium imaging or c-

Fos expression (E). (C) same as (B) with reduced initial basal activity levels. Reduced initial neuronal 

activity does not lead to neuronal priming. (D) c-Fos expression in the hippocampal CA1. (Top) Naïve, 

mice were not subject to tone or foot shock stimulation; (Bottom) Trained, c-Fos expression 30 min after 

mice were subject to 7 cycles of trace fear conditioning. (E) Histogram of c-Fos expression (normalized 

to the c-Fos intensity average) in the CA1 45 min after trace fear conditioning. It shows a right-skewed 

log-distribution and is well fitted with a log-logistic function.  

 

Supplemental Figure Legends: 

Fig. S1. Imaging data pre-processing and background pattern elimination. (A) A raw calcium trace 

was transformed into 5-second moving SD trace. A 5-second time-window was moving over the image 

trace frame by frame and computed the SD to generate a 5s-moving SD trace. (B) Representative raw 

calcium image traces (left) and 5s-moving SD traces (right) of high-activity neurons (warm colors), 4 

intermediate active neurons (cold colors), and 4 silent neurons (grey). Prior to training (Left) and trained 

(Right). SD-of-SD of calcium dynamics helps distinguish primed neurons. (C) The Cellvizio confocal 

fluorescence endoscopic system contains ~7600 optic-fibers to detect and average temporal GCaMP6m 

calcium signals of neurons (images in dashed box having different contrast setting). 12 background ROIs 

(grey) were defined as a circle covering 50 fibers with minimum GcaMP6 signals to collect background 

imaging information, which were served as references to eliminate potential motion artifacts or 

background noise patterns. PCA of 12 background ROIs generated principal components for background 

subtraction. The SD traces are each normalized prior to the PCA. Principal components with PCA levels 

above the average were used for background noise elimination. (D) Representative fluorescence imaging 

traces of 7 primed neurons (color) and 2 non-primed (grey) neurons were selected. (E) Representative 

time-stamped images of 3 primed neurons (#1-3) and 1 non-primed neurons (#4). Black arrows denote the 

3 time-points when images were acquired. (F) Neuronal images were first transformed into 5s-moving SD 
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traces. The major background patterns were then used to subtract motion artifacts or background noise 

stepwise. The arrows label the artifacts which identified and removed after background elimination. 

Afterwards, a PCA analysis was performed based on signals after background removed. The major pattern 

obtained from the subsequent PCA is shown on the bottom. The correlation levels of the SD traces of all 

individual neurons to the major pattern were computed to obtain the synchronization level for identifying 

primed neurons.  

 

Fig. S2. The major pattern of PCA of calcium dynamics is mostly mediated by primed neurons when 

animals are actively engaged in trace fear memory. PCA of neural calcium dynamics from controls 

and cilia KO mice. Data points are individual neurons’ synchronization level with the principal 

components (1st and 2nd). The X-axis is the 1st principal component which explains the major pattern. Y-

axis is the 2nd principal component after extracting the 1st component. Arrows pointing from zero to the 

mean center show the vector addition of two components. In control animals (left), training and recall 

testing increased the weight of the 1st principal component. Individual data points moved to the right, 

favoring the 1st principal component, while the 2nd principal component remained equally distributed. This 

change was largely led by primed neurons (labeled in red). In cilia KO animals (right), individual data 

points were equally distributed on 1st and 2nd principal components and training and recall testing did not 

cause marked changes. Data were collected from 506 neurons out of 5 control mice and 541 neurons out 

of 5 cilia KO mice (mixed sexes). 

Fig. S3. (A) Neuronal activity levels measured by SD-of-SD of calcium traces. The histograms of right-

skewed distribution of SD-of-SD of individual neurons at different training cycles are shown. Solid curves 

were fitted with a log-logistic probability density function; dashed curves were fitted with a log-normal 

probability density function. (B) Neuronal activity levels measured by variance of calcium traces. The 

histograms of right-skewed distribution of variance at different cycles are shown. P values of those fitting 

are shown. Log-logistic probability density function fits these histograms better than lognormal.  

Supplemental Video 1: Normal initial neuronal activity naturally leads to the appearance of primed 

neurons over 12,500 computation iterations.   

Supplemental Video 2: Lower initial neuronal activity does not lead to the emergence of primed neurons 

over 12,500 computation iterations.  
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