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Abstract: The influence of long-term diet on gut microbiota is an active area of investigation. The
present work aimed to explore the associations between habitual diet patterns and gut microbiota
in a large sample of asymptomatic Chinese adults. The gut microbiome was profiled through the
sequencing of the 16S rRNA gene in stool samples from 702 Chinese adults aged 50–75 years who
underwent colonoscopies and were diagnosed to be free of colorectal neoplasm. Long-term dietary
consumption was assessed through a food-frequency questionnaire. The microbial associations
with specific food groups and the posteriori dietary pattern were tested using the Kruskal–Wallis H
test, permutational ANOVAs, and multivariate analyses with linear models. The Shannon indexes
generally shared similar levels across different food intake frequency groups. Whole grain and
vegetable intakes totally explained 1.46% of the microbiota compositional variance. Using the data-
driven posteriori approach, a general dietary pattern characterized by lower intakes of refined grains
was highlighted to be associated with higher abundances of the genus Anaerostipes and a species of
it. We also observed 17 associations between various food group intakes and specific genera and
species. For instance, the relative abundances of the genus Weissella and an uncultured species of it
were negatively associated with red meat intake. The results of this study support the idea that the
usual dietary consumption measured by certain food items or summary indexes is associated with
gut microbial features. These results deepen the understanding of complex relationships of diet and
gut microbiota, as well as their implications for gut microbiome studies of human chronic diseases.

Keywords: gut microbiota; habitual diet; 16S rRNA gene sequencing; Chinese; adults

1. Introduction

The gut microbiota play a vital role in the host homeostasis maintenance, ranging from
the catabolism and biosynthesis of essential nutrients to immune regulations and nerve
signals transmission [1–3]. Pathological alterations of the gut microbiota community have
been shown to be involved in the development of a wide spectrum of health disorders [4–7].
Various human lifestyle and physiological variables exert differential impacts on the gut
microbiota throughout the life span, with environmental factors outweighing the genetic
ones [2,8]. Among these environmental variables, including living behaviors, food habits,
and medication, diet has been a primary research focus recently due to its diversity and eas-
ily modifiable properties. Food intake is increasingly considered as an intervention target
for disease treatment and health promotion, and it has further evolved into a hot research
area called precision nutrition [9–11]. Additionally, inter-individual heterogeneity in gut
microbiota mainly arising from differences in personal physiological and lifestyle variables
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(such as diet) may confound microbiota analyses, resulting in spurious associations in gut
microbiome studies of human diseases [12,13].

Short-term dietary changes such as the introduction of specific nutrients, foodstuffs,
or special diet patterns can rapidly and significantly influence gut microbial profiles [14].
The observed transient effect supports diet’s causal role in gut microbiome alterations
while necessitating the study of dietary habits’ impact on the gut microbiota in the long
run because previous studies have either focused on single nutritional factor at a time or
only substances without deleterious effects on humans [15]. Additionally, specific changes
induced by short-term interventions generally do not persist due to their limited duration,
whereas long-term dietary habits may dominantly drive gut microbiota composition [14,15].
Large-scale observational studies have accordingly investigated the associations between
usual diet and gut microbiota composition, unveiling the relationships between food in-
takes and the gut microbiota profiles, as well as some particular dietary patterns. Studies
have suggested that plant-rich food intakes are associated with a more diverse and compo-
sitionally distinct microbiota, as well as elevated abundances of specific bacterial taxa with
a greater potential to produce short chain fatty acids (SCFAs), including fruits, fiber-rich
breads, and vegetarian or Mediterranean diets [16,17]. By comparison, the Western diet and
high intakes of animal protein have been reported to be associated with lower microbiome
diversity and the enrichment of harmful bacteria [16,18].

However, previous studies mainly focused on either some particular food groups [19–21],
such as fiber, red meat and processed meat, or on Western-population-oriented predefined
diet quality scores, such as the Healthy Eating Index [13,22,23] and the Mediterranean Diet
Score [13,23,24]. Habitual dietary variables are multidimensional, with internal correlations.
Summary dietary indices can simplify complexity by quantifying dietary variance in a
single measure and possibly offer a potential means of diet control in microbiota studies. In
addition, caution should be taken in extrapolating findings from European and American
populations to other ethnic groups. To our knowledge, only two published studies have
specifically looked into this topic among Chinese populations. Yu et al. observed that
the long-term diet quality was positively associated with fecal microbiome diversity and
an abundance of fiber-fermenting bacteria among people lived in urban communities in
a single region (Shanghai, China) [25]. Lu et al. provided a nationwide gut microbiota
baseline of the Chinese population and knowledge on important environmental covariates,
though with a sole focus on the dominant staple food type (including rice and wheat) [26].
There remains great uncertainty with respect to the long-term dietary habits related gut
microbiome profiles fluctuations among Chinese people, especially those over 50 years old
who are prone to chronic diseases with the potential participation of the gut microbiota.

The aim of the present study was to explore the dietary associations of the posteriori
long-term diet pattern and habitual food intakes with gut microbiota composition in a large
sample of asymptomatic individuals aged 50–75 years from six cities of China.

2. Methods
2.1. Study Participants

This study was based on the TARGET-C study initiated in May, 2018. The rationale,
design, and protocol have been published and extensively described elsewhere [27–29].
Briefly, the primary objective of the TARGET-C study was to compare the effectiveness of
the colonoscopy-based fecal immunochemical test (FIT) and risk-adapted triage screening
strategies for colorectal cancer in China. Epidemiological data and biological samples
collected during this study were also used for interested investigations, such as the work
presented here. After obtaining signed informed consent, the eligible participants were ran-
domly assigned into three groups to undergo colonoscopy, FIT, and risk-adapted colorectal
cancer screening (i.e., the colorectal cancer risk assessment followed by FITs for the low-risk
group or colonoscopies for the high-risk group). Patients who had positive FIT results
were also required to undergo a subsequent colonoscopy. All participants undergoing
colonoscopy were required to collect stool samples within 24 h prior to bowel preparation
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for colonoscopy. This study was approved by the Ethics Committee of the National Cancer
Center/Cancer Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical
College (18-013/1615).

For the present study, we included participants who had no abnormal findings at
screening colonoscopy and had available stool samples for microbiota sequencing. Exclu-
sion criteria comprised a history of cancer and any current administration of anticoagulants,
analgesics, and anti-rheumatic drugs. In addition, patients exhibiting abnormal abdominal
symptoms, such as abdominal pain, diarrhea, constipation, and hematochezia, within
1 month before the colonoscopy examinations were excluded. More details of the partici-
pants’ enrollment can be found in Supplementary Figure S1.

2.2. Stool Sample Collection

Eligible participants for colonoscopy were instructed to collect two stool samples at
home prior to bowel preparation for the scheduled colonoscopy within 24 h. One was
collected using the FIT stool collection device for extended microbiome analysis. Existing
evidence suggests that feces collected by these devices are stable at room temperature
and can be used for gut microbiota studies [30]. The stool-filled containers in storage
boxes were delivered to a central laboratory and immediately frozen at −20 ◦C until DNA
extraction. In this study, we used these stool samples for 16S rRNA sequencing. The other
collected stool samples were kept in stool container tubes, then packaged in insulated boxes
equipped with ice packs, and brought to the clinical sites on the days of the colonoscopies.
On receipt, the fecal samples were frozen at −80 ◦C and subsequently transported by a
cold chain to the central biobanks for further research.

2.3. DNA Extraction and 16S rRNA Gene Sequencing

DNA was extracted using the QIAamp Fast DNA Stool Mini Kit (QIAGEN). The V4
region of the microbial 16S rRNA gene was amplified and sequenced on the Illumina MiSeq
sequencing platform. To avoid end-read sequencing errors, all reads were truncated at
the 150th base and a median Q score of >20. Noisy sequences, chimeric sequences, and
singletons were removed, and then amplicon sequence variants (ASVs) were inferred from
the clean sequencing reads using the DADA2 pipeline built into Qiime2 [31]. Taxonomy
was assigned to each ASV using the classify-sklearn classification methods via the q2-
feature-classifier plugin built from the Greengenes database (release 13.8). To quantify
the taxonomic composition, all sequences were rarefied to an even sampling depth of
10,000. Only the taxa and taxa present in at least 1% of the samples with an average relative
abundance greater than 0.01% were included in the downstream analyses. Diversity metrics
were calculated using the R package vegan, including α-diversity index and distance-based
β-diversity. The relative abundances of each taxon were used in the following analyses.

2.4. Dietary Data Collection

Information about food intake during the past 12 months was collected through a
food-frequency questionnaire (FFQ). Dietary data covered 9 major food groups in China:
red meat (pork, beef, lamb, etc.), white meat (fish, chicken, duck, goose, etc.), eggs, dairy
products, cooked meat (e.g., sausage), refined grains (rice, wheat, etc.), whole grains (millet,
corn, sorghum, etc.), fresh fruits, and fresh vegetables. All these foods were examined with
5 frequency levels of habitual consumption (monthly or never/rarely, once a week, more
than 1 time per week, daily, or more than 1 time per day) during the past 12 months. For
analysis purposes, we transformed the frequency to times per week (i.e., 0, 1, 4, 7, and 14,
respectively).

2.5. Dietary Pattern Analysis

Posteriori dietary patterns were derived from the 9 food groups using factor analysis
with a principal component method. We applied a factor analysis with the principal
component method to identify the major common factors. Orthogonal varimax rotation
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was performed to attain mutually independent structure with great interpretability. The
optimal number of factors was determined by the scree plot examination of the true dataset
compared to random “parallel” matrices, factor interpretability, and the variance explained
(5%) by each factor. Finally, we chose the three-factor solution, totally explaining 50% of
the whole variance of food intake frequencies (see Supplementary Figure S2 and Table S1).
Using the k-means clustering method, we finally clustered the participants into 3 groups
according to the weighted factor scores from the factor analysis. For more details, see
Supplementary Method 1.

2.6. Statistical Analysis

Covariates, including sociodemographic variables (sex and age), lifestyle factors
(cigarette smoking, alcohol drinking, and physical activity) and BMI (in kg/m2) were
adjusted in the diet–microbiome association analysis. Distributions of ASV-based alpha-
diversity (including Shannon, richness, chao1, Simpson, Pielou, ACE, and faith_pd index)
by different food intake frequency groups were compared using the Kruskal–Wallis H test.
Associations between dietary variables and the β-diversity dissimilarities were evaluated
using a permutational multivariate ANOVA (PERMANOVA, 999 permutations ) with
adjustment for covariates, which was also used to measure the percentage of variation
in microbial composition explained by the dietary variables. A p-value of <0.05 was
considered to be significant. For a better visualization of the interindividual variation
in gut microbiota composition, unconstrained principal coordinate analyses (PCoAs) of
the Bray–Curtis distance were plotted and color-coded based on sex, age group, and
BMI. Associations between dietary variables and gut microbiome profiles at the relative
abundances of phyla, genera, and species level were tested using multivariate associations
with linear models (MaAsLins). Detailed information regarding MaAsLins is provided in
Supplementary Method 2. Models were multi-adjusted for the aforementioned covariates
with a BH-adjusted p-value of <0.1 considered significant. All analyses were performed
using R Version 4.0.5.

Although gut microbiota have been widely reported to geographically vary [32], it is
hard to dissect the mixed effects of, for instance, lifestyle and long-term diets captured by
the geographical variable. Thus, we conducted a sensitivity analysis among participants
from the same province instead of regarding geography as a covariate to be adjusted, and
we also considered the sample size. Additional sensitivity analyses were conducted by
excluding (1) 223 participants who were assessed as at high risk of colorectal cancer or had
positive FIT results and (2) 360 participants with BMI < 18.5 kg/m2 or >24.0 kg/m2.

3. Results
3.1. Study Sample Characteristics

A total of 702 participants were included in our final analysis, including 369 women
and 333 men. Characteristics of the study population are presented in Table 1. The majority
of the included individuals were aged between 50 and 70 years old, and they were evenly
distributed by an age interval of 5 years, with only 5.56% aged over 70. The proportion
of current smokers was 73.36%. Nearly two thirds of the population were non-drinkers.
The BMI values were regrouped into three groups according to the Chinese definitions of
“overweight” and “obesity”, with more than a half having a BMI of less than 24 kg/m2.
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Table 1. Characteristics of the study population (N = 702).

N Percentage
Sex

Female 369 52.56%
Male 333 47.44%

Age, years
50–54 188 26.78%
55–59 153 21.79%
60–64 181 25.78%
65–69 141 20.09%
70–74 39 5.56%

Smoking status
Current smoker 515 73.36%

Past smoker 45 6.41%
Nonsmoker 142 20.23%

Alcohol consumption
No 463 65.95%

Seldom 102 14.53%
Regular 137 19.52%

BMI, kg/m2

<24.0 373 53.13%
24.0–27.9 282 40.17%
≥28.0 47 6.7%

Physical activity (MET, h/week)
<33.60 175 24.93%

33.60–82.05 176 25.07%
82.05–147.80 175 24.93%
≥147.80 176 25.07%

Region
Changsha, Hunan 190 27.07%

Hefei, Anhui 92 13.11%
Kunming, Yunnan 14 1.99%

Lanxi, Zhejiang 154 21.94%
Taizhou, Zhejiang 164 23.36%
Xuzhou, Jiangsu 88 12.54%

BMI, body mass index; MET, metabolic equivalents.

The usual dietary consumption of the participants is presented in Table 2. The
amount of physical activity was evaluated using metabolic equivalent hours per day
(MET-hours/day), which was regrouped into quantiles. The geographical distribution is
also presented. The usual food intakes frequencies of the participants are presented in
Table 2. Microbiota composition showed great interindividual variability at the phylum
level (see Figure 1).

Table 2. Usual dietary consumption frequencies of the study population.

Food Group >1 per Day 1 per Day >1 per Week 1 per Week <1 per Week

Red meat (pork, beef, lamb, etc.) 142 (20.23%) 272 (38.75%) 211 (30.06%) 64 (9.12%) 13 (1.85%)
White meat (fish and poultry) 57 (8.12%) 170 (24.22%) 280 (39.89%) 131 (18.66%) 64 (9.12%)

Eggs 51 (7.26%) 218 (31.05%) 263 (37.46%) 88 (12.54%) 82 (11.68%)
Dairy products (milk, yoghurt, etc.) 23 (3.28%) 123 (17.52%) 121 (17.24%) 66 (9.40%) 369 (52.56%)

Cooked and cured meats
(e.g., sausages) 18 (2.56%) 22 (3.13%) 57 (8.12%) 53 (7.55%) 552 (78.63%)

Refined grains (rice, flour, etc.) 521 (74.22%) 103 (14.67%) 55 (7.83%) 11 (1.57%) 12 (1.71%)
Whole grains (millet, corn,

sorghum, etc.) 62 (8.83%) 107 (15.24%) 234 (33.33%) 123 (17.52%) 176 (25.07%)

Fruits 98 (13.96%) 212 (30.20%) 167 (23.79%) 127 (18.09%) 98 (13.96%)
Vegetables 480 (68.38%) 159 (22.65%) 44 (6.27%) 14 (1.99%) 5 (0.71%)
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Figure 1. Relative abundances of the 4 most abundant phyla. Each thin vertical bar presents relative
abundances determined in 1 individual stool sample, totaling 702.

3.2. Data-Driven Posteriori Dietary Patterns

Three dietary patterns were identified in the present Chinese population (Supplemen-
tary Tables S2 and S3). The first cluster, a traditional dietary pattern of the Yangtze River
Delta, represented a typical traditional diet in South China characterized by high intakes
of refined grains and vegetables but low intakes of cooked meat. A majority of partici-
pants from two sites of Zhejiang province, part of the Yangtze River Delta, followed this
traditional Yangtze River Delta dietary pattern (indicated as Cluster A; see Supplementary
Table S4). The second cluster was a modern dietary pattern that was characterized by
specifically high intakes of eggs, dairy, fruits, vegetables and whole grains accompanied
by medium intakes of red meat and white meat (indicated as Cluster B). The third cluster,
labeled as the general dietary pattern, was characterized by the generally higher intake
of each food group (4–6 times per week), except for the relatively lower consumption of
cooked meat, compared to the other dietary patterns (indicated as Cluster C).

3.3. α-Diversity Indexes Distributed by Food Intake Frequencies

For the Shannon index, no significant differences were observed among different
food intake frequencies for the nine food groups (Figure 2). Regarding red meat, white
meat, cooked meat, dairy products, whole grains, and vegetables, the α-diversity in-
dex shared similar levels across different food intake frequency groups (Supplementary
Figures S3–S5, S7, S9 and S11). The richness, chao1, ACE, faith_pd index were significantly
distributed by egg intake frequencies (Supplementary Figures S6). For refined grain and
fruit consumption, the faith_pd index presented different distributions among different
food intake frequency groups (Supplementary Figures S8 and S10).
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food groups. ns: non-significant.

3.4. Associations between Dietary Variables and β-Diversity

Unconstrained PCoAs of the Bray–Curtis distance are shown in Figure 3. Compo-
sitional dissimilarities (β-diversity) of the gut microbiota between men and women and
across different BMI groups were detected (Figure 3A,C). Although no clear clustering
appeared among age groups, a grouping pattern along the gradient of age groups could
be observed (Figure 3B). Arrows indicate the direction of gradient for covariates and were
obtained via the envfit function (package “vegan”). Figure 3D presents the associations
between dietary variables and β-diversity matrices found using PERMANOVAs. The
Bray–Curtis distances of inter-individual dissimilarities were associated with whole grains
and vegetables, explaining 1.46% of the total variation in the gut microbiota composition
measured by the partial R2 value with age, sex, BMI, smoking, alcohol consumption, and
physical activity adjusted.
Nutrients 2022, 14, 2639 8 of 15 
 

 

 
Figure 3. Variation in the gut microbiota composition represented by unconstrained PCoA based 
on the distance indexes. (A–C) present the grouping patterns of gut microbiota composition based 
on sex, age, and BMI. (D) shows percentages of variation in gut microbiota composition explained 
by dietary variables using multi-adjusted permutational ANOVAs (999 permutations). PCoA, prin-
cipal coordinate analysis. * p-value < 0.05. 

3.5. Associations between Dietary Variables and Relative Abundances of Taxa 
Taxa significantly associated with food groups and the posteriori dietary pattern are 

presented in Table 3. For instance, the genus Weissella and an unknown species of it were 
negatively associated with weekly red meat intake. Cooked meat was positively associ-
ated with an abundance of the genus Coprobacter. The relationships of Weissella and Copro-
bacter were kept consistent in the sensitivity analyses by restricting participants from a 
single province or removing individuals at a high risk of intestinal diseases, respectively 
(Supplementary Table S6). 

Table 3. Associations between food intakes, posteriori dietary patterns, and gut microbial profiles 
using MaAsLins. 

Food Group Phylum Class | Order | 
Family 

Genus Species Value Coef 1 Coverage 
(%) 2 

Pval 3 Qval 4 

Red meat Firmicutes 
Bacilli | Lactobacil-

lales | Leuconostoca-
ceae 

Weissella 
Uncul-

tured or-
ganism 

pd −0.0379 28.35% <0.0001 0.0300  

Figure 3. Variation in the gut microbiota composition represented by unconstrained PCoA based on
the distance indexes. (A–C) present the grouping patterns of gut microbiota composition based on sex,



Nutrients 2022, 14, 2639 8 of 14

age, and BMI. (D) shows percentages of variation in gut microbiota composition explained by
dietary variables using multi-adjusted permutational ANOVAs (999 permutations). PCoA, principal
coordinate analysis. * p-value < 0.05.

3.5. Associations between Dietary Variables and Relative Abundances of Taxa

Taxa significantly associated with food groups and the posteriori dietary pattern
are presented in Table 3. For instance, the genus Weissella and an unknown species of
it were negatively associated with weekly red meat intake. Cooked meat was positively
associated with an abundance of the genus Coprobacter. The relationships of Weissella and
Coprobacter were kept consistent in the sensitivity analyses by restricting participants from
a single province or removing individuals at a high risk of intestinal diseases, respectively
(Supplementary Table S6).

Table 3. Associations between food intakes, posteriori dietary patterns, and gut microbial profiles
using MaAsLins.

Food
Group Phylum Class | Order | Family Genus Species Value Coef 1 Coverage

(%) 2 Pval 3 Qval 4

Red meat Firmicutes Bacilli | Lactobacillales |
Leuconostocaceae Weissella Uncultured

organism pd −0.0379 28.35% <0.0001 0.0300

Red meat Firmicutes Bacilli | Lactobacillales |
Leuconostocaceae Weissella pd −0.0379 29.91% <0.0001 0.0308

Dairy Firmicutes Clostridia | Clostridiales |
Lachnospiraceae Anaerostipes uncultured

organism pd 0.0146 67.95% <0.0001 0.0261

Dairy Firmicutes Clostridia | Clostridiales |
Lachnospiraceae Anaerostipes pd 0.0146 71.37% <0.0001 0.0261

Cooked
meat Bacteroidetes Bacteroidia | Bacteroidales

| Barnesiellaceae Coprobacter pd 0.0118 11.97% <0.0001 0.0044

Whole
grains Firmicutes

Negativicutes |
Veillonellales |
Veillonellaceae

Megasphaera uncultured
organism mul_pd 0.0420 14.25% <0.0001 0.0183

Refined
grains Firmicutes Bacilli | Lactobacillales |

Lactobacillaceae Lactobacillus uncultured
organism pw 0.0602 13.82% 0.0001 0.0763

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Eubacterium co-
prostanoligenes

group

uncultured
organism pd −0.0767 23.50% <0.0001 0.0123

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Eubacterium co-
prostanoligenes

group

uncultured
organism mul_pd −0.0737 23.50% <0.0001 0.0140

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae uncultured pd −0.0389 43.87% <0.0001 0.0156

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Eubacterium co-
prostanoligenes

group

uncultured
organism mul_pw −0.0746 23.50% <0.0001 0.0173

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae uncultured mul_pw −0.0394 43.87% <0.0001 0.0173

Vegetables Firmicutes Clostridia | Clostridiales |
Christensenellaceae

Christensenellaceae
R7 group

uncultured
organism pd −0.0573 27.78% <0.0001 0.0226

Vegetables Firmicutes Clostridia | Clostridiales |
Christensenellaceae

Christensenellaceae
R7 group

uncultured
organism mul_pd −0.0561 27.78% <0.0001 0.0256

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Eubacterium co-
prostanoligenes

group

uncultured
organism pw −0.0754 23.50% 0.0001 0.0460

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Ruminococcaceae
UCG 005

uncultured
organism mul_pw −0.0243 12.68% 0.0002 0.0588

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae uncultured mul_pd −0.0339 43.87% 0.0001 0.0588

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae uncultured pw −0.0388 43.87% 0.0002 0.0588

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae uncultured uncultured

organism mul_pw −0.0284 13.96% 0.0002 0.0595
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Table 3. Cont.

Food
Group Phylum Class | Order | Family Genus Species Value Coef 1 Coverage

(%) 2 Pval 3 Qval 4

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Ruminococcaceae
UCG 005

uncultured
organism pd −0.0230 12.68% 0.0002 0.0629

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae uncultured uncultured

organism pd −0.0267 13.96% 0.0003 0.0733

Vegetables Firmicutes Clostridia | Clostridiales |
Christensenellaceae

Christensenellaceae
R7 group

uncultured
organism mul_pw −0.0522 27.78% 0.0003 0.0743

Vegetables Firmicutes Clostridia | Clostridiales |
Christensenellaceae

Christensenellaceae
R7 group

uncultured
organism pw −0.0572 27.78% 0.0003 0.0743

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Ruminococcaceae
UCG 005

uncultured
organism mul_pd −0.0222 12.68% 0.0003 0.0743

Vegetables Firmicutes Bacilli | Lactobacillales |
Leuconostocaceae Leuconostoc uncultured

organism mul_pw −0.0246 17.81% 0.0003 0.0745

Vegetables Firmicutes Bacilli | Lactobacillales |
Leuconostocaceae Leuconostoc mul_pw −0.0246 17.81% 0.0003 0.0745

Vegetables Firmicutes Bacilli | Lactobacillales |
Leuconostocaceae Leuconostoc uncultured

organism pd −0.0231 17.81% 0.0005 0.0867

Vegetables Firmicutes Bacilli | Lactobacillales |
Leuconostocaceae Leuconostoc pd −0.0231 17.81% 0.0005 0.0867

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Ruminococcaceae
UCG 005

uncultured
organism pw −0.0246 12.68% 0.0005 0.0900

Vegetables Firmicutes Bacilli | Lactobacillales |
Leuconostocaceae Leuconostoc uncultured

organism mul_pd −0.0225 17.81% 0.0006 0.0958

Vegetables Firmicutes Bacilli | Lactobacillales |
Leuconostocaceae Leuconostoc mul_pd −0.0225 17.81% 0.0006 0.0958

Vegetables Firmicutes Clostridia | Clostridiales |
Ruminococcaceae

Eubacterium
coprostanoligenes

group
pd −0.0804 71.23% 0.0006 0.0958

Cluster Firmicutes Clostridia | Clostridiales |
Lachnospiraceae Anaerostipes uncultured

organism C 0.0119 67.95% 0.0001 0.0749

Cluster Firmicutes Clostridia | Clostridiales |
Lachnospiraceae Anaerostipes C 0.0115 71.37% 0.0001 0.0858

1 For categorical features in MaAsLins analysis, the specific feature level for the coefficient and significance of
association is reported. 2 Prevalence of bacterial taxa in the study sample is equal to the total of number of samples
in which the feature is non-zero divided by the total number of samples used in the model. 3 p-value for MaAsLin
adjusted for age, sex, BMI, smoking status, alcohol consumption, and physical activity; computed using the
Maaslin2 package on R. 4 Corrected p-value by the Benjamini–Hochberg method (10% false discovery rate).

Dairy intake was positively associated with the genus Anaerostipes and an unknown
species of it. Moreover, we found significant positive associations for whole grain in-
take with a species of the genus Megasphaera and refined grain intake with a species of
the genus Lactobacillus, which were also observed in the sensitivity analyses (Supple-
mentary Tables S5–S7). Vegetables were negatively inversely associated with the genus
Eubacterium coprostanoligenes group and a species of it, a species of the genus Christensenel-
laceae R7 group belonging to the family Christensenellaceae, and the genus Leuconostoc. For
the whole picture of the habitual food intakes, individuals leading the general dietary style
(Cluster C) had higher abundances of the genus Anaerostipes and a species of it compared to
those who had the traditional Yangtze River Delta dietary pattern (Cluster A) characterized
by higher intakes of refined grains and vegetables and lower intakes of dairy products.

4. Discussion

In this population-based study of 702 healthy Chinese adults free of colorectal neo-
plasm aged 50–75 years, we examined the associations between the habitual dietary pattern
and the gut microbiome. Our data revealed that the α-diversity index generally shared sim-
ilar levels across different food intake frequencies among nine major food groups, whereas
whole grain and vegetable intakes drove the dissimilarities in gut microbial composition,
as indicated by the distance-based β-diversity dissimilarities. Based on the data-driven
posteriori dietary pattern analyses, our results also highlighted the relationship of the
general dietary style with higher abundances of the genus Anaerostipes and a species of
it, which was characterized by lower intakes of refined grains. Moreover, we observed a
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number of positive or inverse associations between usual food groups and abundances of
certain taxa, concentrated in genera within the phylum Firmicutes.

Previously reported evidence supports our findings. Evidence from a randomized
diet intervention trial aiming to examine the effect of carbohydrate type on gut microbial
composition and function and metabolites showed that Anaerostipes had a higher abundance
after a simple carbohydrate diet compared to a refined carbohydrate diet [33]. Due to
the role of Anaerostipes as a butyrate producer, low abundance after the consumption
of refined carbohydrate foods may contribute to the unfavorable effects of diets rich in
refined carbohydrates. In addition, the authors of a recent study reported a myo-inositol
pathway in Anaerostipes spp., which was most abundantly present in mammalian tissues and
fruits, suggesting a newly discovered benefit of intestinal Anaerostipes spp. for host health
promotion [34]. In our study, participants consuming general diets had higher weekly fruit
intakes than individuals with the traditional Yangtze River Delta dietary pattern.

For the specific food groups, our results showed that genus Weissella and an unknown
species of it were negatively associated with weekly red meat intake. Weissella is a member
of the lactic acid bacteria group, which has been well-studied and is best known for its
potential in imparting beneficial human health effects [34]. Some strains of Weissella can
prevent lipopolysaccharide-induced proinflammatory stress in murine macrophages and
human colonic epithelial cells [35]. Dairy has presented a positive association with the
abundance of Anaerostipes, which warrants further investigation, whereas mice model
studies have suggested that Anaerostipes caccae may be involved in the protective process
against the allergic response to cow’s milk [36]. The association between vegetable intake
and Christensenellaceae disappeared after excluding individuals with abnormal BMI levels,
predominantly overweight and obese people. This phenomenon could be explained by
previously reported evidence that suggests that the relative abundance of Christensenellaceae
in the human gut is inversely related to host BMI in different populations, making its
relationship with BMI the most robust and reproducible link between the microbial ecology
of the human gut and metabolic disease [37].

The Eubacterium coprostanoligenes group is characterized as one of the hub genera in
the fecal micro-ecosystem of high-fat diets, and studies have shown that the Eubacterium
coprostanoligenes mediates the effect of high-fat diets on dyslipidemia through sphingo-
sine [38]. The requirement of lecithin for the growth of Eubacterium coprostanoligenes [39],
which is primarily rich in animal foods, may partly explain the negative association between
the relative abundances of Eubacterium coprostanoligenes and vegetable intakes found here.

In the present study, we used aggregated items to collect information on broad di-
etary habits of participants for the sake of convenient dietary data collection. This led to
high variability in terms of specific food types and nutrient composition, as well as the
population-specific findings. For example, people residing in Europe consume different
types of vegetables than Chinese people. Moreover, the complexity of food composition
including macronutrients, micronutrients, and food additives made it difficult to elucidate
the intricate diet–microbiota relationship. The significant findings in our study need to be
cautiously interpreted, and some associations could be explained from a biological mecha-
nistic standpoint. Thus, additional efforts and deeper insights regarding the underlying
mechanisms are required before considering translating such knowledge to personalized
diet intervention strategies. Nevertheless, we have confirmed that future studies should
consider dietary variables as covariates in analyses of disease-microbiome associations
to disentangle the effects of diet on the gut microbiome from disease-related associations.
To simplify the complexity of multidimensional diet data with internal correlations, re-
searchers can the dietary index as a summary measure when quantifying dietary variance in
microbiota studies instead of individual dietary features [13], including priori or posteriori
dietary indices [40].

The presented study is the so-far largest multi-center study of the association between
the gut microbiota and the habitual diet with unitary and general measurements in the Chi-
nese population. However, some points should be considered in interpreting our findings.
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Firstly, we only assessed nine commonly consumed food groups in the Chinese diet using
aggregated items, so food groups that could be further classified were broadly considered,
e.g., milk and yogurt were considered as general dairy products. Although the major
dietary patterns in the studied Chinese adults were well-captured, only the frequencies
(not the quantities of the major food groups) were collected, which made it less feasible to
completely quantify food intakes. In addition, given the potentially rapid and transient
effects of food on the human gut microbiome [14], the bacterial profiles characterized in a
single fecal sample will likely reflect the effect of food consumption patterns in the period
immediately prior to sample collection and not necessarily a participant’s long-term steady
state. Additionally, long-term dietary habits were coarsely assessed using a one-time FFQ
that collected data on food intake patterns over the prior 12 months. Thus, large-scale
observational studies using accurate frameworks to capture long-term dietary exposures
and stable gut microbiota composition and to reduce random within-person variation are
needed for exploration of associations between habitual food intakes and gut microbiome.
Subsequent time points with both dietary and microbiota data would be of utmost interest
to investigate the stability of the studied relations over time. Though the participants of
our study were from multiple regions, we performed a sensitivity analysis with individ-
uals from a single province instead of regarding region as a covariate since the dietary
information partly captured the geographical characteristics of the studied population
(Supplementary Table S8). However, we cannot rule out residual confounding effects due
to imperfectly measured covariates and unmeasured confounders, despite multivariable
adjustments and sensitivities analyses. Furthermore, the TARGET-C study was initially
established to evaluate the effectiveness of different colorectal cancer screening strategies.
Participants enrolled in this study were apparently healthy upon recruitment according
to stringent inclusion criteria but no systematic physical examination, thus providing a
less pure foundation to investigate the diet–microbiota relationship. Extensive studies in a
completely disease-free context are needed. Finally, the annotation resolution of the 16S
rRNA amplicon sequencing was limited, so future efforts focusing on a broader picture
of microbiome variability and the potential functional capability of the gut microbiome
through shotgun metagenomics may provide deeper insight into the diet–gut microbiome
relationship.

5. Conclusions

In summary, in a large sample of the Chinese population free of colorectal neoplasm,
we found that the long-term dietary pattern characterized by lower intakes of refined
grains was associated with higher abundances of the genus Anaerostipes and a species
of it. The dietary pattern can act as a summary measure that captures gut microbiota
variance attributable to habitual diet in microbiome studies. Future studies are needed
to investigate whether and to what extent the gut microbiota may mediate or modify the
effects of habitual diets on human physiological and pathological processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14132639/s1, Figure S1. Workflow diagram for the subject
enrollment and exclusion, Figure S2. Parallel analysis scree plot to determine the number of factors
for factor analysis, Figure S3. α-diversity indexes (richness, chao 1, simpson index, pielou index, ACE
and faith-pd index in different intake frequency groups of red meat, Figure S4. α-diversity indexes
(richness, chao 1, simpson index, pielou index, ACE and faith-pd index in different intake frequency
groups of white meat, Figure S5. α-diversity indexes (richness, chao 1, simpson index, pielou index,
ACE and faith-pd index in different intake frequency groups of cooked meat, Figure S6. α-diversity
indexes (richness, chao 1, simpson index, pielou index, ACE and faith-pd index in different intake
frequency groups of eggs, Figure S7. α-diversity indexes (richness, chao 1, simpson index, pielou
index, ACE and faith-pd index in different intake frequency groups of dairy products, Figure S8. α-
diversity indexes (richness, chao 1, simpson index, pielou index, ACE and faith-pd index in different
intake frequency groups of refined grain, Figure S9. α-diversity indexes (richness, chao 1, simpson
index, pielou index, ACE and faith-pd index in different intake frequency groups of whole grain,
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Figure S10. α-diversity indexes (richness, chao 1, simpson index, pielou index, ACE and faith-pd
index in different intake frequency groups of fruits, Figure S11. α-diversity indexes (richness, chao
1, simpson index, pielou index, ACE and faith-pd index in different intake frequency groups of
vegetables; Table S1. Factor loading matrix of major factors by principal component analysis with
varimax rotation, Table S2. Classification of subjects by cluster analysis using factor score, Table S3.
Dietary patterns identified by K-means clustering, Table S4. Region distributions of 702 participants
according to the established dietary patterns, Table S5. Sensitivity analysis of associations between
food intakes and gut microbial profiles using MaAsLins with population at a high risk of intestinal
diseases removed, N = 479, Table S6. Sensitivity analysis of associations between food intakes and
gut microbial profiles using MaAsLins among population from a single province, N = 318, Table S7.
Sensitivity analysis of associations between food intakes and gut microbial profiles using MaAsLins
among population with normal BMI values, N = 342, Table S8. Contingency correlation coefficient
between the region variable and dietary variables.
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