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Abstract: The gut microbiome (GM), a complex community of bacteria, viruses, protozoa, and fungi
located in the gut of humans and animals, plays significant roles in host health and disease. Animal
models are widely used to investigate human diseases in biomedical research and the GM within
animal models can change due to the impact of many factors, such as the vendor, husbandry, and
environment. Notably, variations in GM can contribute to differences in disease model phenotypes,
which can result in poor reproducibility in biomedical research. Variation in the gut microbiome
can also impact the translatability of animal models. For example, standard lab mice have different
pathogen exposure experiences when compared to wild or pet store mice. As humans have antigen
experiences that are more similar to the latter, the use of lab mice with more simplified microbiomes
may not yield optimally translatable data. Additionally, the literature describes many methods to
manipulate the GM and differences between these methods can also result in differing interpretations
of outcomes measures. In this review, we focus on the GM as a potential contributor to the poor
reproducibility and translatability of mouse models of disease. First, we summarize the important
role of GM in host disease and health through different gut–organ axes and the close association
between GM and disease susceptibility through colonization resistance, immune response, and
metabolic pathways. Then, we focus on the variation in the microbiome in mouse models of disease
and address how this variation can potentially impact disease phenotypes and subsequently influence
research reproducibility and translatability. We also discuss the variations between genetic substrains
as potential factors that cause poor reproducibility via their effects on the microbiome. In addition,
we discuss the utility of complex microbiomes in prospective studies and how manipulation of the
GM through differing transfer methods can impact model phenotypes. Lastly, we emphasize the
need to explore appropriate methods of GM characterization and manipulation.
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1. Role of Gut Microbiome in Disease
1.1. Gut Microbiome in Health and Disease

The term gut microbiome (GM) refers to the community of all of the microorganisms,
including bacteria, viruses (virome), protozoa (protozoome), fungi (mycobiome), and
their collective genetic material, that colonize and exist in the guts of all animals [1,2]. In
the host, the GM plays a critical role in providing nutrition through the metabolism of
dietary components [3] and the absorption of minerals [4], the maintenance of the normal
function of the gut barrier [5,6], protection against pathogen infection through colonization
resistance [7] and contributing to immune system development [8], drug metabolism [9]
and hormone secretion [10], all of which influence the health of the host.

Accumulating studies suggest that changes or differences in the GM are associated
with numerous intestinal diseases, such as inflammatory bowel disease (IBD) [11–13],

Microorganisms 2021, 9, 1062. https://doi.org/10.3390/microorganisms9051062 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-9198-867X
https://orcid.org/0000-0002-3053-7269
https://www.mdpi.com/article/10.3390/microorganisms9051062?type=check_update&version=1
https://doi.org/10.3390/microorganisms9051062
https://doi.org/10.3390/microorganisms9051062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9051062
https://www.mdpi.com/journal/microorganisms


Microorganisms 2021, 9, 1062 2 of 16

irritable bowel syndrome (IBS) [14–16], colon cancer [17,18], and Clostridium difficile in-
fection [19,20]. Differences in GM are also associated with non-intestinal conditions via
different axes (Figure 1) in human and mouse diseases. For instance, features of the GM
are associated with neurodegenerative and neuropsychiatric disorders [21], such as Parkin-
son’s [22,23] and Alzheimer’s disease [24] through the gut–brain axis [25], respiratory
diseases via the gut–lung axis [26,27], liver diseases through the gut–liver axis [28–31],
cardiovascular diseases [32,33], autoimmune disorders [34–37], and others [38]. In the
following subsections, we review the current knowledge of the GM of laboratory mice,
and its influence on host health and disease susceptibility through colonization resistance,
immune responses, and metabolic pathways.
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Figure 1. Gut microbiome associates with disease through different axes via different mechanisms
such as: colonization resistance, host immune response, and metabolism.

1.2. Gut Microbiome and Colonization Resistance

The GM, harboring symbiotes and commensals during health, can also serve as a
reservoir and transporter of pathogenic bacteria and viruses [39,40]. Pathobiont bacteria
such as E. coli replicate and proliferate mainly in the gut after infection [41]. The com-
mensal microbiome plays an essential role in protecting the host from the overgrowth of
pathobionts, and the invasion of foreign pathogenic bacterial and viral infection, using
different strategies collectively referred to as colonization resistance (CR). Mechanisms
of CR include out-competing pathogenic bacteria for space and nutrition, and producing
bactericidal factors like antimicrobial peptides [42]. Notably, conventional mice harboring a
specific pathogen-free (SPF) microbiome are less susceptible to bacterial infection compared
to germ-free mice [43]. Similarly, germ-free mice inoculated with Oligo-Mouse-Microbiota
(OMM12), a commensal bacterial community containing 12 bacterial species originally
isolated from mice, are less susceptible to infection compared to Altered Schaedler Flora
(ASF)-colonized mice due to the increased colonization resistance in OMM12 mice [44].
Both examples demonstrate the protective function of colonization resistance conferred by
the commensal microbiome.

1.3. Gut Microbiome and Immunity

Commensal bacteria protect the host not only by directly competing with pathogenic
bacteria for available space and energy sources, but also indirectly through their role
in immune system development. Many studies [45,46] have demonstrated the complex
interaction between the gut microbiome and host immunity, including both local and
systemic immune responses, in a variety of diseases.
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Certain commensal bacterial species, such as segmented filamentous bacteria
(SFB) [47–49], have been identified as potent inducers of secretory IgA (sIgA), IL-17, and
defensins. The presence of these immune mediators can enhance host resistance to bacterial
pathogens. For example, immunoglobulin A, produced at the mucosal surface, plays a
critical role in intestinal immunity. When infection occurs, high-affinity pathogen-specific
secretory IgA (sIgA) is secreted into the intestinal lumen to serve a protective function via
mechanisms such as viral or bacterial toxin neutralization [50–52].

The presence of SFB in the gut microbiome plays a protective role against Citrobacter
rodentium [53] and decreases host susceptibility to Salmonella colonization in rats [54] and
E. coli O103 infection in rabbits [55]. sIgA plays an important role in pathogen clearance
through effector functions, such as limiting pathogen growth in the gut lumen, preventing
the interaction between pathogen and host intestinal mucosa, and decreasing bacteria-
induced inflammatory responses in the case of Salmonella Typhimurium diarrhea [56] and
Shigella flexneri infection [57].

SFB also induces the increased production of IL-17, IL-22, and the antimicrobial
peptide RegIIIγ [58–60]. This protective T helper 17 (Th17) response has been shown to
be important in the defense against Citrobacter rodentium infection [61]. Similarly, IL-17
and IL-22 play protective roles in Salmonella infection [62,63], and IL-22 can enhance the
secretion of antimicrobial peptides in intestinal epithelial cells.

Another example of the association between the gut microbiome and immunity can
be seen in members of the bacterial genus Helicobacter. Helicobacters serve as provocateurs
to induce a potent T helper type 1 (Th1) immune response to normally commensal bacteria.
In turn, Helicobacters, such as H. hepaticus and H. bilis, are used as disease triggers in many
mouse models of gastrointestinal disease, including models of inflammatory bowel disease
(IBD) and colitis-associated colorectal cancer (CAC) [64,65].

1.4. Gut Microbiome and Metabolites

Microbiome metabolites, such as bile acids and short-chain fatty acids (SCFAs), can
maintain host health by providing nutrition and energy and modulating host immunity.
These metabolites include small compounds produced directly by commensal bacteria and
the end products of dietary substrates metabolized by commensal bacteria, both playing an
important role in maintaining host health [66]. Primary bile acids such as chenodeoxycholic
acids [67] have been demonstrated to have bactericidal activity against pathogenic bacteria,
as they are associated with the increased production of host antimicrobial peptides. GM-
derived secondary bile acids and symbiotic products such as propionate also hinder the
colonization of bacterial pathobionts, such as C. difficile [68,69]. GM-derived SCFAs have
also been shown to influence diseases such as obesity, Parkinson’s disease, and those that
disrupt intestinal epithelial integrity [70–73]. SCFAs also have beneficial effects in terms
of maintaining intestinal homeostasis through immune modulation [74]. Kang et al. [75]
reported the reduced abundance of butyrate-producing bacterial species within the family
Ruminococcaceae in Crohn’s disease (CD) patients compared to healthy individuals. These
studies support the notion that the GM influences disease susceptibility through metabolites
present in the lumen of the gut.

Collectively, through various direct and indirect mechanisms, such as colonization
resistance, immune modulation, and modulation of host metabolism, the gut microbiome
plays an essential role in both human and animal health and disease.

2. Factors Contributing to Gut Microbiome Variation

Considering the important role that the GM plays in host health and disease, differ-
ences in the GM between mice could result in a different disease phenotype in a given
model, causing poor research reproducibility [76]. Mouse models are useful and valuable
tools to investigate many disease mechanisms of, and therapeutics for, human disease.
However, there are many factors that can influence the gut microbiome of mouse models.
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These factors include the interaction between different organic components within the
gut microbiome (Figure 2), as well as various environmental factors (Figure 3). Organic
factors that contribute to the variation in the gut microbiome include the interaction
between the virome and commensal bacteria. For example, bacteriophages can transfer
antibiotic resistance genes (ARG) to commensal bacteria or pathogenic bacteria in the gut
through transduction. Besides the modulation of ARG, bacteriophages can also impair
the intestinal barrier and result in an increase in intestinal permeability and a change in
GM abundance [77]. Similarly, environmental factors as broad as the supplier or even
the housing facility can alter the GM [78]. The supplier is a major factor—the GM of
SPF mice from the Jackson Laboratory (Jax) and Envigo are characterized by many of the
same dominant colonizers (e.g., Muribaculaceae), accompanied by stark differences in the
relative abundance of many other families, including Prevotellaceae, Ruminococcaceae, and
Erysipelotrichaceae (Figure 4).
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of family.

In addition, many environmental factors such as diet, bedding, caging, housing den-
sity, and the mode of birth delivery can contribute to the variance in the microbiome
composition between mice [79]. For example, preclinical and clinical studies demonstrate
that dietary polyphenols with probiotic properties can impact GM composition, gut per-
meability, metabolism, and immune responses [80,81]. The consumption of polyphenols
modulates the relative abundance of Firmicutes to Bacteroidetes [82]. Increased numbers of
studies show that the supplementation of polyphenols from apple juice, berries, red wine,
and teas can increase the relative abundance of probiotic bacteria, such as Lactobacillus and
Bifidobacterium, and decrease some pathogenic bacteria, such as H. pylori and C. difficile [83].
In addition, polyphenols impact gut microbiota metabolites to exert anti-oxidative, anti-
cancer, and anti-inflammatory activities [83,84].

Host genetics have also been shown to “shape” the GM [85,86]. For example, in the
IL10−/− mouse model of inflammatory bowel disease, different genetic backgrounds (C3H
and C57/BL6) result in variations in GM colonization [87]. In summary, the variations in
GM composition in contemporary mouse colonies and the multitude of factors that can
modulate the GM highlight the need to consider GM as a potential cause when differences
in disease phenotypes arise.

3. Microbiome Variation and Reproducibility of an Animal Disease Model

In addition to the aforementioned role of SFB in mucosal immune system development
and the subsequent influence on Citrobacter rodentium colitis, there are many examples of
how certain commensal bacteria can modulate host physiology and disease. For example,
members of the phylum Firmicutes produce butyrate, which down-regulates the expression
of epithelial indoleamine 2,3-dioxygenase-1 (IDO-1), an important molecule that modulates
intestinal immune responses [88].

Interactions between commensal bacteria and host immune responses also have the
potential to alter disease phenotypes. For example, germfree mice colonized by commensal
bacterial consortia and coated with a large amount of IgA are more susceptible to colitis
when compared to mice colonized by a commensal consortium with lower levels of IgA
coating [89].

Thus, the variations in GM, their products and their complex interactions with the
host have great potential to modulate the disease phenotypes of animal models.
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4. Microbiome and Translatability of Mouse Models to Human Disease

Mouse models are widely used to investigate the genetic basis of human disease
due to the feasibility of genetic modifications in mice [90–92]. In addition, the GM of
mice and humans are similar in that both are made up of roughly 90% Firmicutes and
Bacteroidetes [93]. The translatability of a mouse model for studying human disease refers to
its ability to accurately predict the mechanism or outcomes of a human disease or condition.
Considering the variability of the GM among mouse models and its influence on disease
phenotypes, it follows that the translatability of a mouse model and its cognate GM should
also be considered when comparing preclinical study results from mouse models to human
disease [94,95]. Since differences in the mouse GM can influence host immunity and disease
susceptibility and result in discrepant research results in preclinical studies, the question
arises as to which preclinical results are the most translatable, or representative, of the
human disease under investigation.

Recently, attention has been focused on mice from non-laboratory sources (e.g., pet
stores, feral populations, and wild mice) due to the significant differences in antigen
experience compared to traditional lab mice. As a result, more antigen-exposed pet store
mice develop a human adult-like immune system, while the less antigen-experienced lab
mice retain an infant-like immune system [96]. In a separate study, lab mice colonized
with the GM of wild mice show increased resistance to influenza virus infection, and a
reduced incidence of AOM/DSS-induced colorectal cancer compared to cohorts harboring
the GM profile of standard lab mice [97]. These studies highlight that differences in antigen
experience have a profound impact on the immune profile and associated susceptibility to
a broad range of diseases.

5. Genetic Drift of Substrain and Disease in Mouse Model

Susceptibility to many diseases, both infectious and immune-mediated, often has
an underlying genetic basis [86,98–101]. The different inbred mouse strains BALB/c and
C57BL/6 have differences in their ability to produce IgA, which results in a higher diversity
of microbiota in BALB/c mice compared to C57BL/6 mice [102]. Additionally, genetic
drift describes the variation between different mouse substrains within the same genetic
background. The genetic variation between substrains potentially impacts the diversity of
the GM and the disease susceptibility of mouse models. Genetic factors play an important
role in shaping the human gut microbiome as well, consequently influencing metabolism
and disease susceptibility [86]. When studies were conducted using two different substrains
of C57BL/6 mice (B6N and B6J), the results of select neurological function tests were
significantly different between substrains [103]. Some metabolism-related diseases differ
between the different substrains of C57BL/6 mice due to the mutation of the nicotinamide
nucleotide transhydrogenase (Nnt) gene [104–107]. These examples demonstrate that
differences between mouse substrains can impact disease phenotypes. Unfortunately,
many of these studies were performed prior to the recognition that GM can also influence
the model phenotype and, almost invariably, they were performed without consideration
for differing GM (such as the profound differences seen in B6 substrains from the Jackson
Laboratory and Envigo). Moving forward, when designing or troubleshooting experiments
using animal models, it will be critical to consider host genetic and microbial factors as
well as the complex interactions between the two.

6. Methodology to Investigate the Contribution of Genetics and Microbiome

As described above, both GM and host genetics can play critical roles in host disease
susceptibility and there is frequent interaction between these two factors, making con-
trolled studies difficult. To address this issue, we applied complex microbiota-targeted
rederivation (CMTR) [108] to generate genetically engineered mouse models harboring
distinct microbiome profiles. Simply, embryos from mice of the chosen genetic background
are transferred into surrogate CD-1 dams that harbor different complex microbiome pro-
files. Pups thus obtain their GM during the natural process of delivery and maternal
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care. In this way, the complex microbiome can be faithfully transferred to any mouse
strain or model for further research purposes. Using this strategy, isogenic (genetically
identical) mice harboring different GMs are created and can be used to investigate the role
of GM variations in model phenotypes. This approach can also be used to transfer the
same GM into mice with different genetic backgrounds in order to investigate the genetic
factors that may shape the microbiome. Using the described methods, we [87] successfully
identified the GM as a contributing determinant in the IL-10-/- IBD model, demonstrating
that the variation in GM among commercial vendors can affect the disease severity. Recent
studies [109,110] using a similar approach showed that the microbiome and genetics both
play a critical role in the development of colon cancer in a mouse model of familial and
spontaneous colon cancer. This approach can also be applied to investigate different areas,
such as identifying the commensal bacteria contributing to disease, signaling pathways,
drug metabolism, and treatment efficacy.

7. Reasons to Modulate the Microbiome in Animal Models and Potential Application

The manipulation and modulation of the gut microbiome are performed for different
purposes, such as creating a well-controlled GM environment for further investigation
of the underlining mechanisms [109], identifying the contributing component(s) of the
GM [111], exploring the interactions between different commensal bacteria in the GM [112],
therapeutic approaches [113,114], investigating drug metabolism for the development of
precision medicine [115–117], and improving the reproducibility [118] of biomedical re-
search by decreasing the variability induced by differing GMs. A controlled GM transferred
to a mouse can provide a controlled GM environment in any genetically modified disease
model, as illustrated in Figure 5.
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7.1. Improve Reproducibility through a Better Understanding of Methods to Transfer the GM

Currently, there are several different ways to transfer the gut microbiome in mouse
models of disease (Figure 6). The embryo transfer (ET) method is considered the gold
standard for GM transfer. For facilities where ET is not possible, researchers often use
alternative methods such as fecal microbiome transfer (FMT), co-housing (CH), and cross-
fostering (CF). These methods each carry certain limitations and the method of GM transfer
can itself affect model outcomes. Researchers should therefore be aware of these method-
based influences, control for them accordingly, and interpret the resulting data in the context
of the transfer methods used. The pros and cons of each method should be considered.
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In the ET approach, the embryos of the intended GM recipient mice are collected and
surgically transferred to a pseudopregnant GM donor dam. The transferred embryos go
through the fetal development stage in the donor GM environment. The recipient pups can
then obtain the vaginal microbiome from the donor dam through natural delivery. After
birth, the pups acquire the donor GM through maternal care. In this way, the complete
donor GM can be transferred to the recipient mice and pups harboring the transferred GM
can be used for the study. ET results in a very high-efficiency transfer of the donor GM due
to exposure to the donor GM environment during the delivery process, and with maternal
care. However, this method requires considerable expertise and well-trained personnel,
and is relatively expensive, making it inaccessible for many labs.

FMT is a commonly used method wherein fecal or cecal contents (either frozen or
freshly prepared slurries) from donors are transferred to recipient mice through gastric
gavage. The advantage of FMT in animal models is the flexibility of using stored fecal or
ceca contents, as well as the ease of use according to the procedure. Many mouse FMT
studies use germfree mice. However, for some studies that do not use germfree mice, prior
to transfer, the administration of antibiotics is often required to first deplete the microbiome
in recipient mice. An additional consideration with FMT is that transfer efficacy is highly
dependent on the GM richness of the donor and recipient [119].

CH is another commonly used method in the literature, wherein recipient mice are
co-housed with donor mice after weaning [120,121], resulting in the transfer of the donor
GM through coprophagy and grooming [119,121]. The advantage of co-housing is the ease
of use and low cost. However, co-housing results in the transfer of GM after a critical pre-
weaning period during which immune system development occurs and the microbiome
is changing rapidly, which results in an incomplete transfer and does not capture any
GM-mediated influences on the developmental processes, and associated phenotypes that
dependent on some developmental processes. Additionally, the transfer efficiency of CH
is low due to the fact that recipient mice already have an established GM, resulting in a
hybridized GM.

CF, as a method of GM transfer, represents a third option. The recipient pups are
placed with the GM donor dam within 24 h after birth, allowing the recipients to pick up
most of their GM from the GM donor dam from an early age during the maternal care
process. Theoretically, CF will transfer the GM with higher transfer efficiency compared
to CH. CF has the advantages of ease of use and low cost compared to the ET method.
However, there are some drawbacks of using the CF method, such as the requirement for
timed mating, incomplete transfer due to the lack of vaginal GM transfer and the creation
of a potentially hybridized GM.



Microorganisms 2021, 9, 1062 9 of 16

7.2. Investigation of the Disease Mechanism and Diagnostic Biomarker

The composition of the gut microbiome has been proposed as a potential diagnos-
tic biomarker for many diseases. The exploration of microbiome-based biomarkers has
included multiple associations between the ratio between the two dominant phyla (Fir-
micutes/Bacteroidetes) as a biomarker for obesity [122] and related conditions [123,124].
Microbiome-based biomarkers have also been used to predict disease progression. For ex-
ample, Lactobacillales and Verrucomicrobiales are enriched in early-stage liver fibrosis, while
Enterobacteriales are enriched at a later stage [125]. Other examples include Fusobacterium
nucleatum as a potential biomarker for colorectal cancer [126,127] and increases in Bacillus
as a biomarker of lung cancer [128]. However, the variation in GM at the population level
impacts the accuracy of diagnosis as a disease biomarker; thus, much work is required to
fully appreciate the mechanisms underlying microbial biomarkers.

7.3. The Efficiency of Microbiome-Mediated Therapeutic Exploration

The exploration of gut microbiome-mediated treatment for various diseases has drawn
extensive attention in the field. Beneficial microbiome components have been administered
through dietary intervention, probiotic supplementation, and FMT to enhance the stability
of the ecosystem or modulate the host immune response. One example is FMT as an
effective microbiome-based therapeutic option [129–132] for C. difficile colitis. This involves
the transfer of fecal material from a healthy donor to a patient with C. difficile bacterial
overgrowth. Many other studies [133–135] have investigated the use of microbiome-based
treatment for inflammatory bowel disease, including FMT to transfer beneficial commensal
bacteria such as Bifidobacterium sp. One recent study [136] demonstrated the modulatory
function of the microbiota in regulatory T (Treg) cell MyD88/RORγt signaling in the
treatment of food allergies. Other therapeutic applications include the treatment of chronic
kidney disease [137,138], autism [113,139], Parkinson’s disease [140], diabetes [141,142],
obesity [143,144] and cancer [145–149].

Therefore, the exploration of microbiome-based therapeutic approaches is dependent
on the GM environment in which they are studied. Animal models are critical to the
development of new microbiome-based therapies and have the advantage of being carried
out in a controlled GM (and genetic background and environment), which cannot be accom-
plished in human studies. A well-defined and well-controlled GM environment coupled
with a well-validated microbiome modulation method is essential for the investigation of
treatment approaches, and the efficacy of therapy.

The gut microbiome is associated with the immunotherapy response to treatments
for cancers such as hepatocellular carcinoma [150], gastrointestinal cancer [151], lung
cancer [152], and others [153]. The abundance of certain commensal bacteria, such as Bifi-
dobacterium longum [154], Akkermansia muciniphila [152], and members of the Ruminococcaeae
family [155], showed a significant association with the treatment efficacy. Manipulation of
the microbiome, such as oral supplementation with the commensal bacteria, Akkermansia
muciniphila, enhanced the response to immune checkpoint inhibitor treatment in a mouse
model of melanoma [152].

The gut microbiome is also involved in drug metabolism through both direct and
indirect processes [9,117,156,157]. Commensal bacteria transform xenobiotics (i.e., drugs)
in the lumen, using enzymes to steal carbon as an energy source, and the possible effects on
the parent compound include the activation of an inactive prodrug, such as irinotecan or
CPT-11, via gut microbial β-glucuronidase to allow its therapeutic function, the inactivation
of an active drug, such as 5-aminosalicylic acid, by gut microbial N-acetyltransferases to
render it ineffective or even toxic, and an increase or reduction in the compound half-
life [158,159].

Thus, the development and characterization of a novel drug and the metabolic path-
way in the model host will benefit from a well-controlled microbiome environment due to
the important contribution of the microbiome in drug metabolism.
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8. Conclusions and Perspectives

Despite their limitations, mouse models are still a valuable, practical, and irreplaceable
tool for studying human disease. No animal models are 100% ideal for modeling human
disease. However, a better understanding of each model system can provide an improved
study design and overcome the limitations associated with animal models.

Most importantly, it is necessary to consider experimental methods and platforms as
factors affecting experimental reproducibility, alongside exploring novel tools to identify
and investigate the different factors that influence the outcomes of each model. The
application of a well-controlled GM and an appropriate transfer method to transfer the GM
between genetically generated mouse models can provide the advantage of placing both the
genetic background and GM under well-controlled conditions. With rigorous experimental
designs, considering the GM and the methods used to manipulate the GM as experimental
variables, animal models can be used more effectively to provide information that is
translatable to humans in areas such as drug development and diagnostic biomarkers.
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