
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14123  | https://doi.org/10.1038/s41598-021-93592-z

www.nature.com/scientificreports

Early prediction of neoadjuvant 
chemotherapy response 
by exploiting a transfer learning 
approach on breast DCE‑MRIs
Maria Colomba Comes1, Annarita Fanizzi1*, Samantha Bove2, Vittorio Didonna1, 
Sergio Diotaiuti3, Daniele La Forgia4, Agnese Latorre5, Eugenio Martinelli6,7, 
Arianna Mencattini6,7, Annalisa Nardone8, Angelo Virgilio Paradiso9, Cosmo Maurizio Ressa10, 
Pasquale Tamborra1, Vito Lorusso5 & Raffaella Massafra1

The dynamic contrast-enhanced MR imaging plays a crucial role in evaluating the effectiveness 
of neoadjuvant chemotherapy (NAC) even since its early stage through the prediction of the final 
pathological complete response (pCR). In this study, we proposed a transfer learning approach 
to predict if a patient achieved pCR (pCR) or did not (non-pCR) by exploiting, separately or in 
combination, pre-treatment and early-treatment exams from I-SPY1 TRIAL public database. First, 
low-level features, i.e., related to local structure of the image, were automatically extracted by a 
pre-trained convolutional neural network (CNN) overcoming manual feature extraction. Next, an 
optimal set of most stable features was detected and then used to design an SVM classifier. A first 
subset of patients, called fine-tuning dataset (30 pCR; 78 non-pCR), was used to perform the optimal 
choice of features. A second subset not involved in the feature selection process was employed as 
an independent test (7 pCR; 19 non-pCR) to validate the model. By combining the optimal features 
extracted from both pre-treatment and early-treatment exams with some clinical features, i.e., ER, 
PgR, HER2 and molecular subtype, an accuracy of 91.4% and 92.3%, and an AUC value of 0.93 and 
0.90, were returned on the fine-tuning dataset and the independent test, respectively. Overall, the 
low-level CNN features have an important role in the early evaluation of the NAC efficacy by predicting 
pCR. The proposed model represents a first effort towards the development of a clinical support tool 
for an early prediction of pCR to NAC.

Neoadjuvant chemotherapy (NAC) is commonly used as an initial treatment for locally advanced breast cancers 
or breast cancers with specific molecular histotypes1,2: monitoring of response to treatment could allow for 
breast-conserving surgery.

The efficacy of NAC is assessed through the clinical and radiological response by using the Response Evalua-
tion Criteria In Solid Tumors (RECIST)3,4 during treatment and the pathological complete response after surgery. 
The pathological Complete Response (pCR) indicates the absence of residual invasive disease or metastatic 
lymph nodes at the end of the entire course of the therapy. The rates of pCR are significantly higher in Triple 
Negative and HER2+ tumors rather than in luminal tumors with positive estrogen and progesterone receptors 
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(ER+/PgR+/HER2−)2, whereas there is a small portion of patients who do not respond to the therapy resulting 
in disease progression5.

The achievement of pCR may be considered as an independent predictor of better disease-free survival with 
the possibility to hypothesize a future non-need for surgery for patients who achieve pCR after NAC (respond-
ers)3,4. Therefore, an early identification of those patients who are responders or non-responders would be 
beneficial to improve and personalize the treatment planning thus sparing patients from potentially ineffective 
and/or toxic treatment. Indeed, early responder patients, i.e., responders even since the early stages of NAC, are 
more likely to take advantage from breast conserving surgery, avoiding them a full mastectomy6.

Within this emerging scenario, a systematic literature search has highlighted the Dynamic Contrast-Enhanced 
Magnetic Resonance Imaging (DCE-MRI) as an indispensable tool for monitoring the response to therapy7–10. 
For instance, changes in morphological and kinetic parameters extracted from DCE-MRI, as well as from dif-
fusion weighted imaging, have been demonstrated to be helpful in predicting treatment response and pCR11–14. 
However, MRI has limitations when clinically used because influenced by inter-intra-observer variability15. For 
this reason, the radiomic analysis of DCE-MR images by means of automatic and semi-automatic computerized 
systems developed by experts has become of great interest as evidenced in various breast imaging methods16–19. 
Radiomic features, such as tissue, peritumoral or intratumoral features, extracted from raw images and appro-
priately combined with histological variables could help to predict the progress of the oncologic disease as well 
as pCR ever since the early stages of NAC1,7,14,20–23. In particular, the background parenchymal enhancement 
(BPE) parameter has been demonstrated to be a predictive factor of disease course and response to neoadjuvant 
therapy in breast cancer24,25.

Nevertheless, human expertise and a great effort in terms of feature engineering are required to convert images 
in valuable radiomic features. Such a difficulty has been recently overcome thanks to Deep Learning (DL)26. In 
particular, DL approaches based on customized or pre-trained convolutional neural networks (CNNs) have 
gained increasing attention27. Customised CNNs are networks built to accomplish a specific task requiring a 
high-cost and time-consuming training phase. Instead, pre-trained CNNs refer to transfer learning technique27: 
the networks have been previously trained (pre-trained CNNs) on a huge number (millions) of natural non-
medical images to learn how to automatically extract features of different level of abstraction, low-level features, 
e.g., edge and dots, and high-level features, e.g., shapes and objects, from a raw image. Since the knowledge that 
the networks have acquired during training can be transferred and applied on never unseen images across diverse 
research fields (transfer learning), also including MRI data analysis, they are more generalizable and much less 
expensive with respect to the computational burden.

In general, both customized and pre-trained CNNs have been already successfully applied on medical imag-
ing to detect28 or classify29 breast tumor masses. These networks have seen usage in the NAC framework for 
the prediction of pCR by taking in input all the possible DCE-MRI scans acquired during the course of the 
chemotherapy30 or only the exams prior to treatment31–33. In the latter case, the prediction of pCR is based on 
characteristics of the tumor at the time of initial diagnosis neglecting some features that can be related to the 
primary or overall effect of the therapy. Only in recent times, a customized CNN has been developed demon-
strating how the early-treatment exam plays a key role to predict if the NAC treatment can be pursued or not 
depending on whether a patient is an early responder or not34. However, to the best of our knowledge, there is 
a lack of research works based on transfer learning to give an early evaluation of the effectiveness of NAC from 
its early stage by predicting pCR.

In this work, we exploited a transfer learning approach based on a pre-trained CNN that takes in input pre-
treatment and early-treatment MRI exams from I-SPY1 TRIAL public database to evaluate “early on” the efficacy 
of NAC before the end of the therapy itself. Such a proposal represents the first effort towards the designing 
of a completely automatized support tool to better guide the treatment planning. Indeed, in accordance with 
the probability of reaching pCR for an individual patient, the medical figures can decide to pursue or change a 
specific treatment pathway.

Results
Data description and statistical analysis results.  Images used for the purpose of the presented study 
refer to a set of DCE-MRIs from the multi-site Investigation of Serial Studies to Predict Your Therapeutic 
Response with Imaging and molecular Analysis (I-SPY1 TRIAL)7,35,36 public dataset, which contains cases of 
230 women enrolled between 2002 and 2006 with breast tumors of at least 3 cm in size, who received NAC with 
an anthracycline-cyclophosphamide (AC) regimen alone or followed by taxane. The dataset is available online 
on The Cancer Imaging Archive37. Each patient underwent a maximum of four MRI examinations (see Fig. 1): 
at around four weeks prior to treatment (MRI at T1, pre-treatment); at least two weeks after the first AC cycle 
and before the second AC cycle (MRI at T2, early-treatment); at the end of the AC cycle and the start of taxane 
treatment if taxane was administered (MRI at T3, inter-regimen); at the end of the entire chemotherapy cycle 
and prior to surgery (MRI at T4, pre-surgery). At each timepoint, three images were acquired using 1.5 T field-
strength MR imaging systems7: a single pre-contrast image and two images corresponding to approximately 2 ½ 
minutes and 7 ½ minutes post contrast injection, respectively.

We formulated a binary classification task to distinguish responder patients (whose class was indicated as 
pCR) from non-responder patients (whose class was indicated as non-pCR). With the aim to provide an esti-
mation of the NAC effect even since its first cycle in terms of pCR prediction, the first post-contrast MRI at T2 
exams alone or combined with the first post-contrast MRI at T1 exams were analysed. The prediction of pCR by 
exploiting only the MRI at T1 exams was also evaluated.

In accordance with image availability (both MRI at T1 and MRI at T2 exams), 134 cases of study were identi-
fied. Each patient was finally represented by two Regions Of Interest (ROIs), one from MRI at T1 and one from 
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MRI at T2 (see “Methods”). For each ROI, the number of extracted features by the pre-trained CNN AlexNET38 
was 43,264 in total. Two subsets of patients were then taken into account. The first subset of patients, called fine-
tuning dataset, involved 108 patients, out of which 30 patients achieved pCR and 78 did not. This subset was used 
to find an optimal subset of CNN-extracted features, as small as possible, that could be valid for any patient (see 
“Methods”). The second subset of patients (7 pCR; 19 non-pCR) was composed by patients not involved in the 
feature selection procedure and was thus used as independent test to validate the model. The division of patients 
in the two sets is explained in the Methods section.

In Table 1, the spitting of the 134 patients as responders (pCR, 37) and non-responders (non-pCR, 97) and 
their relative clinical information are summarized. The rates of responder patients (pCR) are significatively higher 
in Triple Negative and HER2+ subtypes, namely, 38% (14/37) and 43% (16/37) respectively, than in luminal 
subtype corresponding to 16% (6/37). Performing an association test between pCR to therapy and each clinical 
factor is essential to understand whether there is a relationship between the two variables or not. As a result, a 
significant association of the pCR with ER, PgR, HER2 and subtype (p-value Chi Square Test < 0.05) was found 
(see “Methods”). In our further analysis, only these last clinical variables were integrated to the CNN-extracted 
features.

Early evaluation of NAC efficacy through pCR prediction.  The optimal subsets of selected features 
obtained through the implementation of Step 3 (see “Methods”) on the fine-tuning dataset were referred as OSF 
at T1 for MRI at T1 exams alone, as OSF at T2 for MRI at T2 exams alone, and as OSF at T1-T2 for MRI at T1 and 
MRI at T2 exams combined, respectively. The number of these sets of features was 5 and 15 for OSF at T1 and 
OSF at T2, respectively. Therefore, 20 features were comprised in OSF at T1-T2. Table 2 summarizes the results 
on the fine-tuning dataset by designing the model with optimal features extracted from the exams at T1 or T2 
separately or in combination. When the model included OSF at T1 alone, the classifier moderately distinguished 
responder from non-responder patients (accuracy of 74.1%, sensitivity of 66.7% and specificity of 76.9%). A 
higher performance was achieved using OSF at T2: accuracy of 88.0%, sensitivity of 81.0% and specificity of 

Figure 1.   Chart of the MRI acquisitions for patients of the I-SPY1 TRIAL dataset undergoing neoadjuvant 
chemotherapy. Pre-treatment and early-treatment exams (MRI at T1 and MRI at T2, respectively) were analysed 
for the prediction of pathological Complete Response (pCR). The final treatment evaluation was performed at 
the end of chemotherapy and after the surgery by pCR.

Table 1.   Clinical details about the patients involved in the study. In the brackets the division of the patients 
between the fine-tuning dataset (first number) and the independent test (second number) is specified.

pCR non-pCR

Number (n = 134) 37 (30/7) 97 (78/19)

Age (years) 46.88 ± 8.77 (45.97 ± 8.40/50.81 ± 9.94) 48.84 ± 9.03 (49.04 ± 9.31/48.01 ± 7.97)

Race

Caucasian 29 (22/7) 73 (56/17)

African American 3 (3/0) 18 (17/1)

Asian 2 (2/0) 5 (4/1)

Native Hawaiian/Pacific Islander 1 (1/0) 0

Multiple race 1 (1/0) 0

Not Identified 1 (1/0) 1 (1/0)

Molecular subtype

HER2+ 16 (12/4) 22 (19/3)

Luminal 6 (6/0) 51 (39/12)

Triple Negative 14 (11/3) 23 (19/4)
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91.0%. The best performance was obtained by combining the optimal tumor features related to the initial diag-
nosis and the early-treatment exam (OFS at T1-T2): an accuracy of 88.9%, a sensitivity of 90.0% and a specificity 
of 88.5% were returned. In the latter case, also the AUC was the best value achieved: a value of 0.93 was reached 
with OSF at T1-T2 with respect to 0.90 and 0.74 returned with OSF at T2 and OSF at T1, respectively. In Fig. 2a, 
the AUC values as well as the corresponding Receiver Operating Characteristic (ROC) curves are drawn.

We also investigated the performance of the best model (with features belonging to OSF at T1-T2) when the 
patients of the fine-tuning dataset were divided according to the molecular subtypes of breast cancer:

1.	 luminal encompassing 45 patients (6 pCR; 39 non-pCR);
2.	 HER2+ involving 31 patients (12 pCR; 19 non-pCR);
3.	 Triple Negative including 30 patients (11 pCR; 19 non-pCR).

The sum of patients belonging to the three subtypes was not 108 but 106 because for two patients the HER2+ 
variable was not specified. The model perfectly discriminated responders from non-responders from the luminal 
subtype. A good performance was reached on the HER2+ subtype with an accuracy of 83.9%, a sensitivity of 
91.7%, a specificity of 78.9%. Finally, the model returned an accuracy of 90.0%, a sensitivity of 81.8%, a specificity 
of 94.7% for the Triple Negative subtype.

As further step of our analysis, we probed the performance of the proposed model on the fine-tuning dataset 
when the four clinical variables that showed an association with pCR were integrated: ER, PgR, HER2, subtype 
(see the previous paragraph). In Table 2, the performances achieved by an SVM classifier designed either with 
the only clinical variables (indicated as clinical) or with the clinical variables added to the optimal features related 
to timepoints T1 and T2 separately or in combination (indicated as OSF at T1 + clinical, OSF at T2 + clinical and 
OSF at T1-T2 + clinical, respectively) are also represented.

Table 2.   Summary of the performances of the pCR prediction models in terms of accuracy, sensitivity, and 
specificity on the fine-tuning dataset and the independent test. The number of features composing each model 
is also reported.

Set Model N. features Accuracy (%) Sensitivity (%) Specificity (%)

Fine-tuning dataset

OSF at T1 5 74.1 66.7 76.9

OSF at T2 15 88.0 80.0 91.0

OSF at T1-T2 5 + 15 88.9 90.0 88.5

Clinical 4 73.4 34.5 88.3

OSF at T1 + clinical 5 + 4 75.9 70.0 78.2

OSF at T2 + clinical 15 + 4 89.5 72.4 96.1

OSF at T1-T2 + clinical 5 + 15 + 4 91.4 79.3 96.1

Independent test

Clinical 4 69.2 42.9 78.9

OSF at T1-T2 15 + 4 92.3 85.7 94.7

OSF at T1-T2 + clinical 5 + 15 + 4 92.3 85.7 94.7

Figure 2.   ROC curves for pCR prediction models. (a) ROC curves related to the model with the Optimal 
Subset of Features (OSF) at timepoints T1 and T2 separately or in combination and evaluated on the fine-tuning 
dataset. (b) ROC curves related to the best model (OSF at T1-T2) and the best model with clinical variables 
(OSF at T1-T2 + clinical) and evaluated on the independent test. (a, b) The AUC values are also highlighted.
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When joined together to design an SVM classifier, the clinical variables alone showed an accuracy of 73.4%, 
a sensitivity of 34.5%, a specificity of 88.3% and an AUC value of 0.42. However, the addition of clinical variables 
boosted the performance of the proposed model when only the optimal features related to timepoint T1 were 
considered (OSF at T1 + clinical) achieving an accuracy of 75.9%, a sensitivity of 70.0% and a specificity of 78.2%. 
The AUC value passed from 0.74 to 0.76. Moreover, when the clinical variables were added to the optimal features 
from early-treatment exams alone (OSF at T2 + clinical) or to features from both pre-treatment and early treat-
ment exams (OSF at T1-T2 + clinical), an improvement of specificity (96.1%) and accuracy (89.5% and 91.4%, 
respectively) was obtained. AUC values of 0.91 and 0.93 were returned, respectively.

Finally, the performance of the best model with CNN-extracted features (OSF at T1-T2) was evaluated on 
the independent test (see Table 2). An accuracy of 92.3%, a sensitivity of 85.7% and a specificity of 94.7% were 
achieved. As well as for the fine-tuning dataset, the clinical variables alone were not able to effectively discrimi-
nate responder from non-responder patients of the independent test (clinical). Anyway, combining the four 
clinical information with the optimal features from both pre-treatment and early-treatment exams (OSF at 
T1-T2 + clinical) led to maintain the same values of accuracy, sensitivity, and specificity. The AUC value increased 
from 0.87 to 0.90. The corresponding ROC curves are depicted in Fig. 2b.

Visual cue of convolutional features.  The convolutional features, which were here identified as part 
of the OSF at T1-T2, were extracted by an inner layer (pool 2) of the given pre-trained CNN architecture. A 
direct understanding of which image portion these features represent is made no trivial due to the complex 
non-linear operations computed within the network architecture. However, a visual cue of the convolutional fea-
tures selected as optimal ones may be very informative and interesting for a deeper understanding of the CNN 
functioning. To do this, for two different ROIs, one from MRI at T1 exam and one from MRI at T2 exam, we 
extracted the so-called activation maps to which the selected optimal features belong (Fig. 3a). The red squares 
in Fig. 3a outline with more precision the area of belonging of the selected features. The corresponding convo-
lutional maps are also highlighted to visualize the operation that has been applied within the network starting 
from the original ROIs after a primary convolution (Fig. 3b). Basically, each convolutional map shows what kind 
of lines or details are extrapolated from the corresponding original image. Since the extracted features are low-
level characteristics of the images, they refer to edges, lines or points of the image. The 15 features selected from 
MRI at T2 exams seem to cover all the tumor mass zones. The convolutional features extracted from MRI at T1 
exams seem to principally refer to edges or peripheral zones of the tumor mass.

Discussion
The role of MR imaging has been demonstrated to be crucial in detecting the pathological complete response 
to neoadjuvant chemotherapy7–9 also revealing a greater detection accuracy than other diagnostics techniques, 
such as mammography10. With the emergence and the spread of the modern concept of personalized medicine, 
an early prediction of pathological complete response for breast cancer patients undergoing neoadjuvant chemo-
therapy through the analysis of MRI examinations has become a topic of great interest in the state of the art. 
An accurate prediction of tumor response allows indeed the medical staff to select or design a patient-centric 
approach consisting in an optimal treatment and care pathway for each individual patient. Some research works 
have been addressed to an early evaluation of NACT efficacy, i.e., from its early stages, by means of the predic-
tion of the final pCR1,7,14,20–23. Among these works, Hylthon et al.7 analysed MRI exams from 216 patients of the 
I-SPY1 TRIAL database reporting that MR imaging findings are stronger predictors of pCR to NAC than clinical 
assessment. In multivariate analysis using a random-effects logistic regression model, an AUC value of 0.73 was 
achieved by combining MR tumor measurements (changes in longest dimension, volume, and SER) from early-
treatment exams and clinical size. Despite the promising results, these studies require an expert interpretation 
and a manual feature extraction that can be limited by human bias: analysts can project features according to 
their knowledge limited by human imagination thus not devising all possible useful features for the task under 
study. More recently, a paradigm shift based on deep learning have been proposed to analyse medical images 
among which MRI exams. The innovative idea is to use customised or pre-trained CNNs to automatically extract 
features from images without human intervention and bias26.

So far, there have been several attempts to develop approaches based on customised CNNs with the goal to 
predict pCR to NAC for breast patients using the only pre-treatment MRI exams from I-SPY1 TRIAL public 
database. Liu et al.32 developed a customised CNN exploiting first post-contrast pre-treatment MRI examinations 
from 131 patients (40 pCR; 91 non-pCR): a mean AUC value of 0.72 was reached. Similarly, Ravichandran et al.33 
designed a customised CNN utilizing pre-contrast and post-contrast pre-treatment MRI scans in isolation or in 
conjunction. The network was trained with images of 133 patients and tested on 33 patients. When only the post-
contrast MRI exams were considered, an AUC value of 0.70 was returned. These models based on customised 
networks measured features of tumor masses with the aim to answer if it is possible to define a-priori, i.e., before 
the starting of NAC, if the therapy can succeed or not. However, the analysis of early-treatment exams can be 
essential to determine if continuing or changing the specific a-priori chosen NAC regimen depending on whether 
the patient is an early responder or not. In the recent past, El Adoui et al.34 proposed a customised CNN based 
on pre and post- first chemotherapy MRI images of a cohort of 42 patients, who underwent a NAC treatment 
consisting of three cycles of chemotherapies followed by docetaxel drug given every 3 weeks for 3 to 4 cycles or 
paclitaxel drug weekly for 3 months. Using a validation set of 14 cases, the model reached an AUC value of 0.91.

Within this constantly evolving scenario, in the current work, we proposed a transfer learning approach to 
predict the efficacy of NAC from its earliest stage in terms of pCR. As far as we know, this task has been not exten-
sively investigated through transfer learning techniques. We investigated the role of the convolutional features 
extracted from pre-treatment and early-treatment MRI exams of breast patients from I-SPY1 TRIAL database 
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Figure 3.   (a) Activation maps of the ROIs of both MRI at T1 and MRI at T2 from which the selected optimal 
features were extracted. The red squares outline with more precision the area of belonging of such features. Each 
ROI has dimensions of 227 × 227 pixels. Each activation map has original dimensions of 13 × 13 pixels and has 
been resized to the dimensions of the corresponding ROIs for a better visualization. (b) Convolutional maps 
related to the activation maps of the ROIs of both MRI at T1 and MRI at T2 from which the selected optimal 
features were extracted. Each ROI has dimensions of 227 × 227 pixels. Each convolutional map has original 
dimensions of 27 × 27 pixels and has been resized to the dimensions of the corresponding ROI for a better 
visualization.
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in predicting pCR. Promising results were achieved by testing the approach after the application of a feature 
selection method on the so-called fine-tuning dataset to identify the most stable features. The ability of these 
features to discriminate the responder patients from the non-responder ones has been also performed across 
the three molecular subtypes of breast cancer. Moreover, the robustness of the model has been evaluated on an 
independent test whose patients were not involved in the feature selection process. By combining the optimal 
features extracted from both pre-treatment and early-treatment exams with some clinical features, i.e., ER, PgR, 
HER2 and molecular subtype, an accuracy of 91.4% and 92.3%, and an AUC value of 0.93 and 0.90, were returned 
on the fine-tuning dataset and the independent test, respectively. The numerical results demonstrate that a reli-
able evaluation of NAC efficacy can be obtained even since its earliest stage. The analysis of both pre-treatment 
and early-treatment exams can give us complementary information about the disease: while the characteristics 
of the tumor masses at the time of initial diagnosis can afford an intuition of tumor response to treatment, the 
tumor features identified after the first cycle can measure the primary effect of the therapy. Overall, the low-level 
CNN-extracted features reveal to effectively provide an early prediction of NAC effect in terms of pCR.

With respect to the pCR predictive models mentioned before, we did not refer to a customized network 
but to a pre-trained and more basic network that exploited only low-level features. Conversely to pre-trained 
networks, customised CNNs are networks built to accomplish a specific task. Training and test data are drawn 
from the same distribution or belong to the same application field. They require a training phase that involves 
a large number of data and usually lasts from hours to days. However, sustaining these high computational 
burden and processing capabilities is not always feasible. In contrast, using a pre-trained network allows, on the 
one side, to reduce time-consuming because they do not require any training and, on the other side, to improve 
generalizability across several domains of application. Since no technical expertise is required in the extraction 
of meaningful features from images, the proposed model is more prone to an easy interpretation and utilization. 
The main purpose of the work is proposing a first effort towards the designing of a completely automatized sup-
port tool that could help medical figures to evaluate “early on” the efficacy of NAC before the end of the therapy 
itself, in order to better guide their therapeutic choices in accordance with the probability of reaching pCR. The 
main factors favouring the choice of NAC are a high ratio between the tumor volume and the breast volume, the 
presence of lymph node metastases, the young age of the patient and some histological parameters including the 
high tumor grading and the presence of specific molecular subtypes such as Triple Negative and HER2+ tumors2. 
Therefore, the proposed support tool could be helpful to drive any changes to the therapy in progress, i.e., dose-
dense neoadjuvant chemotherapy39, introduction of new chemotherapy drugs or combination of chemotherapy 
and other drugs, such as trastuzumab40.

Manifold are the paths of possible future extensions of this work. The relatively small size of the dataset 
employed for our analysis represent one of the limitations of this study. The generalizability and flexibility of the 
proposed method can be made stronger thanks to the validation of the method on larger datasets also includ-
ing patients registered from our Institute. Although we have explored the role of the clinical variables if they 
considered alone or combined with the CNN-extracted features, other kinds of clinical variables, such as gene 
profiling, could be involved in the analysis. Several technical aspects can be probed in deeper. First, the perfor-
mances of the model can be discussed at varying the feature selection method: several filter selection methods 
with different cut-off values to define the statistically significative difference and even more sophisticated fea-
ture selection techniques, such as wrapper and embedded methods, can be performed. Second, more complex 
features to extract from the final layers of the network could be also added or the temporal relationship among 
features related to subsequent exams could be investigated. Alongside all these developments, the proposed tool 
can be extended to evaluate the efficacy of multiple neoadjuvant schemes early on. In this way, the probability of 
positively responding to therapy could be predicted and compared among the diverse NAC scenarios referred 
to the ASCO guidelines40. The medical experts could be able to prefer a tailored therapy pathway associated with 
the highest probability of positive response to therapy.

Methods
Data pre‑processing.  Tumor segmentations related to the fine-tuning dataset were part of the online 
dataset and were automatically generated by thresholding semi-quantitative pharmacokinetic parameters, peak 
enhancement, and signal enhancement ratio. Then, we selected another set of patients, i.e., the independent test, 
for which both MRI at T1 and MRI at T2 exams were available without tumor segmentations. In this case, start-
ing from the area containing the lesion that was identified by our expert breast imaging radiologist with over 
20 years of experience, tumor segmentations have been performed by the same procedure used for the images 
of the fine-tuning dataset35. With the aim to analyse not only the area containing the lesion but also the imme-
diately surrounding peritumoral area, for the images of both sets of patients, a final ROI of size equals to the 
Largest Diameter (LD) of the tumor, whose value was reported in a clinical report available as part of the online 
database, was centred around the centre of the tumor mass from the slice of the MRI scan with the largest tumor 
area. ROI identification was executed on the first post-contrast MRI at T1 and MRI at T2 scans separately. Each 
patient was finally represented by two ROIs, one from MRI at T1 and one from MRI at T2. All the ROIs were 
resized to patches of size of 227 × 227 pixels in order to be given in input to the network used for feature extrac-
tion, since the network requires images of such size as input.

Finally, we have preferred to make a first validation of the model using a LOO cross-validation procedure on 
the images for which the area containing the lesion was already identified (fine-tuning dataset). Then, we have 
evaluated the performance of the entire analysis workflow (from semi-automatic segmentation to classification) 
on images that did not have an indication of the area containing the lesion (independent test). In this way, we 
were able to achieve an evaluation of the performances of the model close to those that the model could reach 
in the real clinical application.
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Pipeline of the proposed transfer learning approach.  We proposed a transfer learning approach for 
an early evaluation of NAC efficacy by predicting the final pCR. The method was composed of a feature extrac-
tor, such as a convolutional neural network (CNN), called AlexNET38, that was pre-trained on non-medical 
images, and a standard classifier, such as Support Vector Machine (SVM)41, that predicted if a patient achieved 
pCR or did not. The pipeline of the proposed method is depicted in Fig. 4 and explained below step by step. All 
the steps were performed by using the MATLAB R2019a (MathWorks, Inc., Natick, MA, USA) software.

Step 1. Feature extraction

Inspired by the latest success of the so-called transfer learning technique across disparate fields of 
application29,42,43, we used a high-performing pre-trained DL architecture based on CNNs, called AlexNET, as 
feature extractor38. Such a network has been previously trained on millions of images belonging to thousands of 
categories. The knowledge learned by the network during the training phase was here transferred on our images. 
So, we exploited the transfer learning technique to extract features from the MR images and utilize them to fulfil 
the classification task, pCR vs non-pCR.

In the present work, we extracted features from the pool2 layer of the network architecture which corresponds 
to the second pooling layer (Max Pooling in phase 1 of Fig. 4) after the second convolutional layer of the network 
(Convolution in phase 1 of Fig. 4). The pool2 layer had an output with dimensions of 13 × 13 × 256 that was 
flattening to a single 43,264-length vector. As consequence, for each ROI, the number of extracted features was 
43,264 in total. Since the pool2 layer is one of the initial layers of the network, the corresponding extracted fea-
tures are low-level features, namely, representations of local details of an image, such as edges, dots, and curves44. 
Within the network architecture, low-level features are combined to build high-level features, that refer to global 
cues of an image, such as shapes or entire objects. The latter features are learned from later layers of the network 
from which they can be extracted. We considered here low-level features in order to dissect information deriving 
from all the local structures of the images that could be obscured instead by considering only global information. 
In addition, we extracted the features not directly from a convolution layer that returns the feature maps but after 
the application of pooling that, as well-known in deep learning theory45, makes features invariant to truncation, 
occlusion, and translation. Finally, the usage of a transfer learning approach was here preferred to a customized 
network because it provides some benefits especially when, as in our case, a relatively small amount of data is 
available. When a pre-trained network is used as a feature extractor only, no training phase is required. As a 
consequence, a drastic reduction of the computational time occurs with respect to use customized networks for 
which the training phase is indispensable and time-consuming (from hours to days). Not less relevant, especially 
for datasets no large enough, customized neural networks are more prone to the risk of overfitting. Conversely, 
the possibility to use a pre-trained net allows high generalizability of the results.

Step 2. Dynamic feature selection

A dynamic feature selection procedure was performed on the fine-tuning dataset by considering either the 
features extracted from ROIs of MRI at T1 or MRI at T2 exams in isolation (43,264 features per patient, respec-
tively) or the features extracted from ROIs of MRI at T1 and MRI at T2 exams in conjunction (86,528 features 
per patient). This feature selection was executed according to a Leave-One-patient-Out (LOO) cross-validation 
procedure for which one patient was leaved out at each step. We addressed such a technique as dynamic feature 
selection because it selected a diverse set of features in correspondence of each patient leaved out. At each step 
of LOO cross-validation, an iterative procedure that consisted of stacking 10 subsets with 90% of randomly 
chosen training samples (see phase 2 in Fig. 4) was applied. At each iteration, for each of the training subsets, 
we reduced the high dimensionality of the dataset by means of a well-known feature selection method that falls 
in the category of filter methods. We used the non-parametric Wilcoxon-Mann–Whitney test46 that compared 
the medians of the distributions related to the two classes (pCR vs non-pCR) and verified whether they were 
equal. p-value equals to 0.001 was set as cut-off to indicate a statistically significative difference between pairs 
of analysed distributions.

The features selected for each subset were pulled together in a single set. At one iteration corresponded one 
subset of features (see phase 2 in Fig. 4). The subsets of features obtained from following iterations were inter-
sected among each other resulting in a single feature set as outcome of each LOO step. The rationale under the 
iterative process was to iteratively reduce the number of features in order to finally obtain a set of more “stable” 
features. Those features could be considered the ones that were always preferred by the feature selection algorithm 
and thus less susceptible to variations of training samples47,48, which is typical when high-dimensional datasets 
are treated. The total number of iterations (n) was empirically estimated as n = 20.

Step 3. Optimal feature selection

To address the problem of feature stability on high-dimensional dataset, in Step 2 we figured out a strategy to 
obtain subsets of more stable features. However, each patient was characterized by a feature subset that differed 
from other patients. With this new step, we wanted to identify a single subset of features that was meaningful 
for all the patients of the fine-tuning dataset. In practice, an Optimal Subset of Features (referred as OSF) was 
obtained by intersecting all the subsets of features (one for each patient) that were outcome of the Step 2 either 
when only the features extracted from ROIs of MRI at T1 or MRI at T2 were considered or when features 
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extracted from ROIs of both MRI at T1 and MRI at T2 were involved in the process. The optimal subsets of 
selected features were referred as OSF at T1, OSF at T2 and OSF at T1-T2, respectively.

Figure 4.   Workflow of the proposed transfer learning method encompassing five steps: 1. Feature extraction, 
2. Dynamic feature selection, 3. Optimal feature selection, 4. Classification on the fine-tuning dataset, 5. 
Classification on the independent test.
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Step 4. Classification on the fine-tuning dataset

The power of the optimal selected features in discriminating responder from non-responder patients was 
assessed by defining three SVM classifiers in correspondence to OSF at T1, OSF at T2 and OSF at T1-T2, respec-
tively. Their performances evaluation was executed by a leave-one-patient-out cross-validation procedure. All 
the classifiers were then separately augmented by some clinical variables. Moreover, the best model (composed 
by features belonging to OSF at T1-T2, see “Results”) was also evaluated across the three molecular subtypes of 
breast cancer.

Step 5. Classification on independent test

The best model on the fine-tuning dataset (with features belonging to OSF at T1-T2, see “Results”) was finally 
evaluated on the independent test whose patients were not involved in the feature selection process. More spe-
cifically, an SVM classifier was constructed using the fine-tuning dataset as training set and exploiting features 
belonging to OSF at T1-T2. The addition of some clinical variables was also investigated.

Statistical analysis and performance evaluation.  The clinical variables included as part of the online 
information of the public database were age, race, ER, PgR, HER2, and the specification of what molecular sub-
type among luminal, HER2+, Triple Negative the patient belonged (named as subtype). In order to evaluate the 
association between each clinical feature and pCR, we used Mann–Whitney test for the age feature, whereas we 
used Chi-square test for all the other features measured on an ordinal scale. A result was considered statistically 
significant when the p-value was less than 0.05. The classification performances (pCR vs non-pCR) of the all the 
models mentioned in Steps 4–5 of the previous paragraph were evaluated in terms of the Area Under the receiver 
operating Curve (AUC) and, once the optimal threshold was identified by Youden’s index on ROC curves49, 
standard metrics, such as accuracy, sensitivity and specificity were also computed.

Ethics approval and consent to participate.  The study was conducted according to the guidelines of 
the Declaration of Helsinki, and approved by the Scientific Board of Istituto Tumori ‘Giovanni Paolo II’ (Bari, 
Italy)—Prot. 6629/21.

Consent for publication.  Images used for the purpose of the presented study refer to a set of DCE-MRIs 
from the multi-site Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and 
molecular Analysis (I-SPY1 TRIAL) public dataset.

Data availability
The dataset analyzed during the current study is available in the Cancer Imaging Archive, https://​wiki.​cance​
rimag​ingar​chive.​net/​displ​ay/​Public/​ISPY1.
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