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To obtain a better understanding of metabolically active microbial communities, we tested
a molecular ecological approach using poly(A) tailing of environmental 16S rRNA, followed
by full-length complementary DNA (cDNA) synthesis and sequencing to eliminate potential
biases caused by mismatching of polymerase chain reaction (PCR) primer sequences. The
RNA pool tested was extracted from marine sediments of theYonaguni Knoll IV hydrother-
mal field in the southern Okinawa Trough. The sequences obtained using the poly(A)
tailing method were compared statistically and phylogenetically with those obtained using
conventional reverse transcription-PCR (RT-PCR) with published domain-specific primers.
Both methods indicated that Deltaproteobacteria are predominant in sediment (>85% of
the total sequence read).The poly(A) tailing method indicated that Desulfobacterales were
the predominant Deltaproteobacteria, while most of the sequences in libraries constructed
using RT-PCR were derived from Desulfuromonadales. This discrepancy may have been
due to low coverage of Desulfobacterales by the primers used. A comparison of library
diversity indices indicated that the poly(A) tailing method retrieves more phylogenetically
diverse sequences from the environment. The four archaeal 16S rRNA sequences that
were obtained using the poly(A) tailing method formed deeply branching lineages that
were related to Candidatus “Parvarchaeum” and the ancient archaeal group.These results
clearly demonstrate that poly(A) tailing followed by cDNA sequencing is a powerful and
less biased molecular ecological approach for the study of metabolically active microbial
communities.
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INTRODUCTION
Numerous studies on natural microbial communities from a vari-
ety of environments have been undertaken using 16S rRNA gene
sequencing mediated by polymerase chain reaction (PCR) with
oligonucleotide primers. In the past decade, high-throughput
next-generation sequencing (NGS) technologies have facilitated
the identification of a diverse array of organisms that are rare
in terms of biomass and could not be examined using pre-
vious molecular assays such as Sanger sequencing analysis of
clone libraries (Sogin et al., 2006; Webster et al., 2010). Despite
the fact that the latest NGS technologies enable reading only of
relatively short sequence fragments (∼500 bp), these so-called
“deep sequencing” methods are still powerful tools that ultimately
may enable researchers to obtain a more holistic understand-
ing of microbial communities in their natural environments
(Fuhrman, 2009). Considering the current limitations of NGS
technology, full-length 16S rRNA gene sequences are better suited
to downstream analytical methods such as fluorescence in situ
hybridization.

The original designs of most of the PCR primers used for
the analysis of 16S rRNA genes were based on known sequences

deposited in public databases. Researchers have since cautioned
that these primer sequences contain mismatches with respect to
environmental 16S rRNA genes (Baker et al., 2003, 2006; Teske
and Sørensen, 2008), which may lead to considerable bias in inter-
preting results (Hong et al., 2009). In addition, primer sequence
mismatches may have a negative impact on the amplification effi-
ciency of PCR analyses (Acinas et al., 2005; Sipos et al., 2007; Bru
et al., 2008). Regardless of the presence of sequence mismatches,
the use of PCR with primers may introduce biases associated
with the next base adjacent to annealed oligonucleotide primers
(Ben-Dov et al., 2012).

One way to avoid these bias issues is to employ PCR-
independent metagenomic approaches. For example, a complete
16S rRNA gene sequence can be obtained by analyzing the
sequences of genomes or large genome fragments, providing tax-
onomic information along with information on other functional
genes. However, metagenomic approaches may not be well-suited
to focused studies of microbial diversity and community structure
that involve a large number of samples. In fact, it has been reported
that only a small portion of inserts in fosmid libraries contain 16S
rRNA genes (Vergin et al., 1998; Takami et al., 2012).

www.frontiersin.org June 2013 | Volume 4 | Article 160 | 1

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/about
http://www.frontiersin.org/Extreme_Microbiology/10.3389/fmicb.2013.00160/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TatsuhikoHoshino&UID=34625
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=FumioInagaki&UID=39724
http://www.frontiersin.org/
http://www.frontiersin.org/Extreme_Microbiology/archive


“fmicb-04-00160” — 2013/6/15 — 14:56 — page 2 — #2

Hoshino and Inagaki Primer-independent analysis of poly(A)-tailed 16S rRNA

Another method that can avoid the possibility of bias caused
by primer mismatching is the addition of a poly(A) tail to the
3′ end of fractionated 16S rRNA prior to synthesis of the full-
length complementary DNA (cDNA; Botero et al., 2005). Since
the technique does not involve the use of published primers, we
anticipate that this method will enable recovery of full-length envi-
ronmental 16S rRNAs, potentially illuminating as yet unknown
microbial community constituents that have otherwise been dif-
ficult or impossible to detect using conventional PCR-dependent
molecular approaches (Inagaki et al., 2002). In the present study,
we tested this hypothesis using poly(A) tailing of full-length 16S
rRNA and reverse transcription-PCR (RT-PCR) with domain-
specific primers, and compared sequence libraries prepared from
a marine sediment sample collected from the Yonaguni Knoll IV
hydrothermal field.

MATERIALS AND METHODS
SAMPLING OF MARINE SEDIMENTS
The sediment samples used in this study were obtained from the
Yonaguni Knoll IV hydrothermal field in the southern Okinawa
Trough (24◦50.544′N, 122◦42.878′E, water depth: 1,371 m) using
a push corer, and were collected during the JAMSTEC NT10-06
cruise involving RV Natsushima and ROV Hyper-Dolphin (Dive
#1111, April 17, 2010). Sediment samples were anaerobically
placed in autoclaved 250-ml glass bottles using a nitrogen flush
and the bottles were sealed with a rubber cap and stored at 4◦C
until analysis.

RNA EXTRACTION AND PURIFICATION
Bulk environmental RNA was extracted from 8 g of sediment
using an RNA PowerSoil® Total RNA Isolation Kit (MO BIO
Laboratories, Inc., Solana Beach, CA, USA) according to the man-
ufacturer’s instructions. The extracted RNA was electrophoresed
on a 2% agarose gel for 30 min in 1× TAE [Tris–acetate–
ethylenediaminetetraacetic acid (EDTA)] buffer, and the gel was
stained with 1× SYBR Green II (Life Technologies Japan, Tokyo,
Japan) to visualize 16S and 23S rRNA. The rRNA was recovered
from the gel using a Recochip (Takara Bio, Japan), and then fur-
ther purified using a PureLink RNA Mini Kit (Life Technologies
Japan) according to the manufacturer’s instructions. The quality
of the recovered 16S rRNA was verified by electrophoresis using
an automated capillary electrophoresis system (Experion; Bio-
Rad Laboratories, Tokyo, Japan) and an Experion RNA HighSens
Analysis Kit.

POLY(A) TAILING AND COMPLEMENTARY DNA SYNTHESIS
We compared two molecular approaches [poly(A) tailing and RT-
PCR] for examining metabolically active microbial communities.
The approaches are summarized in Figure 1. Since the reaction
buffer composition and source of poly(A) polymerase can report-
edly affect the efficiency of the poly(A) tailing reaction (Raynal
and Carpousis, 1999; Sillero et al., 2001), we used two com-
mercially available poly(A) polymerases: Escherichia coli poly(A)
polymerase (New England BioLabs, hereafter denoted as NEB)
and Takara Bio poly(A) polymerase. Each poly(A) tailing reaction
was conducted in 20 μl of reaction mixture containing 10 μl of

purified 16S rRNA solution. The other components of the reaction
mixture were as follows: for NEB polymerase, 1× reaction buffer
(50 mM Tris–HCl, 250 mM NaCl, and 10 mM MgCl2), 1 mM
ATP, and 0.25 U/μl of poly(A) polymerase; for Takara Bio, 1×
reaction buffer [50 mM Tris–HCl, 10 mM MgCl2, 2.5 mM MnCl2,
250 mM NaCl, and 1 mM dithiothreitol (DTT)], 0.5 mg/ml of
bovine serum albumin, 0.5 mM ATP, and 0.1 U/μl of poly(A)
polymerase. After incubation at 37◦C for 30 min, the reaction was
stopped by adding 2 μl of 250 mM EDTA. The poly(A)-tailed 16S
rRNA was subsequently purified using a NucleoSpin® RNA XS Kit
(Takara Bio). The cDNA of full-length 16S rRNA was synthesized
and amplified by PCR using a SMARTerTM Pico PCR cDNA Syn-
thesis Kit (Takara Bio) according to the manufacturer’s instruc-
tions.

REVERSE TRANSCRIPTION-PCR
Reverse transcription-PCR was performed to obtain nearly full-
length rRNA gene sequences from the purified 16S rRNA
without poly(A) tailing using a One-Step PrimeScript RT-PCR
Kit (Takara Bio). The bacterial domain-specific primers 26F
(AGAGTTTGATCCTGGCTCA; Hicks et al., 1992) and 1492R
(GGYTACCTTGTTACGACTT; Loy et al., 2002) were used for RT-
PCR. The reaction mixture consisted of 1× PrimeScript buffer,
300 nM of each primer, 0.8 μl of PrimeScript Enzyme mix, 1 μl of
16S rRNA (diluted 1,000-fold), and water to 20 μl. First, reverse
transcription was performed at 50◦C for 30 min followed by inac-
tivation of the reverse transcriptase at 94◦C for 2.5 min. Next,
synthesized cDNA was amplified by PCR under the following con-
dition: 20 cycles of 94◦C for 30 s, 54◦C for 30 s, and 72◦C for 90 s.
The number of PCR cycles used in this study was determined
by selecting a cycle number in the log-linear phase of the real-
time PCR amplification curve (i.e., before the plateau phase). The
PCR products were purified using NucleoSpin Extract II Columns
(Takara Bio) and stored at −20◦C until further analysis.

CLONING AND SEQUENCING
The PCR products obtained using poly(A) tailing and RT-PCR
were cloned into the pCR®2.1-TOPO® vector and transformed
into competent E. coli DH5α (Life Technologies Japan, Tokyo,
Japan). For RT-PCR, the cloned inserts were sequenced using an
ABI 3130xl genetic analyzer (Life Technologies Japan) with the
primers M13M4, M13rev, 926R/F (Liu et al., 1997), and 1390R
(Zheng et al., 1996). For the poly(A) tailing method, sequencing
was first performed using the M13 primers followed by screen-
ing of the 16S rRNA sequence using a hidden Markov model
implemented in version 3.0 of the HMMER software package
(Eddy, 1998), as described elsewhere (Lagesen et al., 2007; Huang
et al., 2009). The screened 16S rRNA inserts were sequenced using
primers 338R/F (Amann et al., 1990), 515R/F (Walters et al., 2011),
926R/F, and 1390R to assemble full-length 16S rRNA sequences. A
primer walking approach was employed for inserts that could not
be sequenced using the primers described above. The sequences
were trimmed and assembled to obtain consensus sequences using
Sequencher software (Hitachi Software, Tokyo, Japan). Chimeric
sequences were removed using the UCHIME program (Edgar
et al., 2011) implemented in the Mothur Utility package (Schloss
et al., 2009).
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FIGURE 1 | Schematic illustrating the poly(A) tailing and RT-PCR methods for the study of active microbial communities. *Tag primers target tagged
sequences by adding an oligo dT for cDNA synthesis. **The bias at reverse transcription could be circumvented by using random hexamer primers instead of
target-specific primers.

DATA ANALYSIS
Alignment of all 16S rRNA sequences was performed using the
ARB software package (Ludwig et al., 2004). Since some of the 16S
rRNA sequences were fragmented after poly(A) tailing, a 600-bp
fragment (corresponding to E. coli 16S rRNA positions 287–886)
was used for comparisons of microbial diversity and commu-
nity structure. Taxonomic assignments were made using Silva
taxonomy and the Bayesian classifier. clustering sequences, cal-
culation of diversity indices (i.e., Shannon and Simpson indices)
and Libshuff test (Singleton et al., 2001; Schloss et al., 2004) were
performed using the Mothur software package (Schloss et al., 2009;
Hoshino et al., 2011). Phylogenetic tree was constructed by ARB
software (Ludwig et al., 2004) using the neighbor-joining method
(Saitou and Nei, 1987) with an Olsen correction. The coverage rate
of the used primer set (26F-1492R) at the genus level was evalu-
ated using TestPrime 1.0 program (Klindworth et al., 2013) using
SILVA database SSU r114 with RefNR.

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS
All 16S rRNA sequences obtained in this study were deposited in
the DDBJ/EMBL/GenBank nucleotide sequence databases under
the accession numbers KC470861–KC471309.

RESULTS AND DISCUSSION
HMMER SCREENING OF 16S rRNA
HMMER screening of 16S rRNA sequences obtained using the
poly(A) tailing method resulted in the detection of 115 and 144
bacterial 16S rRNA sequences for the NEB and Takara poly(A)
polymerase reactions, respectively. Approximately a half num-
ber of the total cDNA sequences (i.e., 107 and 92 sequences in
the NEB and Takara cDNA libraries, respectively) were found
to be 23S rRNA fragments according to the HMMER analy-
sis. Interestingly, few cDNAs from mRNA were detected. The
fragmented 23S rRNA sequences were excluded from the down-
stream analysis. Some fragmented 16S rRNA sequences were also
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observed in the poly(A) tailing libraries, suggesting that part of
the 16S rRNA pool was damaged during the fractionation step
by excision of the band and extraction of 16S rRNA from aga
rose gel.

Only one and three of the 16S rRNA sequences obtained using
the NEB and Takara polymerases, respectively, were identified as
archaeal 16S rRNA. This result was consistent with results from
previous analyses of samples from the same location, which indi-
cated that the archaeal population is generally smaller than the
bacterial population (Yanagawa et al., 2012). In addition, a previ-
ous study of geothermally heated soil from Yellowstone National
Park in the United States recovered no archaeal RNA sequences
using the poly(A) tailing method, despite the fact that numerous
archaeal 16S rRNA sequences were obtained using the PCR-based
clone library method (Botero et al., 2005). Therefore, poly(A)
tailing might have bias which underestimate archaeal population
although it is unknown whether the low abundance of archaeal
sequences in the poly(A) tailing libraries is from the native archaeal
abundance or due to this bias. It is important to note here that
RNA-based methods depend on the recovery of intracellular RNA;
therefore, the results cannot be correlated with the cellular biomass
or DNA copy number of the genomic pool.

COMPARISON OF MICROBIAL DIVERSITY
More than 85% of the total 16S rRNA sequences obtained using
the poly(A) tailing and conventional RT-PCR methods were found
to be derived from the Deltaproteobacteria, indicating that sulfate-
reducing bacteria are predominant members of sedimentary
habitats (Figure 2, pie charts on the left). Conventional RT-PCR
analysis identified 94% (169/179) of the sequences obtained as
Deltaproteobacteria, whereas 85% (98/115) and 88% (127/144) of
the bacterial 16S rRNA sequences obtained using the NEB and
Takara polymerase poly(A) tailing methods, respectively, were
identified as Deltaproteobacteria (Figure 2, pie charts on the
left). Overall, these results are consistent with those of a previ-
ous RNA-based study of the same hydrothermal field (Yanagawa
et al., 2012).

The Deltaproteobacteria orders Desulfuromonadales and
Desulfobacterales, both of which contain sulfur- and/or sulfate-
reducing bacteria, consistently appeared as predominant phylo-
types in the clone libraries. However, there was a clear difference
in the clonal frequency between libraries constructed using the
two methods; the RT-PCR method indicated the predominance of
Desulfuromonadales, while the poly(A)-tailing method indicated
that Desulfobacterales predominate (Figure 2).

The detected sequences affiliated with Desulfuromonadales
were mainly composed by the genera Pelobacter, Geoalkalibacter,
and Geopsychrobacter (Figure 3). Almost half of the sequences
from RT-PCR (84/179) and more than 25 sequences from both
poly(A) libraries were classified to be Pelobacter, indicating pre-
dominance of this genus in the environment. TestPrime analysis
(Klindworth et al., 2013) indicated that the coverage rates of
the 26F and 1492R primers with perfect match for Pelobacter,
Geoalkalibacter, and Geopsychrobacter are 50.0, 75.0, and 100%,
respectively. On the other hand, the detected sequences of Desul-
fobacterales mainly consist of the genera Desulfopila, Desulfofaba,
and Desulforhopalus (Figure 3), for which the coverage rates are 40,

100, and 41.7%, respectively. Among those three genera, the Desul-
fopila-related sequences were predominant in both poly(A) tailing
clone libraries. The coverage rates of the detected genera within
the Desulfobacterales were lower than those of Desulfuromon-
adales, resulting in lower abundance of Desulfobacterales in the
RT-PCR libraries. Therefore, we infer that primer-dependent RT-
PCR assay overestimated Desulfuromonadales but underestimated
Desulfobacterales due to the primer bias.

Representatives of the Gammaproteobacteria and Sphingobac-
teria were relatively minor components of all three libraries we
examined. Although some sequences derived from Lentisphaerae
and Holophagae were only detected by RT-PCR, the poly(A)
tailing libraries constructed using the two different polymerases
revealed more diverse lineages than did the RT-PCR library.
The clone libraries obtained from poly(A) tailing included some
classes that were not detected by RT-PCR, such as Nitrospira,
Alphaproteobacteria, and Caldilineae.

In theory, poly(A) tailing methods could also be used to obtain
archaeal 16S rRNA, although a previous study failed to retrieve any
archaeal 16S rRNA from geothermally heated soils from Yellow-
stone National Park (Botero et al., 2005). In this study, a total of
four archaeal 16S rRNA sequences were obtained using the poly(A)
tailing method.

Two of these sequences were derived from Candidatus “Par-
varchaeum” (Baker et al., 2010), which belonged to Deep-sea
Hydrothermal Vent Euryarchaeotic Group (DHVEG-6; Takai and
Horikoshi, 1999), while the other two sequences formed a new
branch distinct from the ancient archaeal group (AAG; Takai and
Horikoshi, 1999; Figure 4). Organisms belonging to DHVEG-6
are primarily associated with deep-sea hydrothermal vent systems
(Takai and Horikoshi, 1999; Teske and Sørensen, 2008; Nunoura
et al., 2012), but have also been found in marine sediment and
anoxic soil. The AAG were first described as a hydrothermal vent
lineage, and, consistent with the results of this study, were later
found in the cold organic-rich subsurface environment (Sørensen
and Teske, 2006). Due to primer mismatching, there have been
few reports to date of the use of conventional PCR with pub-
lished primer sets to detect the four archaeal 16S rRNA sequences
we detected in this study. For example, all four sequences have
one mismatch to A806F (Wang and Qian, 2009), while Arch958R
(DeLong, 1992) has six mismatches to T_34 and N_100, and two
mismatches to T_35 and T_36.

In addition, we retrieved 23S rRNA by poly(A) tailing with
Takara polymerase: a total of 78 partial 23S rRNA sequences
(∼600 bp in length) were obtained. Although classification of the
23S rRNA sequences might be insufficient for the genus-level clas-
sification due to the limited number of 23S rRNA in the database,
we found predominance of Deltaproteobacteria (60/78) con-
taining Desulfobacterales (19/78), Desulfuromonadales (20/78),
and unclassified sequences (19/78), consistently supporting our
observation of 16S rRNA gene sequences.

COMPARISON OF MICROBIAL COMMUNITY STRUCTURES
To compare the microbial community structures indicated by
the poly(A) tailing and RT-PCR approaches, we calculated Shan-
non (H ′) and Simpson diversity (1/D) indices for the 16S rRNA
libraries. The highest diversity value was for the poly(A)-tailed
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FIGURE 2 |The community structure of marine sediment microbial populations inferred from the results of RT-PCR and poly(A) tailing analyses.

Deltaproteobacteria (left) and other bacterial populations (right) were shown in pie charts. Chart (A) indicated microbial community obtained by RT-PCR,
whereas chart (B) and chart (C) were by poly(A) tailing with NEB and Takara poly(A) polymerase, respectively.

sequences obtained using the NEB polymerase (Table 1). For
the unique poly(A)-tailed sequences (i.e., singletons), the high-
est diversity indices were obtained using the Takara polymerase.
In contrast, the RT-PCR method was associated with the low-
est diversity indices, regardless of the similarity cutoff used or
not (Table 1). The results of Libshuff analysis indicate that the
two poly(A) clone libraries are statistically different from that of
RT-PCR whereas poly(A) libraries are not significantly different
(Table 2). Overall, these results indicate that the poly(A) tailing
methods retrieve more diverse 16S rRNA sequences from the envi-
ronment than does the conventional RT-PCR approach. In other
words, it is important to recognize that primer-dependent molec-
ular ecological approaches carry a risk of bias that could result
in underestimation of microbial diversity. The bias effect may be
more significant for microbial communities in rare and/or extreme
habitats that have never been explored because we do not know
exactly what organisms reside there.

CONCLUSION AND PERSPECTIVES
For decades, PCR-mediated molecular ecological approaches have
been used to investigate the diversity of microbial communities in
a variety of natural habitats. The primer sequences for amplifying
16S rRNA (or its gene fragments) are based on known sequences
contained in databases, targeting conserved regions that cover spe-
cific taxonomic groups. In this context, a critical issue in microbial
ecology is the possibility of bias caused by mismatches between the
published primers and the target sequences, especially for uniden-
tified constituents of microbial communities in natural habitats.
Bias of this sort has caused significant differences in estimates of
microbial diversity and community structure, and also increases
the difficulty of detecting previously unidentified organisms in the
environment.

The poly(A) tailing of environmental 16S rRNA is totally inde-
pendent of published PCR primers. In this study, we clearly
showed that the poly(A) tailing approach holds potential for
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FIGURE 3 | Phylogenetic classification of Deltaproteobacteria sequences

obtained in this study. The tree was constructed by neighbor-joining analysis
with an Olsen correction. Operational taxonomic units (OTUs) were defined
as the clusters at 97% sequence identity and only OTUs containing more
than five sequences were shown in the tree. The numbers in parenthesis
indicate the number of clones obtained by NEB poly(A) polymerase, Takara

poly(A) polymerase, and conventional RT-PCR, respectively (from left to
right). Coverage of the primer set (26F-1492R) determined by TestPrime
(http://www.arb-silva.de/search/testprime/) is shown for each genus.
Bootstrap values are shown at branch nodes by closed circles (>80%) and
open circles (<80%) as percentages of 1,000 replicates. Scale bar indicates
5% sequence divergence.

FIGURE 4 | Phylogenetic classification of archaeal 16S rRNA sequences

obtained in this study. The tree was constructed by neighbor-joining analysis
with an Olsen correction. Bootstrap values were shown at branch point as

percentages of 1,000 replicates. Bootstrap values are shown at branch nodes
by closed circles (>80%) and open circles (<80%) as percentages of 1,000
replicates. Scale bar indicated 10% sequence divergence.
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Table 1 | Diversity indices.

Similarity cutoff (%) Shannon diversity index (H ′) Simpson diversity index (1/D)

RT-PCR Poly(A) NEB Poly(A)Takara RT-PCR Poly(A) NEB Poly(A)Takara

0 (unique) 4.41 4.22 4.54 49.17 64.90 70.52

3 2.23 2.48 2.41 4.13 6.53 5.16

NEB: New England BioLabs Escherichia coli poly(A) polymerase. Takara: Takara poly(A) polymerase.

Table 2 | P -values* estimating similarity among each treatment

generated using Libshuff (10,000 randomizations) among the three

clone libraries.

P -value comparison of library (Y ) with X a

Library (X ) RT-PCR NEB poly(A) Takara poly(A)

RT-PCR / 0.0001 0.0003

NEB poly(A) <0.0001 / 0.4009

Takara poly(A) 0.0051 0.2407 /

*P-values comparing either X toY orY to X indicate that the two communities are
significantly different bold face values indicated significant difference (P < 0.0085,
employing the Bonferroni correction).

understanding of naturally occurring active microbial commu-
nities. This approach also has great potential for facilitating the

discovery of as yet unknown microbes for which their 16S rRNA
gene sequence do not match published primer sequences, although
the potential bias of poly(A) tailing to rRNA genes needs to be
studied further. By combining this approach with “deep sequenc-
ing” NGS technologies that allow for sequencing full-length 16S
rRNAs, it may be possible in the future to obtain a detailed
view of the true structure of microbial communities in natural
habitats.
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