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Abstract
Species distribution modeling was used to determine factors among the large predic-
tor candidate data set that affect the distribution of Muscari latifolium, an endemic 
bulbous plant species of Turkey, to quantify the relative importance of each factor and 
make a potential spatial distribution map of M. latifolium. Models were built using the 
Boosted Regression Trees method based on 35 presence and 70 absence records ob-
tained through field sampling in the Gönen Dam watershed area of the Kazdağı 
Mountains in West Anatolia. Large candidate variables of monthly and seasonal cli-
mate, fine-scale land surface, and geologic and biotic variables were simplified using a 
BRT simplifying procedure. Analyses performed on these resources, direct and indi-
rect variables showed that there were 14 main factors that influence the species’ dis-
tribution. Five of the 14 most important variables influencing the distribution of the 
species are bedrock type, Quercus cerris density, precipitation during the wettest 
month, Pinus nigra density, and northness. These variables account for approximately 
60% of the relative importance for determining the distribution of the species. 
Prediction performance was assessed by 10 random subsample data sets and gave a 
maximum the area under a receiver operating characteristic curve (AUC) value of 0.93 
and an average AUC value of 0.8. This study provides a significant contribution to the 
knowledge of the habitat requirements and ecological characteristics of this species. 
The distribution of this species is explained by a combination of biotic and abiotic fac-
tors. Hence, using biotic interaction and fine-scale land surface variables in species 
distribution models improved the accuracy and precision of the model. The knowledge 
of the relationships between distribution patterns and environmental factors and bi-
otic interaction of M. latifolium can help develop a management and conservation 
strategy for this species.
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1  | INTRODUCTION

Endemic species grow naturally in restricted geographic ranges, and 
specific habitats and are prone to become endangered under changing 
environmental conditions and other threats. They also have a great 
tendency to become extinct if they are both rare and endemic (Işık, 
2011; Lomba et al., 2010; Marcer, Sáez, Molowny-Horas, Pons, & 
Pino, 2013). Sustainable management practices and the preservation 
of endemic and rare plants are essential for the conservation of global 
biodiversity because these plants are important not only for local 
regions but also for global biodiversity. Therefore, endemic species are 
important targets for global conservation efforts (Myers, Mittermeier, 
Mittermeier, da Fonseca, & Kent, 2000).

Muscari is a genus of 46 species, distributed across Europe, Asia, 
and North Africa (Govaerts, Zonneveld, & Zona, 2015). Thirty-three of 
these species occur naturally in Turkey (Davis & Stuart, 1984; Demirci, 
Özhatay, & Koçyiğit, 2013; Güner, 2012; Pirhan, Yıldırım, & Altıoğlu, 
2014; Yıldırım, 2015). Muscari latifolium J. Kirk. (Asparagaceae) 
(Figure 1) is an endemic bulbous plant species of Turkey with a highly 
local distribution in western, inner western, and southwestern Turkey, 
Balıkesir–Çanakkale Kazdağı Mountains, Kütahya Murat Mountain, 
and Antalya Akseki at altitudes between 1,100 and 1,800 m in Pinus 
nigra J.F. Arnold and Pinus sylvestris L. forests (Davis & Stuart, 1984). 
Bulbs are solitary, ovoid, and 1.5–3 cm in diameter. Leaves are usually 
solitary, and two are found in rare cases, erect, broadly linear, lance-
olate, 7–30 cm long, and 10–30 mm wide. Flowers are carried on a 
scape longer than the leaves. Inflorescences are racemes 1.5–6 cm 
long and consist of both fertile and sterile flowers. Sterile flowers are 
pale violet to light blue, 4–8 mm long, and located at the top of the 
raceme, whereas fertile flowers are dark violet to black, 5–6 mm long, 
and located at the bottom of the raceme. Fruit is a capsule 7–8 mm in 
size (Davis & Stuart, 1984). The species, which its flowering period is 
in April and May, are being used as ornamental plants (Bryan & Hort, 
2002) and are usually propagated from seeds (Wraga & Placek, 2009). 
Muscari latifolium is easy to detect even outside the flowering season 
because of its broad leaves. It prefers lime and slightly acidic loamy 
soil with potassium, high phosphorus content, and rich organic matter 
(Hopa, Tümen, Sevindik, & Selvi, 2013).

It is important to know the distribution, ecological traits, and 
population structure of endemic plant species to manage them in a 
sustainable manner and to develop effective conservation strategies 
for them. Determining the entire distribution area of a plant species 
is neither feasible nor realistic merely by navigating through the area 
without sampling. Furthermore, despite the fact that the area is well 
sampled, the organism will be present outside the sampling plots. 
However, species distribution models (SDMs) give us the ability to 
predict the distribution of the species across a landscape or within a 
certain time frame (Elith & Leathwick, 2009; Guisan & Thuiller, 2005; 
Peterson, 2006). SDMs are suitable tools for understanding the real-
ized species distribution and for estimating the species’ potential dis-
tribution for endemic and rare species in well-surveyed areas (Marcer 
et al., 2013; Williams et al., 2009).

In SDMs, presence–absence, presence-only, or abundance data 
are used to predict species distribution. Presence–absence data pro-
vide valuable information about the availability and prevalence of 
species in the research area and allow for more ecologically realistic 
predictions to be made (Elith & Leathwick, 2009; Phillips, Dudik, Elith, 
Graham, & Lehmann, 2009). Either the presence–absence or the abun-
dance of vascular plants is affected by three main groups of factors: 
direct, indirect, and resource gradients (Austin, 2002; Franklin, 2009; 
Guisan & Zimmermann, 2000). Additionally, the occurrence of a her-
baceous plant species in a forest can be affected by overstory and 
understory species, canopy closure, and disturbances such as human 
or animal activities. These biotic factors are difficult to measure and 
analyze, and they are often ignored in SDMs, even when they are nec-
essary to make realistic predictions (Wisz et al., 2013). M. latifolium 
usually grows in forest understories. The occurrence of this species 
might be affected by overstory tree species, development stage of 
trees, canopy, and characteristics of shrub layer. Moreover, the dis-
tances of sample plots to the nearest settlement area may cause indi-
rect human and livestock disturbance effects.

In many species distribution modeling studies, the model is estab-
lished using selected variables based on the accumulated ecological 
literature (Porfirio et al., 2014). However, the terrain effects on plant 
distribution can be explained better by making use of variables derived 
from digital elevation models (DEMs). These are variables that may 
have indirect effects on the distribution and abundance of plants. 
Additionally, annual climate variables are usually used in plant model-
ing studies. However, climate data should be evaluated on a monthly 
and seasonal basis. Because herbaceous plants have different life 

F I G U R E   1 Muscari latifolium. Photographed in Gönen Dam 
watershed, Turkey, April 2013



1114  |     YILMAZ et al.

cycles and many different characteristics such as root depth and stem 
structure, they are more affected than trees by extreme climate val-
ues, short term, and seasonal fluctuations (Brovkin, 2002). There have 
been limited attempts to use fine-scale DEM-derived variables and 
monthly climatic data in species distribution studies.

A variety of methods, such as BIOCLIM (Nix, 1986), MaxEnt 
(Phillips, Anderson, & Schapire, 2006), DOMAIN (Carpenter, Gillison, 
& Winter, 1993), GAM (Hastie & Tibshirani, 1990), GLM (McCullough 
& Nelder, 1989), and random forest (Breiman, 2001), can be used in 
SDMs. However, this study focuses on identifying species–environment 
relationships and on estimating the realistic potential distribution area 
of the species, not on comparing the results of different modeling 
methods. The aim of this study is to determine the influence of cli-
matic, land surface, geologic, and biotic variables on the distribution 
of M. latifolium. The study also aims to evaluate the prediction power 
of models fitted with the “Boosted Regression Trees” (BRT) method 

based on presence/absence data and a large environmental variable 
data set. We also summarize the relative importance of predictor vari-
ables. The BRT method was preferred in this study because it provides 
highly accurate predictions of species distribution models and variable 
shrinkage (Elith, Leathwick, & Hastie, 2008), and it is more sensitive to 
local site conditions (Falk & Mellert, 2011).

2  | MATERIALS AND METHODS

2.1 | Study area

The study was conducted in the Gönen Dam watershed area, which 
covers 113,700 ha and ranges from 90 to 1,400 m a.s.l. (Figure 2). 
According to long-term data from the nearest meteorological station 
located in the Yenice Province, long-term average of annual total pre-
cipitation is 847.3 mm, and the mean annual temperature is 12.8°C. 

F I G U R E   2 Location of the studied area 
(filled blue) and distribution of Muscari 
latifolium incidence on a 3 × 3 km grid in 
Gönen Dam watershed (Turkey)
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The Gönen Dam watershed area is located in the northeast Kazdağı 
Mountains (formerly known as Ida Mountain) in West Anatolia 
(26.960-27.540°E, 39.640-40.100°N). The Kazdağı Mountains con-
sist of several mountain peaks and plateaus and were classified as 
an IPA (important plant area) not only for Turkey but also for Europe 
because they contain a high numbers of endemic and rare plant spe-
cies (Özhatay & Özhatay, 2005). Forests in the Kazdağı Mountains are 
composed of both pure and mixed conifer and broadleaf trees, such as 
Pinus nigra J.F. Arnold subsp. pallasiana (Lamb.) Holmboe, Pinus brutia 
Ten., Abies nordmanniana (Steven) Spach subsp. equi-trojani (Asch. & 
Sint. ex Boiss.) Coode & Cullen, Quercus sp., Fagus orientalis Lipsky, 
maquies, and thickets.

2.2 | Species data

To obtain a representative sample (Araujo & Guisan, 2006) of M. lat-
ifolium occurrence in the study area, it was systematically divided 
into 3 km × 3 km grids. Then, a 20 m × 20 m quadrat was randomly 
assigned in each grid, excluding agricultural and residential areas. To 
avoid edge effects, the quadrats were assigned at least 50 m away 
from roads. A total of 105 plots in the study area were in managed for-
ests (Figure 2). Therefore, the species incidence consists of 35 pres-
ence and 70 absence records. M. latifolium was detected at altitudes 
ranging from 189 to 885 m in the study area, although the reported 
range was between 1,100 and 1,800 m (Davis & Stuart, 1984).

This study uses M. latifolium presence–absence data as the 
response variable. As suggested by Lobo, Jiménez-Valverde, and 
Hortal (2010) and Hijmans (2012), we paid attention to the quality of 
the occurrence data and collected this vegetation data in May, June, 
and July 2012 by carefully revisiting the study area. The presence–
absence of M. latifolium was recorded in five 1 m × 1 m subplots, one 
in the center and four at the corners of each 20 m × 20 m quadrat. It 
was considered present in a sample plot even if it was only detected 
in one of the five subsample plots. All trees with a diameter at breast 
height (dbh) larger than 7 cm were measured within each sample plot. 
At the same time, all shrubs were identified, each shrub species was 
counted, and the coverage percentage of each shrub species was 
recorded. We collected specimens of species which could not be 
identified in the field and identified them later in the Forest Faculty of 
Istanbul University Herbarium (ISTO) using the Flora of Turkey (Davis, 
1965–1985; Davis, Mill, & Tan, 1988; Güner, Özhatay, Ekim, & Başer, 
2000), and these specimens were deposited in the ISTO.

2.3 | Environmental data

We selected environmental predictor variables used in previous SDM 
studies (Beaumont, Hughes, & Poulsen, 2005; Elith et al., 2006; Lobo 
et al., 2010; Warren & Seifert, 2011) and added fine-scale topographic 
variables and monthly climatic data. Monthly climatic variables and 
bioclimatic variables were obtained from WorldClim database (http://
www.worldclim.org). These data are a set of global climate layers with 
a spatial resolution of approximately 1 km2 (Hijmans, Cameron, Parra, 
& Albert, 2005).

In addition to climate data, this study used fine-scale topographic 
variables obtained from terrain analysis that affect microclimate and 
other ecological processes. A total of 60 topographic variables such 
as slope, aspect, and curvature were derived from the ASTER DEM 
with a 30-m resolution using the SAGA GIS terrain analysis functions 
(Conrad et al., 2015).

Solar radiation affects vegetation pattern, plant distribution, and 
growth by influencing near-surface air temperature, soil temperature, 
and soil moisture within a region (Bennie, Huntleya, Wiltshirea, Hill, & 
Baxtera, 2008; Coblentz & Riitters, 2004). Continuous surface solar 
radiation data could be obtained from interpolation of weather station 
data, meteorological satellite data, and modeling solar radiation with 
GIS, and we preferred to use the latter method to calculate spatial 
solar radiation considering practical and widespread usage in natural 
studies. The “potential incoming solar radiation” module of SAGA GIS 
can be computed solar radiation for an instant time or a given day/
week/month/year. Monthly solar radiation (direct solar radiation, dif-
fuse solar radiation, total solar radiation, direct-to-diffuse solar radia-
tion ratio, and the duration of solar radiation) was calculated taking the 
terrain shade effect into account using SAGA GIS (Conrad et al., 2015) 
under clear-sky conditions.

There is a strong connection between bedrock composition and 
vegetation (Hahm, Riebe, Lukens, & Araki, 2014). A bedrock map 
was obtained from a 1/25.000 scale geological map prepared by 
the General Directorate of Mineral Research and Exploration (MTA). 
Bedrock type is the only categorical variable that was used in the 
study.

According to the literature (Davis & Stuart, 1984) and our observa-
tions in the field, M. latifolium requires specific habitat conditions and 
plant associations to survive and maintain its population. Therefore, 
some properties of trees and the shrub layer were used to determine 
the habitat of the plant and to estimate the potential distribution of 
the plant. The number of tree species per diameter class (8- 10.9, 
11–19.9, 20–35.9, 36–51.9, 52–79,9 larger than 80 cm) of the 24 
tree species existing in the sampling plots was calculated by the cumu-
lative number of trees using the R package “vegclust” (De Cáceres, 
Font, & Olivia, 2010). The abundance-cover value, richness, Shannon, 
Simpson, inverse Simpson, evenness, j evenness, and Berger indices of 
73 species in shrub layer were also used.

To handle the effect of humans and livestock, we used proxim-
ity to the nearest residential area and the population of the area. The 
Euclidian distances of sample plots to the nearest residential areas 
were calculated using the “r.grow.distance” function on GRASS GIS 
(GRASS Development Team, 2014), and a raster output map was 
obtained. This variable was taken as it is indicating the impact of indi-
rect human and domestic livestock grazing.

These direct, indirect, and resource variables obtained from GIS 
data layers used in the study were uploaded to the spatial point 
vector layer of sample plots using SAGA GIS software. Thus, a data 
matrix consisting of 416 aforementioned environmental variables 
(Table 1) and one response variable was prepared for further opera-
tions. Preprocessing was performed to achieve better model results 
before analyses were performed. First, zero-variance predictors were 

http://www.worldclim.org
http://www.worldclim.org
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removed for computing cost even though tree-based models are 
impervious to this type of predictors (Kuhn & Johnson, 2013). Because 
we have more predictors than samples, we handled multicollinearity 
of DEM-derived data by the simple five steps way suggested by Kuhn 
and Johnson (2013) instead of using a variance inflation factor. We did 
not do multicollinearity analysis for climatic variables because deter-
mining the true month of influential climatic variables and BRT is less 
sensitive than other methods for collinearity (Dormann et al., 2013). 
After preprocessing, 247 predictor variables remained for use in anal-
ysis. Figure 3 shows the study analyses process.

2.4 | Statistical methods

2.4.1 | BRTs

To specify the factors affecting the species’ distribution, we used BRTs 
(aka gradient boosting tree). BRT is a machine learning technique and 
has important advantages for tree-based methods. Not only can it 
fit complex nonlinear relationships, but it can also handle interaction 
effects between predictors automatically (Elith et al., 2008). Detection 
of important relationships from large sets of predictor variables can be 
achieved (Barker, Cumming, & Darveau, 2014). Relatively poor predic-
tive performance drawbacks of single tree models are tackled by BRT 
(Elith et al., 2008). Wisz et al. (2008) evaluated 12 algorithms for 46 
species at three sample sizes (10, 30, and 100 records) and found that 
gbm was the best performing prediction algorithm at sample sizes 30 
and 100.

2.4.2 | Model building

We used the dismo (Hijmans, Phillips, Leathwick, & Elith, 2015), gbm 
(Ridgeway, 2013), and raster (Hijmans & Etten, 2013) packages from 
the R statistical environment (R Development Core Team, 2014) for 

fit models, assessing relative contributions, making predictions, and 
mapping distribution. To prevent overfitting and determining user-
defined parameters used in BRTs, we evaluated tree complexity (1, 3, 
5, 7), learning rate (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005), and bag frac-
tion (0.5, 0.75). Based on tenfold cross-validation results, we selected 
7 for tree complexity, 0.5 for bag fraction, and 0.005 for learning rate 
to achieve more than 1,000 trees suggested by Elith et al. (2008). 
Using these parameters, we built models with 105 M. latifolium inci-
dences and a 247 environmental variable matrix. To reduce environ-
mental noninformative variables, we simplified this model with the 
“gbm.simplfy” function (Elith & Leathwick, 2014) and removed 233 
environmental variables. Simplification builds many models and drops 
unimportant variables using methods similar to backward selection 
in regression (Elith et al., 2008). Thus, 14 environmental variables 
(Table 2) remain to be used in the further steps.

2.4.3 | Model evaluation

We assessed the predictive performance of models using repeated 
subsampling processes. Ten random subdata sets were created from 
the entire data set. Each partition was created randomly selecting 
70% (n = 74) presence/absence localities as training data, and the 
other 30% (n = 31) were selected as testing data. We used the area 
under a receiver operating characteristic curve (AUC) to evaluate the 
performance of each model. This metric is calculated from the receiver 
operating characteristic (ROC) plot that gives the false-positive error 
rate (1-specificity) on the x axis and the true positive rate (sensitivity) 
on the y axis (Franklin, 2009). The AUC is determined through sum-
ming the area under the ROC curve and taking the value between 
0.5 and 1.0. Although Harrell (2001) states a threshold of 0.8 AUC 
value for models is necessary, Franklin (2009) states that a threshold 
of 0.5–0.7 AUC is considered poor, 0.7–0.9 AUC is considered moder-
ate, and >0.9 AUC is considered high model performance. We created 

TABLE  1 Environmental variables used to model Muscari latifolium distribution in the study area (numbers of variable given in the 
parenthesis)

Variable (416) Description Source

Bioclim variables (19) 19 bioclimatic data calculated from temperature and precipitation WorldClim database

Monthly climatic data (48) Average monthly mean temperature, average monthly minimum 
temperature, average monthly maximum temperature, and average 
monthly precipitation

WorldClim database

Monthly solar radiation data (60) Monthly total of diffuse, direct, and total solar radiation, and direct-to-
diffuse ratio and duration of solar radiation (12*5 = 60)

Modeled from DEM with SAGA 
GIS

Topographic variables (60) Topographic variables (such as slope, aspect, and curvatures) Derived from DEM with SAGA GIS 
terrain analyses

Geology (1) Bedrock type MTA data

Biotic interaction variables (228) CAPs of 24 tree species according to tree species at each diameter class 
of 6 (6*24 = 144)

Cover values of 73 shrub species and 6 diversity indices (73 + 7 = 80)
Distance to nearest residential area, man, woman, and total population 

of residential areas

Calculated from the study field 
data

Calculated from the study field 
data

Calculated with GRAS GIS and 
Turkish Statistical Institute data
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10 models with tenfold cross-validated train data sets using 14 envi-
ronmental and one response variables. Then, predictive performance 
of these models was calculated on 10 replicate test data sets.

2.4.4 | Variable contributions and response curves

While assessing predictive performance for environmental variables, 
contribution to the model was also calculated over the 10 BRT model 
replicates. The most influential variables according to the sum of 
the relative influences of environmental variables in all models were 
selected and evaluated to determine the ecological requirements of 
the species.

2.4.5 | Spatial prediction

A final spatial prediction map was created from 13 of the 14 most 
important variables except Sorbus torminalis (L.) Crantz cover value. 
Potential spatial distribution of the M. latifolium prediction map was 
produced using a raster layer of these most important variables, and 1 
of 10 models has the best prediction power. This map was produced 
with only part of the study area because not all of the forest survey 
data were up to date. These field survey data were interpolated with 
the regularized spline with tension method (Mitasova et al., 1995) 

which gives good prediction results for forest tree size attributes 
(Destan, Yılmaz, & Şahin, 2013).

3  | RESULTS

3.1 | Model performance

The relationship between M. latifolium distribution and environmental 
variables was analyzed using 10 repeated BRTs models. These mod-
els’ accuracy was determined compared to test data sets. The overall 
average accuracy AUC value is 0.8. In total, 2 of the 10 models (m1, 
m2) were the most successful with an AUC value 0.93 (Table 3). Three 
models (Model 3, 4, and 9) gave AUC values that can be considered 
successful in the 0.80–0.9 range. While four models (m5, m6, m8, and 
m10) had AUC values between 0.70 and 0.8, only one model (m7) had 
an AUC value lower than 0.70 (0.68).

3.2 | Variable contributions and response curves

According to their relative contributions from 10 repeated BRT 
models, the seven most influential variables (the relative contribu-
tion average is greater than five) account for about the 70% of rela-
tive importance. Fourteen variables included in the final model in 

F I G U R E   3 Schematic representation of 
the analysis steps used in the study
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decreasing order of relative importance are ranked as follows: bed-
rock type (Bedrock), number of Quercus cerris L. (Qc1), precipitation 
of wettest month (Bio13), number of P. nigra (diameter >36 cm—Pn4), 
Northness, sunset September (Sunsetsep), S. torminalis cover value 
in shrub layer (Sortorm), proximity to residential areas (Growdist), 
temperature seasonality (Bio4), minimum curvature (Mincur), direct-
to-diffuse insolation ratio in July (Dir2difJul), duration of insolation 
in November (Durinsnov), direct-to-diffuse insolation ratio in March 
(Dir2difMar), and direct-to-diffuse insolation ratio in November 
(Dir2difnov) (Table 4).

Among those fourteen variables, bedrock type was the most influ-
ential variable on the distribution of M. latifolium. Six bedrock types 
are contained in 89 of 105 sample plots (85%) (Table 5). The num-
bers of sample plots where the species was absent on granodiorite, 

sandstone, Miocene-aged andesitic tuff, Oligocene-aged andesitic 
tuff, schist, and gneiss–mica-schist bedrock types were 12, 12, 13, 9, 
6, and 5, respectively, while the numbers of sample plots in which the 
species existed were 3, 2, 1, 8, 5, and 9, respectively (Table 5). Muscari 
latifolium was present more often than it was absent in plots containing 
only the gneiss–mica-schist bedrock type (five absent, nine present).

Occurrences were closely associated with overstory trees. Qc1 
was the second most important variable, and Pn4 was the fourth most 
important variable. The presence of the species in the field is closely 
associated with Qc1 and Pn4. Qc1 has a negative effect if the num-
ber of trees is less than five, and Pn4 also has a negative effect if the 
number of trees at this diameter class is less than three. We investi-
gated these associations from the data set and found that according 
to the data set, P. nigra did not occur in six of 35 sample plots where 
M. latifolium was present while Q. cerris was not detected in 13 of 35 
sample plots. Additionally, Q. cerris did not occur in two of six sample 
plots where M. latifolium was present, but P. nigra was absent. P. nigra 
did not occur in 23 of the 70 sample plots where M. latifolium was 
absent, and Q. cerris also did not occur in 45 of these plots. Quercus 
cerris did not occur in 14 of 23 sample plots in which both M. latifolium 
and P. nigra were absent.

The third most important variable was Bio13 (December is the wet-
test month in the study area). A minimum of 135 mm precipitation 
in December precipitation is associated for M. latifolium (Figure 4). 

The responses of M. latifolium to northness indicate that the species 
mostly occurs in the northwest and northeast. The Sortorm cover 
value is more than 1 in shrub layer which is positively associated with 
distribution of M. latifolium. Muscari latifolium is also positively affected 
when the distance to residential areas is between 2,000 and 6,000 m 
and temperature seasonality (standard deviation *100) (bio4) is >66°C. 
Mincur is another influential variable that has a positive effect when 
curvature increases. The occurrence of M. latifolium was also associ-
ated with the solar radiation variables. The distribution of M. latifolium 
is negatively affected when the average monthly duration of insolation 
in November exceeds 5 hr, the direct-to-diffuse insolation ratio of July 
is >7, the direct-to-diffuse insolation ratio of November is >1.5, and 
the direct-to-diffuse insolation ratio of March is >2.5, but influenced 
positively if the sunset of September is later than 17:00 local time.

TABLE  2 Most important variables selected according to final 
model performance

Variable Description Unit

Bio13 Precipitation of wettest month Mm

Bio4 Temperature seasonality (standard 
deviation ×100)

°C × 100

Sunsetsep Sunset of September Time

Dir2difJul Direct-to-diffuse insolation ratio in July

Dir2difnov Direct-to-diffuse insolation ratio in 
November

Durinsnov Duration of insolation in November Hour

Dir2difMar Direct-to-diffuse insolation ratio in 
March

Mincur Minimum curvature

Northness The degree to which a slope was 
northerly

Bedrock Bedrock type

Qc1 Total number of Quercus cerris Number

Pn4 Total number of Pinus nigra at diameter 
>36 cm

Number

Sortorm Sorbus torminalis cover value (according 
to Van der Maarel 1979)

Percent

Growdist Proximity to residential areas Meter

Model Number ntree calc.deviance P A AUC cor max TPR + TNR at

 1 1,550 0.65 13 18 0.93 0.78 0.60

 2 1,050 0.75 11 20 0.93 0.73 0.21

 3 2,000 0.92 12 19 0.87 0.63 0.44

 4 5,700 0.97 11 20 0.85 0.55 0.52

 5 1,150 0.71 10 21 0.76 0.44 0.41

 6 1,350 0.75 11 20 0.71 0.42 0.51

 7 1,100 0.83 12 19 0.68 0.29 0.40

 8 1,200 0.72  8 23 0.74 0.39 0.63

 9 1,550 0.46  8 23 0.80 0.51 0.48

10 1,600 0.56 11 20 0.72 0.38 0.42

TABLE  3 Performance of 10 repeated 
boosted regression tree models
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3.3 | Spatial prediction map

We also assessed the probability of presence/absence points of M. lat-
ifolium from a spatial prediction map (Figure 5). The spatial prediction 
map covered part of study area containing seven presence and 25 
absence records of M. latifolium. The average and maximum probabil-
ity value of presence was 0.64 and 0.97, respectively, and absence 
was 0.18 and 0.51, respectively.

4  | DISCUSSION

Plant distributions are limited not only when one environmental fac-
tor is less than the minimum required but also more than the maxi-
mum tolerance for a particular species (Billings, 1952). In this study, 
we used SDM to improve our understanding of the relationship 
between M. latifolium distribution and environmental factors. Species 
distribution modeling provides us valuable information that is useful 
in management and effective conservation strategies, particularly for 

rare and endemic plant species. Additionally, assessing the potential 
impact of climate change on species distribution (Thuiller, Brotons, 
Araújo, & Lavorel, 2004) that can be projected by SDM allows the 
development of strategies for sustainable management. The BRTs 
modeling approach applied here gives a realistic picture of a potential 
distribution of M. latifolium in the Gönen Dam watershed that can be 
used for these aims.

Our results showed that the fine-scale distribution of M. latifolium 
is controlled mainly by geological, climatic, topographic, solar radi-
ation, and biotic variables at the study area. Analysis performed on 
these biotic and abiotic variables showed that there were 14 factors 
that mostly influenced the species’ distribution (Table 4). These vari-
ables create the most favorable growth environment for this species.

Bedrock type is proved to be the most influential variable on the 
distribution of M. latifolium. This is because bedrock is the main fac-
tor affecting soil properties such as climate, relief, altitude, and living 
organisms (Beieler, 1975; Hartmann & Moosdorf, 2012). Moreover, 
bedrock has an important role explaining differences in vegetation 
(Hahm et al., 2014). This is mainly related to the fact that soil is devel-
oped from different bedrocks in different textures, which may affect 
the species’ distribution. Sandy soils, where M. latifolium is present, 
were formed mostly from granodiorite and sandstone. On the other 
hand, clay soils, where M. latifolium is absent, were derived from schist 
and mica schist.

Several climatic variables are also proved important for the distri-
bution of M. latifolium. The increase in temperature seasonality had a 
positive effect on the habitat suitability of M. latifolium, while the spe-
cies is unable to tolerate lower temperature seasonality. This is likely 
related to seasonal thermoperiodicity which is the most important 
factor controlling growth, development, and flowering in geophytes 
most of which need warm–cold–warm period to their annual life cycle 
(Khodorova & Boitel-Conti, 2013). Tolerances of individual species 
for extreme seasonality are generally conserved across phylogeny. 
Therefore, temperature seasonality can be used to accurately predict 
the range limits of species in SDMs (Wiens, Graham, Moen, Smith, & 
Reeder, 2006). Precipitation during the wettest month (December in 
the study area) is thought to be a limiting factor of M. latifolium to 
survive and maintain its population when it is <135 mm. According 
to Doussi and Thanos (2002), Muscari seeds need a rainy season in 
early winter to germinate in the Mediterranean climate. December 
precipitation may affect the distribution of M. latifolium by influencing 
its germination.

Solar radiation appears to be an important factor on M. latifolium 
distribution particularly in March, July, September, and November. The 
sunset in September later than 17:00 has a positive effect on the dis-
tribution of M. latifolium. Although bulbous plants seem to be dormant 
in autumn and winter, active developmental processes continue in this 
period using reserves which are in the underground organ and are also 
affected by temperature conditions (Khodorova & Boitel-Conti, 2013). 
Therefore, M. latifolium might require more exposure to sunlight in 
September, whereas it exists only as bulb and seed below soil in this 
period. On the other hand, the increment of duration of insolation in 
November and the increment of direct-to-diffuse insolation ratio in 

TABLE  4 Minimum, maximum, and average relative contributions 
(%) of the most influential environmental predictors calculated using 
tenfold cross-validated BRT models of 10 random subsampled train 
data sets

Variable Min Max Average

Bedrock 21.45 33.16 27.24

Qc1 8.61 16.99 12.58

Bio13 5.29 11.14 8.12

Pn4 3.90 10.09 7.15

Northness 2.78 11.97 6.17

Sunsetsep 2.17 8.01 5.37

Sortorm 2.75 8.23 4.99

Growdist 2.97 7.00 4.71

Bio4 2.12 9.16 4.58

Mincur 1.77 11.13 4.45

Dir2difjul 2.44 6.90 4.24

Durinsnov 1.26 10.39 4.10

Dir2difmar 0.75 6.64 3.40

Dir2difnov 1.41 4.79 2.89

TABLE  5 Presence/absence of Muscari latifolium on the six main 
bedrock types

Bedrock type Absence Presence

Granodiorite 12 3

Sandstone 12 2

Miocene-aged andesitic tuff 13 1

Oligocene-aged andesitic tuff  9 8

Schist  6 5

Gneiss–mica-schist  5 9
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March and November have a negative effect on the distribution of the 
species. Doussi and Thanos (2002) indicated that exposure to daylight 
caused a decrease in germination rate in some Muscari species even if 
it led to the emergence of secondary seed dormancy. November solar 
radiation, March solar radiation, and the wettest month (December) 
precipitation variables directly affect plant germination; therefore, 
they are noteworthy factors affecting the distribution of the plant in 
the area. The direct-to-diffuse insolation ratio in July might also be 
associated with maturation process and spreading of seeds.

Northness is also an influential topographic variable on the distri-
bution of M. latifolium; it mostly occurs in the northwest and northeast 
aspects in the study area. Northness is an important explanatory vari-
able on a fine-scale because it refers to the solar radiation contrast 
between north and south faces and it is a limiting factor on the growth 
period along north faces related to snow cover duration (Lasseur, Joost, 
& Randin, 2006). Minimum curvature, another topographic influential 
variable, has a positive effect when curvature increases. To investigate 
this relationship, we visually interpreted the M. latifolium occurrence 
map draped over the minimum curvature map and most of the pres-
ence was detected at the steep slope convergence areas, mainly on 

spurs and ridges that have relatively higher minimum curvature values. 
The minimum curvature is likely to affect soil properties in such a way 
that it is favorable for the establishment of M. latifolium (Shary, Larisa, 
Sharaya, & Mitusov, 2002).

The occurrence of the species in the study area was closely asso-
ciated with biotic variables characterized by overstory tree species, 
particularly P. nigra and Q. cerris, the coverage value of S. torminalis in 
the shrub layer, and proximity to residential areas. Muscari latifolium 
occurs in, pure P. nigra forests, mixed P. nigra and Quercus sp. forest 
and oak-dominant mixed deciduous forest. This might be explained by 
the influence of forest overstory on the herb layer through modifica-
tions of resource availability (light, water, and soil nutrients) (Barbier, 
Gosselin, & Balandier, 2008). Additionally, López, Larrea-Alcázar, and 
Ortuño (2009) found that several herbaceous species are associated 
exclusively with the shrub undercanopy and he suspected that this 
is caused by facilitation. The proximity of the sampling plots to set-
tlement areas has positive effects only when the plots are between 
2,000 and 6,000 m away. The relationship between the distribution of 
M. latifolium and settlement areas is very complex and hard to explain. 
The negative effect observed when the sampling plots are closer 

F I G U R E   4 Partial dependence plots for the 14 most influential variables
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than 2,000 m to a settlement may be explained as a result of grazing. 
Ruminants grazing was observed in some areas during the field sur-
veys. In the same way, Louhaichi, Salkini, and Petersen (2009) deter-
mined that the number of geophyte species and the percentage of 
geophytes in a grazed area were dramatically lower than in ungrazed 
areas in semiarid Mediterranean Ecosystems. Also Chaideftou, 
Thanos, Bergmeier, Kallimanis, and Dimopoulos (2009) stated that the 
seeds of many species (such as Muscari neglectum) that exist in the 
vegetation of grazed areas could not be found in the seed soil bank 
of the Mediterranean oak forest. Grazing affects species distribu-
tion and composition adversely, and more pressure might contribute 
decline of the species. Although “r.growdist” function of GRASS GIS 
software (GRASS Development Team, 2014) gives the proximity to the 
settlement area, calculating it using a function that takes the terrain 
into account may give better results. Biotic variables are important 
to understand the fine-scale distribution and abundance of species 
(Meineri, Skarpaas, & Vandvik, 2012) and improve both the fit and the 
predictive power of distribution models (Pellissier et al., 2010).

Our model establishes the importance of geologic, climatic, topo-
graphic, solar radiation, and biotic variables to the occurrence of M. lat-
ifolium. Due to a lack of regional information on S. torminalis cover and 
the lack of a raster map, this variable was removed from the spatial 

prediction map model of M. latifolium. Biotic variables’ data related 
to vegetation can be obtained from remote sensing images and can 
increase the accuracy of models (Swatantran et al., 2012; Wilson, 
Sexton, Jobe, & Haddad, 2013). However, it is not easy to obtain the 
cover value of S. torminalis with high accuracy from remote sensing 
images. Nevertheless, this variable provides an important contribution 
to the knowledge of the habitat requirements and ecological charac-
teristics of the species. Moreover, the potential distribution map of 
M. latifolium obtained in this study provides a good basis for the man-
agement, conservation, and climate change strategies of this species 
in the study area, although it did not include S. torminalis cover values.

Ideally, ecologically most relevant variables for a species should 
be used within SDMs. However, when studied species is endemic and 
priori information is unavailable, the number of variables that could 
potentially be used to predict species distribution is almost infinite and 
has collinearity. Hence, variable selection becomes an important issue 
that BRTs can bring a solution to. Other important issue that we paid 
attention in the current study is the true absences that provide poten-
tially relevant information on species ecology (Thuiller et al., 2004).

In conclusion, this study provides significant contribution to the 
knowledge of the habitat requirements and ecological characteris-
tics of M. latifolium. The distribution of this species is explained by a 

F I G U R E   5 Potential spatial distribution map of Muscari latifolium obtained using the most influential variables upper left: green area shows 
the spatially predicted area within the whole study area
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combination of biotic and abiotic factors. The information obtained in 
this study can be used to support management, conservation, and, if 
needed, restoration programs for this species. M. latifolium was listed 
in the low critical (LC) category by Ekim et al. (2000) and endangered 
(EN) category by Özhatay and Özhatay (2005). The red list category of 
this fragmented and limited distributed species needs to be revised, 
and this potential distribution map may help in this effort. The absence 
of some biotic factors, such as dispersal limitations, and overstory 
trees, prevent the model from being more robust. However, biocli-
matic variables and solar radiation variables were detected as influen-
tial factors that affect the distribution of M. latifolium and can provide 
valuable information about ecological characteristics of M. latifolium. 
The BRT model used in the study has reasonable model performance 
and simplifying mechanism that reduce uninformative variables easily.
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