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Abstract: Communication can be considered as a joint action that involves two or more individuals
transmitting different information. In particular, non-verbal communication involves body movements
used to communicate different information, characterized by the use of specific gestures. The present
study aims to investigate the electrophysiological (EEG) correlates underlying the use of affective,
social, and informative gestures during a non-verbal interaction between an encoder and decoder.
From the results of the single brain and inter-brain analyses, an increase of frontal alpha, delta, and
theta brain responsiveness and inter-brain connectivity emerged for affective and social gestures;
while, for informative gestures, an increase of parietal alpha brain responsiveness and alpha, delta,
and theta inter-brain connectivity was observed. Regarding the inter-agents’ role, an increase of
frontal alpha activity was observed in the encoder compared to the decoder for social and affective
gestures. Finally, regarding gesture valence, an increase of theta brain responsiveness and theta and
beta inter-brain connectivity was observed for positive gestures on the left side compared to the
right one. This study, therefore, revealed the function of the gesture type and valence in influencing
individuals’ brain responsiveness and inter-brain connectivity, showing the presence of resonance
mechanisms underlying gesture execution and observation.
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1. Introduction

Communication is defined as a process that involves two or more individuals and allows the
sharing of contents and information that can be transmitted in a verbal or non-verbal way.

Specifically, non-verbal communication has recently become more subject to investigation due to
its considerable influence on the overall communication process and the social environment.

Non-verbal communication, in particular, consists of the transmission of information through
the use of body movements and facial expressions, which can regulate, accentuate, and integrate the
contents’ transmission. Several studies have observed bodily interaction within the communication
process [1–3], recognizing gestures as the link between verbal and non-verbal communication [4,5],
whose function has been investigated mainly within the interactional context [6–10].

In coordination with other units, gestures can create a broad action plan aimed at integrating,
completing, and emphasizing communication [5]. Gestures consist of a group of motor
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actions intentionally directed towards an interlocutor to communicate something and regulate an
individuals’ interactions.

Considering the use of gestures in interactional contexts, neuroscience has been interested in
exploring the cognitive and neural processes underlying the use of different gesture types. As shown
by several studies, different brain areas appear to be involved in the observation and reproduction
of gestures with different purposes [11–13]. Individually, the ventral and dorsal premotor cortex,
the somatosensory areas, the anterior inferior parietal lobule [14], and the frontal cortex [15] appear to
be primarily involved in the processes of gestures’ observation and reproduction.

In particular, social gestures aim to regulate interactions with other individuals, starting, managing,
or ending the relationship [16]. Affective gestures, instead, aim to influence the emotional state of
another individual [17]. Informative gestures, finally, direct the attention of the decoder towards a
specific object in the surrounding environment [18,19]. In addition to the typology of gestures, some
studies have also investigated gesture valence by observing different brain responsiveness according
to positive or negative connoted-gestures [20,21].

The frontal and parietal areas, specifically, are involved in mirroring processes, creating a direct
link between gestures’ observation and execution [22,23], that allows for the understanding of the
motor intention underlying others’ action reproductions and supports some cognitive, emotional, and
empathic processes [24–26]. Moreover, frontal regions appear to be involved in mental model creation,
including representations of the self and others [27–30].

To better investigate the neural processes and the mirroring mechanisms involved in a non-verbal
communication exchange, the electrophysiological responses (EEG) of the encoder, who reproduces
the gesture, and the decoder, who receives the gesture, have been recorded through the use of
the hyperscanning paradigm during the reproduction of affective, social, and informative gestures.
In particular, the use of hyperscanning, which consists of the simultaneous recording of the brain of two
individuals involved in a common performance [31], has allowed for the investigation of non-verbal
exchange as a social and interactional construct that cannot be traced back solely to the recording of
the individual brain, which provides limited and incomplete information [32–34]. On the contrary,
the use of hyperscanning allows the explanation of the complexity of non-verbal communication
processes and permits us to observe the implicit coupling mechanisms occurring among inter-agent
individuals [35,36].

Confirming the advantages of using hyperscanning, different studies have demonstrated its
effectiveness in observing the mechanisms of brain synchronization present in the frontal cortex during
cooperative exchanges [37,38], in the frontopolar cortex during verbal communication exchanges [39],
and in the prefrontal cortex during empathic and prosocial behaviors [40,41].

This evidence shows how hyperscanning can provide valuable information on inter-brain
connectivity, interpersonal coupling mechanisms, and social understanding processes [42].

Furthermore, the use of EEG to record individuals’ brain responses allowed for
moment-by-moment recording of individuals’ interactions characterized by the reproduction of
affective, social, and informative gestures [33,43].

In light of this evidence, we expected to observe a different neural response depending on the
category and the valence of gestures reproduced. Specifically, we expected to observe an increase of
low-frequency bands (delta and theta) and high-frequency bands (alpha and beta) activity in frontal
areas during the reproduction of affective and social gestures. Indeed, according to the meaning of
these gestures’ type, the frontal region is the one most implicated in social, relational, and emotional
processes [44–50]. Instead, considering the meaning of informative gestures, we expected to observe a
decrease of alpha activity in parietal areas due to an increase of attentional processes [51,52].

Considering also a gestures’ valence, as demonstrated by the model of neural signatures of
affective experience [20,21], we expected to observe a more significant left-side brain response to
positive gestures and a greater right-side brain response to negative ones.
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Finally, considering the inter-agents’ role (encoder or decoder), we expected to observe an increase
of alpha brain responsiveness (decrease of alpha power) in the encoder compared to in the decoder in
the frontal areas for social and affective gestures, due to an increase of emotional response experienced
during gesture reproduction [53,54] and to the association with previous experience [55–57].

Finally, considering inter-brain connectivity, we expected to observe an increase of inter-brain
connectivity for the high and low-frequency bands in specific brain areas concerning gesture type and
valence. Indeed, as demonstrated by different studies [29,58], during joint action, such as non-verbal
communication, an increase of coordination and behavioral responses occurs between inter-agents’
individuals, creating implicit coupling mechanisms [59].

Specifically, about gesture type, we expected to observe an increase of alpha, delta, and theta
inter-brain connectivity in the frontal areas for affective and social gestures and in the posterior areas
for informative gestures. In particular, the activation of the frontal area can be related to its implication
in relational, prosocial, and empathic processes [44,45,48,49], while the activation of parietal areas can
be related to the involvement of processes concerning gestures’ observation and execution [60–63].

2. Materials and Methods

2.1. Subjects

Twenty-six participants coupled in dyads (M age = 23.45; SD age = 2.11) of the same gender were
recruited for the experiment’s development. For the composition of the pairs, participants who were
not familiar with each other were chosen. The roles of encoder and decoder were randomly assigned.

The following inclusion criteria were selected for the recruitment of participants: normal or
corrected-to-normal visual acuity and right manual dominance. On the contrary, subjects under the age
of 18 and above 40 were excluded from the research, as were those who presented clinical neurological
disorders and who had experienced stressful life events in the previous 6 months. The research
conduction was approved by the local ethics committee of the Department of Psychology of the
Catholic University of the Sacred Heart (a.2017) and has followed the principles and guidelines of the
Helsinki Declaration. The subjects were not paid for the research but gave their voluntary written
consent to participate after signing the informed consent.

2.2. Procedure

The research required participants to sit facing each other with a computer located 60 cm away
from both individuals to view the videos presented. Specifically, participants were asked to observe
60 videos reproducing different categories of gestures: social, affective, and informative of positive
and negative valence that were administered through the use of the E-Prime 2.0 software (software
E-prime2, Tools Psychology Software Inc., Sharpsburg, Pennsylvania, MD, USA).

In particular, videos reproduced a non-verbal exchange between two actors, one of which made a
specific gesture towards another who received the gesture. The task required participants to reproduce
the gesture seen in the video.

Specifically, one participant of the couple, randomly defined as the encoder, was asked to reproduce
the gesture observed in the video to the partner, identified as the decoder, who was only asked to
receive and comprehend the gesture. The task was administered in three different blocks so as not to
tire the participants.

Specifically, the following structure was used: the presentation of a 2 s blank screen, the presentation
of a slide in which a context sentence was inserted to allow participants to better understand the
meaning of the non-verbal communication exchange, the video presentation with the actors involved in
the gestural communication, the inter-stimulus presentation lasting 4 s, and a “go” signal presentation
to inform participants that they should have replayed the gesture. As mentioned above, 60 different
videos were given: 10 reproducing positive social gestures, 10 reproducing negative social gestures,



Brain Sci. 2020, 10, 29 4 of 14

10 reproducing positive affective gestures, 10 reproducing negative affective gestures, 10 reproducing
positive informative gestures, and 10 reproducing negative informative gestures (Figure 1).

Specifically, videos containing positive social gestures reproduce gestures that aim to start or
maintain a relationship with the interlocutor; on the contrary, videos reproducing negative social
gestures ask to reproduce gestures that have the purpose of interrupting the relationship with the
interlocutor. Instead, the videos reproducing positive affective gestures reproduce gestures that have
the purpose of communicating a state of psychological and physical well-being to the interlocutor
contrary to those reproducing negative affective gestures that express a state of malaise.

Finally, for videos reproducing informative gestures, the valence is defined by the contest slide
shown before the video.

Furthermore, 30 videos showed an interaction between two actors, both of male gender, while
the other 30 videos reproduced an interaction between two female actresses. The stimuli used for the
task were previously validated by 14 judges (M age = 28.34, SD age = 0.04) using a seven-point Likert
scale according to the following categories: commonality, frequency of use, complexity, social meaning,
familiarity, and emotional impact. The statistical analysis was used to define the categories of stimuli
and verify the previous characteristics.
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Figure 1. The figure shows the experimental procedure for the task administration.

2.3. EEG Recording and Analysis

Two 16-channel EEG systems were used for the EEG signal recording (V-AMP: Brain Products,
München; LiveAmp: Brain Products, GmbH, Gliching, Germany). Specifically, the electrodes were
placed on the individual’s scalp with the use of two ElectroCaps at the following positions: F3, F1,
Fz, F2, F4, T7, T8, C3, Cz, C4, P3, P1, P2, P4, O1, and O2 (Figure 2). Moreover, for the V-AMP
system, an electrooculography (EOG) electrode has been positioned on the external canthi. A 5 kΩ
electrode impedance was monitored before data collection for each individual. We used 1000 Hz for
data sampling, with a 0.01–200 Hz input filter and a 50 Hz notch filter. Acquired data were filtered
offline using a 0.5–40 Hz bandpass filter. Moreover, to reduce problems associated with signal-noise,
a common offline average reference was calculated [64]. Concerning signal evaluation, portions of
data containing artifacts were deleted, and an algorithm that uses a regression analysis in combination
with the artifact average was utilized for ocular and motor artifacts correction. The EEG data were
finally extracted in the frequency band: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta
(14–20 Hz) [65]. The mean EEG power for each channel and each frequency band was calculated by
averaging data related only to the gesture reproduction phase using a 4-s segment. Finally, to obtain
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inter-brain connectivity, the partial correlation coefficient Πij was computed by normalizing the inverse
of the covariance matrix: Γ = Σ − 1:

Πi j = −Γi j
√

ΓiiΓ j j
partial correlation matrix

Γ = (Γ i j ) = Σ − 1 inverse o f the covariance matrix.
(1)
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C3, Cz, C4, T8, P3, P1, P2, P4, O1, and O2.

These measures represent the covariance of two signals, which allows the calculation of
the partial correlation coefficients between two series of data in response to specific conditions
(the experimental conditions).

3. Results

3.1. Data Analysis

Two sets of analyses were performed concerning EEG dependent measures. The first ANOVA
applied on a single subject was considered for testing the effect of independent measures on each
frequency band for each participant, independently from the dyad (single-brain analysis). The second
set of analyses consisted of the inter-brain connectivity calculation for each band for each dyad. Since
this was calculated for each pair of encoder/decoder it was finalized to compute the synchronization
values within each couple for each measure.

Then, we applied a second ANOVA to these inter-brain measures, to assess differences in synchrony
strength across the experimental conditions (inter-brain connectivity analysis).

For all the ANOVA tests, the degrees of freedom were corrected using Greenhouse–Geisser epsilon,
where appropriate. Also, post-hoc comparisons (contrast analyses) were applied to the data.

The Bonferroni test was applied for multiple comparisons. In addition, the normality of the data
distribution was preliminary tested (kurtosis and asymmetry tests). The normality assumption of the
distribution was supported by these preliminary tests.

3.2. Single-Brain Analyses

For single-brain analyses, independent measures were: Role (encoder/decoder, 2), Valence
(positive/negative, 2), Lateralization (left/right, 2), Gesture (social/ affective/informative, 3), and ROI
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(regions of interest, 4). Four ROI were calculated for left/right homologous sides for frontal (F3,F1-F2,F4),
central (C3,C4), temporo-parietal (T7,P1-T8,P2) and occipital channels (O1,O2).

A mixed model ANOVA was applied to the EEG bands.

3.2.1. Alpha Band

Regarding alpha, as shown by ANOVA, a Role X Gesture X ROI significant interaction effect
(F(6,152) = 9.13; p < 0.001; η2 = 0.36) was found. Specifically, post-hoc comparisons revealed an increase
of brain activity (decrease of alpha power) in frontal area more than other areas (for all post-hoc
comparisons p ≤ 0.001) for affective and social gestures compared to informative gestures and in
posterior (temporo-parietal) area (for all post-hoc comparisons p ≤ 0.001) for informative gestures
compared to affective and social gestures. Finally, concerning the inter-agents’ role, an increase of
alpha activity (decrease of alpha power) in frontal area compared to others was observed for affective
(F(1,24)= 9.78; p < 0.001; η2 = 0.37) and social gestures (F(1,24) = 10.09; p < 0.001; η2 = 0.39) in the
encoder compared to the decoder (Figure 3a).
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Figure 3. (a) Histogram of alpha brain activity for affective, social, and informative gestures in the
frontal and posterior (temporo-parietal) areas in the encoder and decoder. The histogram shows an
increase of brain activity (decrease of alpha power) in the frontal area for social and affective gestures in
the encoder compared to the decoder. Bars represent ∓1SE. Stars mark statistically significant (p < 0.05)
pairwise comparisons. (b) Histogram of delta brain activity for affective, social, and informative
gestures in the frontal and posterior (temporo-parietal) areas. The histogram shows an increase of delta
activity in the frontal area for affective and social gestures compared to informative gestures. Bars
represent ∓1SE. Stars mark statistically significant (p < 0.05) pairwise comparisons. (c) Histogram of
theta brain activity for positive and negative gestures in frontal left and right side. The histogram
shows an increase of theta activity for positive gestures in the left side. Bars represent ∓1SE. Stars mark
statistically significant (p < 0.05) pairwise comparisons.

3.2.2. Delta Band

Regarding delta, as shown by ANOVA, a significant Gesture X ROI interaction effect was found
(F(6,152) = 10.23; p < 0.001; η2 = 0.36). Specifically, post-hoc comparisons revealed an increase of
delta activity in the frontal area compared to other areas for affective and social gestures compared to
informative gestures (for all post-hoc comparisons p ≤ 0.001) (Figure 3b).
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3.2.3. Theta Band

Regarding theta, as shown by ANOVA, a Valence X Lateralization X Gesture X ROI interaction
effect was observed (F(6,152) = 10.13; p < 0.001; η2 = 0.38). Specifically, post-hoc comparisons revealed
an increase of theta activity in the frontal area compared to other areas for affective and social gestures
compared to informative gestures (for all post-hoc comparisons p ≤ 0.001). Moreover, an increase of
theta activity was observed for positive gestures in the left frontal side compared to the right side
(F(1,24) = 9.54; p < 0.001; η2 = 0.36) (Figure 3c).

3.2.4. Beta Band

For the beta band, ANOVA reveals no significant effect.

3.3. Inter-Brain Connectivity Analyses

Starting from the raw database for each band, a second step was performed to calculate
inter-subjects correlational indices finalized to compute the synchronization within each dyad. Such
indices (correlation coefficients) were successively entered as dependent variables into mixed-model
ANOVA tests, with Role, Valence, Lateralization, Gesture, and ROI as repeated factors.

3.3.1. Delta Band

ANOVA revealed a significant Gesture X ROI interaction effect (F(6,152) = 8.45; p < 0.001; η2 = 0.33).
Specifically, post-hoc comparisons revealed an increase of inter-brain connectivity in the frontal area
more than other areas for affective and social gestures compared to informative ones and in posterior
(temporo-parietal) area more than other areas for informative gestures (for all post-hoc comparisons
p ≤ 0.001) compared to social and affective ones (Figure 4a,b).
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Figure 4. (a) Histogram of delta inter-brain connectivity for affective, social, and informative gestures in
the frontal and posterior (temporo-parietal) areas. The histogram shows an increase of delta inter-brain
connectivity in the frontal area for affective and social gestures and in the posterior (temporo-parietal)
area for informative gestures. Bars represent ∓1SE. Stars mark statistically significant (p < 0.05) pairwise
comparisons. (b) Delta inter-brain connectivity representation, from left to right, for affective, social,
and informative gestures in the encoder and decoder. The red area represents the increase of delta
inter-brain connectivity. (c) Histogram of alpha inter-brain connectivity for affective, social, and
informative gestures in the frontal and posterior (temporo-parietal) areas. The histogram shows an
increase of alpha inter-brain connectivity in the frontal area for affective and social gestures and in the
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temporo-parietal area for informative gestures. Bars represent ∓1SE. Stars mark statistically significant
(p < 0.05) pairwise comparisons. (d) Alpha inter-brain connectivity representation, from left to right,
for affective, social, and informative gestures in the encoder and decoder. The red area represents the
increase of alpha inter-brain connectivity.

3.3.2. Alpha Band

As shown by ANOVA, a Gesture X ROI interaction effect was found (F(6,152) = 10.77; p < 0.001;
η2 = 0.37). Specifically, post-hoc comparisons revealed an increase of inter-brain connectivity in the
frontal area more than other areas for affective and social gestures compared to informative ones and
in posterior area (temporo-parietal) more than other areas for informative gestures (for all post-hoc
comparisons p ≤ 0.001) compared to affective and social ones (Figure 4c,d).

3.3.3. Theta Band

As shown by ANOVA, a significant Valence X Lateralization X Gesture X ROI interaction effect was
found (F(6,152) = 10.09; p < 0.001; η2 = 0.37). Specifically, post-hoc comparisons revealed an increase of
inter-brain connectivity in the frontal area compared to others for affective and social gestures and
in the posterior (temporo-parietal) area more than other areas for informative ones (for all post-hoc
comparisons p ≤ 0.001). Furthermore, an increase of inter-brain connectivity for positive gestures has
emerged in the left side compared to the right side (F(1,24) = 9.02; p < 0.001; η2 = 0.37) (Figure 5a,b).
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Figure 5. (a) Histogram of theta brain activity for positive and negative gestures in the left and right
side. The figure shows an increase of theta power for positive gestures in the left side compared to
the right one. Bars represent ∓1SE. Stars mark statistically significant (p < 0.05) pairwise comparisons.
(b) Theta inter-brain connectivity representation, from left to right, for positive gestures in the encoder
and decoder. The red area represents an increase of theta inter-brain connectivity. (c) Histogram of beta
brain activity for positive and negative gestures for the left and right side. The figure shows an increase
of beta power for positive gestures for the left side compared to the right one. Bars represent ∓1SE.
Stars mark statistically significant (p < 0.05) pairwise comparisons. (d) Beta inter-brain connectivity
representation, from left to right, for positive gestures in the encoder and decoder. The red area
represents the increase of beta inter-brain connectivity.



Brain Sci. 2020, 10, 29 9 of 14

3.3.4. Beta Band

Regarding the beta band, as shown by ANOVA, a significant Valence X Lateralization interaction
effect was found (F(6,152) = 9.55; p < 0.001; η2 = 0.35). Specifically ANOVA reveals an increase of
inter-brain connectivity for positive gestures in the left side compare to the right one (F(1,24) = 9.95;
p < 0.001; η2 = 0.38) (Figure 5c,d).

4. Discussion

The present study set out to investigate the neural mechanisms underlying the reproduction
of different gesture types (affective, social, and informative) with positive and negative valence.
In particular, individuals’ brain responsiveness and neural inter-brain synchronization between the
encoder, who reproduced the gesture, and the decoder, who received the gesture, were observed.

Compared to our initial hypotheses, we expected to observe different individuals’ brain
responsiveness according to gesture type and valence. Furthermore, considering the inter-agents’ role,
we expected to find a decrease of alpha power (increase of alpha brain responsiveness) in the frontal
areas for affective and social gesture in the encoder compared to the decoder.

Following the first hypothesis, a decrease of alpha power (i.e., an increase of brain responsiveness)
was observed in frontal regions for social and affective gestures compared to informative ones.
The increase of alpha brain responsiveness in the frontal areas may be due to the implementation of
somatosensory and visuospatial processes used during the reproduction and reception of affective
and social gestures [51,66,67]. Furthermore, a decrease of alpha power (an increase of alpha brain
responsiveness) was observed in the posterior areas (temporo-parietal) for informative gestures
concerning the implementation of more specifically visuospatial and attentional mechanisms [52,68]
required by this type of gestures.

Moreover, considering the inter-agents’ role, according to our starting hypothesis, an increase
of alpha frontal brain responsiveness for social and affective gestures was observed in the encoder,
compared to the decoder.

The increase of alpha brain responsiveness in the encoder may be because the alpha band is
sensitive to previous experience with actions, which lead the encoder to associate gestures reproduced
with his previous experiences and contexts of use [55–57].

Furthermore, this result could also be associated with an increase in emotional response experienced
by the encoder during the gesture’s reproduction.

As demonstrated by different studies, an increase of alpha brain responsiveness occurs during the
testing of behavioral arousal states, active engagement, and emotional excitement [53,54].

In addition to the alpha band, for affective and social gestures, an increase of frontal delta and
theta activity has emerged. Interpreting this result in the light of the implicit and explicit meaning of
affective and social gestures, aiming to influence the emotional state of the interlocutor and manage
the social relationship, the greater response of these frequency bands in the frontal area can be related
to the involvement of social, affective, relational, and empathic processes [20,69]. This interpretation is
also supported by several studies that have observed an increase of delta and theta frontal activity in
response to socio-emotional situations that involved emotional processes [44,46,48–50].

In addition, the present study also aimed to observe the neural effects of gesture valence, observing
an increase of theta frontal left-side activity compared to the right one for positive gestures.

This result appears in agreement with our initial hypothesis, confirming the theory of neural
signatures of affective experience [20,21,70], which postulates an increase of left-brain responsiveness
according to positive stimuli, inducing an “approaching behavior”, compared to negative ones, which
provides an increase of right-brain responsiveness inducing an “avoidance behavior” [71].

In addition to single-brain analysis, the present study also considered inter-agents’ inter-brain
connectivity in order to investigate individuals’ resonance mechanisms and implicit neural coupling.

In this regard, compared to our starting hypotheses, we expected to observe a different individuals’
inter-brain connectivity according to gesture type and valence. Moreover, regarding inter-agents’



Brain Sci. 2020, 10, 29 10 of 14

roles, we expected to observe an increase of inter-brain connectivity in both individuals (encoders and
decoders) in specific brain areas concerning gesture type and valence.

In accordance with our starting hypothesis, from inter-brain connectivity, an increase of alpha,
delta, and theta inter-brain connectivity has emerged in the frontal areas for affective and social gestures
and in the posterior (temporo-parietal) areas for informative ones.

The increase of inter-brain connectivity in these brain areas underlines the presence of mirroring
mechanisms that are involved in gesture perception and execution [24].

Moreover, this result confirms the involvement of the fronto-parietal circuit in mirroring processes
that provide a direct coupling between action observation and execution [72–74], leading to the
activation of the same brain areas in both individuals involved in the exchange [57,75].

As demonstrated by previous studies, indeed, the development of common activities leads the
individuals involved in the exchange to automatically align their behavior on different levels [76], and
this led to the implementation of reciprocal modeling and interpersonal coupling mechanisms [37,77,78].
Specifically, the increase of frontal and posterior alpha inter-brain connectivity both in the encoder and
decoder may be due to simultaneously generalized and joined attentional mechanisms present during
the reproduction and comprehension of the gesture [51,66].

On the contrary, the increase of frontal delta and theta inter-brain connectivity in relation to affective
and social gestures may indicate an increase of individuals’ emotional attunement provided by the
involvement of emotional and empathic processing [44–46,50], while the increase of temporo-parietal
delta and theta inter-brain connectivity for informative gestures can be due to perceptual processes
involved in gesture observation and execution [22,23].

Finally, an increase of inter-brain connectivity was also observed for theta and beta bands
according to gesture valence (positive or negative). In particular, an increase of theta and beta
inter-brain connectivity was observed for positive gestures on the left-brain side compared to the
right one.

This result confirms the presence of resonance and mirroring mechanisms in the encoder and
decoder in correspondence with positive gestures that have the purpose of starting and maintaining
a relationship with the interlocutor. Furthermore, the increase of theta inter-brain connectivity in
relation to positive gestures may be due to the involvement of emotional mechanisms [79–81] required
by positive gestures. Instead, the increase of beta inter-brain connectivity may be due, as shown by
previous studies, to mechanisms of awareness, intentionality, and action planning [82] experienced
during positive gestures reproduction and reception.

To summarize, the results of inter-brain connectivity analyses reveal the presence of implicit
mirroring and coupling mechanisms in both the encoder and decoder according to gesture type and
valence. Finally, this evidence underlines the validity of hyperscanning as a paradigm that is useful
for the investigation of the implicit neural mechanisms that take place in specific brain areas during
common action performance, thus allowing one to observe the synergy and attunement mechanisms
between the individuals involved in the exchange.

5. Conclusions

In conclusion, the results of the study have underlined how the meaning of the use of different
types of gestures, such as social, affective, and informative ones, provide different individual neural
activations, emphasizing an increase of frontal alpha, delta, and theta brain responsiveness and
inter-brain connectivity for affective and social gestures. Moreover, an increase of parietal alpha brain
responsiveness and alpha, delta, and theta inter-brain connectivity was observed for informative
gestures. Furthermore, in relation to the role of inter-agents’ individuals, an increase of frontal alpha
brain responsiveness has been observed in the encoder compared to the decoder for social and affective
gestures. Instead, regarding inter-brain connectivity, an increase of alpha, delta, and theta inter-brain
connectivity was observed in both the encoder and decoder in specific areas according to gesture type
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and valence. Taken together, this result underlines the presence of resonance and implicit coupling
mechanisms that occur between individuals involved in the non-verbal exchange.

This study has, therefore, provided an overview of the functionality of specific types of gestures
within a non-verbal interaction between the encoder and decoder. Furthermore, the present
study has underlined the potentiality and validity of the hyperscanning technique in providing
valuable information on inter-brain connectivity, interpersonal coupling mechanisms, and social
understanding processes.

Despite the potentiality and originality of this study, it is not exempt from limitations. For example,
a larger sample size could have been implemented to provide further evidence.

Furthermore, the use of other detection or neuroimaging methodologies would have allowed the
integration of new measures, which would have then provided further supporting data. In addition,
due to the relevance of autonomic system measures, future research should also include these data to
better explore the relationship between gesture representation and autonomic markers, such as skin
conductivity or heart rate variability.
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