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Abstract
Background: The LIM-homeodomain transcription factors LHX7 and LHX6 have been implicated
in palatogenesis in mice and thus may also contribute to the incidence of isolated palatal clefts and/
or clefts of the lip and primary palate (CL/P) in humans. Causative mutations in the transcription
factor IRF6 have also been identified in two allelic CL/P syndromes and common polymorphisms in
the same gene are significantly associated with non-syndromal CL/P in different populations.

Results: Here we report the isolation of chick orthologues of LHX7, LHX6 and IRF6 and the first
characterisation of their profiles of expression during morphogenesis of the midface with emphasis
on the period around formation of the primary palate. LHX7 and LHX6 expression was restricted
to the ectomesenchyme immediately underlying the ectoderm of the maxillary and mandibular
primordia as well as to the lateral globular projections of the medial nasal process, again underlying
the pre-fusion primary palatal epithelia. In contrast, IRF6 expression was restricted to surface
epithelia, with elevated levels around the frontonasal process, the maxillary primordia, and the nasal
pits. Elsewhere, high expression was also evident in the egg tooth primordium and in the apical
ectodermal ridge of the developing limbs.

Conclusion: The restricted expression of both LHX genes and IRF6 in the facial primordia suggests
roles for these gene products in promoting directed outgrowth and fusion of the primary palate.
The manipulability, minimal cost and susceptibility of chicks to CL/P will enable more detailed
investigations into how perturbations of IRF6, LHX6 and LHX7 contribute to common orofacial
clefts.

Background
Many genes have been implicated in syndromal and/or
non-syndromal cleft lip with or without palate (CL/P).
The majority of these candidate genes show expression in
the facial ectoderm, including MSX1, BMP4, PVRL1, MID1
and p63, although some (eg. MSX1 and BMP4) also have
key roles in the mesenchyme [1]. In addition to coordinat-
ing mesenchymal outgrowth, the facial ectoderm also

plays a number of other pivotal roles in facial morpho-
genesis, including facilitating the initial contact of the
converging processes and the subsequent elimination of
the epithelial seam in a manner that is likely analogous to
that which occurs during formation of the more studied
secondary palate. Recently, mutations in the IRF6 (Inter-
feron Regulatory Factor 6) gene were shown to cause the
allelic disorders, Van der Woude and Popliteal pterygium
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syndromes, both of which have CL/P as a major clinical
feature [2,3]. Significantly, common polymorphisms in
IRF6 have also been found to account for up to 12% of the
contribution to the high incidence of non-syndromal CL/
P, highlighting it as one of the most significant CL/P loci
identified to date [4]. Although the exact physiological
function of this gene is not known, preliminary findings
in mice found that Irf6 is expressed in the medial edge epi-
thelia of the fusing secondary palatal shelves, tooth buds,
hair follicles and skin [5]. Surprisingly, however, the
expression of IRF6 has not been reported during develop-
ment and closure of the primary palate, an event which is
distinct both in terms of embryological timing and under-
lying genetics from that of the secondary palate.

Several secreted factors emanating from the facial ecto-
derm, including fibroblast growth factor 8 (FGF8) and
bone morphogenic protein 4 (BMP4) induce mesenchy-
mal expression of genes such as Msx1 and Msx2, that pro-
mote mesenchymal cell proliferation and prominence
outgrowth [6,7]. Evidence suggests that the mesenchymal
LIM-Homeodomain (HD) encoding gene, Lhx7 (also
referred to as Lhx8 [8] and L3 [9]), is similarly under the
control of ectodermal-derived signals, namely Fgf8 [10-
13]. In the mouse, Lhx7 and its close homologue, Lhx6,
were reported to be expressed only in the maxillary and
rostral mandibular processes, palatal shelves and basal
forebrain [9,10,14]. In Lhx7-knockout mice, an isolated
secondary palatal cleft was the only reported feature: the
secondary palatal shelves formed and elevated normally
but failed to properly contact and fuse [15]. Of note how-
ever, is that most inbred mouse strains rarely display lat-
eral facial clefts analogous to CL/P in humans. This is
probably due in part to the altered growth rates that give
rise to the elongated facial morphology although differ-
ences in sensitivity to gene dosage or redundancies
between related genes may also play a role [1]. Consistent
with this, mutations in MSX1 in humans are associated
with clefts of the primary palate whereas knockout of both
Msx1 and Msx2 are required to produce a primary palate
cleft in mice [16]. In contrast, the chick in some ways pro-
vides a more suitable model system for studies on primary
palatal clefting as this species, like humans, shows greater
susceptibility to this anomaly. Here, we have isolated
chick cDNAs orthologous to human IRF6, LHX7 and
LHX6 and investigated their profile of expression during
morphogenesis of the midface with an emphasis on the
period around formation of the primary palate.

Results
Sequence conservation of LHX7, LHX6 and IRF6 between 
chick, mouse and human
cLHX7: chEST766i11 was shown to encode a protein with
89% and 95% identity to mouse and human Lhx7/LHX7,
respectively (Fig 1a). cLHX6: chEST365j8 represented a

Protein alignments of mouse, chick and human LHX7 (a), LHX6 (b) and IRF6 (c)Figure 1
Protein alignments of mouse, chick and human 
LHX7 (a), LHX6 (b) and IRF6 (c). cLHX7 displays 89% 
and 95% identity with mouse Lhx7 and human LHX7, respec-
tively. cLHX6 displays 94% identity and 99% similarity to 
both human LHX6 and mouse Lhx6. cIRF6 displays 83% iden-
tity, 99% similarity with human IRF6 and mouse Irf6. Legend: 
The LIM domains of LHX6/7 and DNA-binding domain of 
IRF6 are boxed. The homeodomain of LHX6/7 is underlined.
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Expression pattern of cLHX7 and cLHX6 in the developing chick embryoFigure 2
Expression pattern of cLHX7 and cLHX6 in the developing chick embryo. cLHX7 (top panel) and cLHX6 (bottom 
panel) were restricted to the ventral extremities of the maxillary primordia and the rostral tip of the mandibular primordia 
before and after fusion of the maxillary primordia and medial nasal process during formation of the primary palate (a – i, k). 
From around HH27, cLHX6 expression was dispersed throughout the mandibular primordia (k). cLHX7 and cLHX6 expression 
was detected in the pre-fusion zone of the medial nasal process, prior to fusion with the maxillary primordia (e, f, g, h). The 
expression in the medial nasal process remained in the mesenchymal bridge of the beak after fusion (i, k). cLHX7 and cLHX6 
expression was detected in the mesenchyme throughout the palatal shelves at HH30 (m, n). cLHX7 specifically displayed 
increased expression on the anterior tips of the developing shelves (m). Both cLHX7 and cLHX6 expression was detected in 
the otic vesicle from HH25 to HH30 (j, l). Abbreviations: max: maxillary primordia; man: mandibular primordia; mnp: medial 
nasal process; ov: otic vesicle; ps: palatal shelves.
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partial sequence (708 bp) encoding two LIM domains and
the 5' end of a HD which displayed 94% identity (99%
similarity) to both human and mouse LHX6/Lhx6 (Fig
1b). cIRF6: chEST58f7 represented a partial sequence of
1665 bp that encoded the C-terminal two thirds (304
amino acids) with 83% identity (99% similarity) to
human and mouse IRF6/Irf6 (Fig 1c).

Expression of cLHX6 and cLHX7 in the facial primordia
cLHX6 and cLHX7 expression was initially detected by
whole-mount in situ hybridization at Hamburger-Hamil-
ton stage (HH)15 and remained detectable up to HH30
(Fig 2). Strong expression was found ventrally along the
length of the maxillary primordia and the rostral portion
of the mandibular primordia. Maxillary expression
remained high post-fusion with the medial nasal process
(Fig 2a–i, k). In the mandibular primordia, cLHX6 expres-
sion remained strong whereas cLHX7 appeared to gradu-
ally diminish from stage HH23. Of note, expression of
both cLHX7 and cLHX6 was also detected in mesenchyme

immediately underlying the pre-fusion epithelia of the
globular projections of the medial nasal process from
HH22 (arrowheads in Fig 2e, f, g, h). cLHX7 expression

Vibratome sections of whole-mount in situ hybridization embryosFigure 3
Vibratome sections of whole-mount in situ hybridiza-
tion embryos. Sectioning of stage HH23 whole mount in 
situ hybridization embryos indicates that both LHX7 (left col-
umn) and LHX6 (right column) show expression in the neural 
crest-derived mesenchyme of the first branchial arch (maxil-
lary primordia shown) (c, d) and the lateral globular masses 
at the edges of the medial nasal process (e, f) restricted to 
the region directly subjacent to the ectoderm. Abbreviations: 
max mes: maxillary primordia mesenchyme; ep: epithelium; 
mnp: medial nasal process

Expression of IRF6 in the developing chick embryoFigure 4
Expression of IRF6 in the developing chick embryo. 
Expression is restricted to facial ectoderm. Whole-mount in 
situ hybridisation (a, c, e) and vibratome sections of whole-
mount embryos (b, d) revealed notable IRF6 expression in 
the epithelia surrounding the frontonasal process, the maxil-
lary primordia, and the nasal pits. IRF6 expression was also 
detected in the ectoderm of the leading edges of the palatal 
shelves and in the ridges of the primitive oral cavity at HH30 
(h). High IRF6 expression was also found in the apical ecto-
dermal ridge of the limb buds (g) and in the egg tooth pri-
mordium (f).
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was far more pronounced than cLHX6 in this region and
remained detectable in the mesenchymal bridge of the
beak up to HH30, albeit at a much lower level (not
shown). Vibratome sections of these embryos revealed
that expression of cLHX7 and cLHX6 was restricted to
ectomesenchyme directly subjacent to the facial ectoderm
(Fig 3). This expression profile resembles in part that of
the Wnt inhibitor, Dkk1 [17] and is consistent with the
evidence indicating Lhx7 and Lhx6 are under the regula-
tion of signals emanating from the ectoderm [12,18,19].
Expression of both genes was also detected later in the pal-
atal shelf mesenchyme at HH30 (Fig 2m, n), with cLHX7
uniquely displaying strong expression on the anterior tips
of the developing shelves. Expression of both cLHX7 and
cLHX6 was also detected in the basal forebrain (data not
shown) and the otic vesicle from HH25 to HH30 (Fig 2j,
l).

Expression of cIRF6 in HH20-29 embryos
cIRF6 expression was detected by whole-mount in- situ
hybridization throughout the ectoderm of the craniofacial
structures of HH20-29 embryos (Fig 4). Vibratome sec-
tions of whole-mount embryos revealed IRF6 levels gen-
erally very low but were elevated in the epithelia covering
the frontonasal process, the maxillary primordia, and the
nasal pits (Fig 4b, d). Expression in the leading edges of
the medial nasal process, which ultimately fuse with the
maxillary primordia during formation of the primary pal-
ate, disappeared with the elimination of epithelia and for-
mation of the mesenchymal bridge. cIRF6 expression was
also detected in the ectoderm of the leading edges of the
developing palatal shelves as well as in the ridges of the
primitive oral cavity at HH29 (Fig 4h). High cIRF6 expres-
sion was also detected in the apical ectodermal ridge of
the limb buds (Fig 4g). Notably, expression was also very
high in the egg tooth primordium from HH27 (Fig 4f).

Discussion
Here we have isolated the chick orthologues of LHX7,
LHX6 and IRF6 and shown a high degree of sequence con-
servation with their mouse and human counterparts, sug-
gesting evolutionary conserved functions for these
proteins. It should be noted that despite repeated
attempts at amplification of mRNA/cDNA across the
equivalents of exons 1 to 3 and analysis of available chick
genomic sequence, cLHX7 did not contain the equivalent
of human and mouse exon 2. As this exon does not
encode a known functional domain and its absence main-
tains the reading frame, it is likely that cLHX7 also
encodes a functional LIM-HD transcription factor. Inter-
estingly, compared to the mouse, chick and human LHX7
had an additional 4 bp in the last coding exon producing
a C-terminus with an additional nine amino acids. The
validity of the mouse Lhx7 sequence over this region was
confirmed by sequencing murine (Swiss) genomic DNA.

That the additional 4 bp is also evident in rat LHX7 indi-
cates this 4 bp deletion likely represents a recent evolu-
tionary event that may be restricted to the murine lineage.
The biological significance of this must await determina-
tion.

In order to determine whether the chick would provide an
appropriate model with which to investigate the roles of
LHX7, LHX6 and IRF6 in craniofacial development and
CL/P, their respective expression patterns around the time
of primary palate morphogenesis were determined. Simi-
larly to the mouse, cLHX7 and cLHX6 were expressed in
ectomesenchyme of the maxillary and mandibular pri-
mordia [9,10] although in contrast to the mouse, the
mandibular expression of cLHX7 was not prominent. Dif-
ferential expression of cLHX7 and cLHX6 in the mandibu-
lar primordia was also evident at the anterior tips of the
palatal shelves suggesting thee two genes are under dis-
tinct regulatory control which is consistent with results
from Cre-mediated Fgf8-knockout mice [11] in which
Lhx7 but not Lhx6 expression was lost.

Of particular interest, our expression studies in the chick
have identified unique LHX7 and LHX6 expression
domains. We detected strong cLHX7 and cLHX6 expres-
sion in the mesenchyme immediately underlying the pre-
fusion epithelia of the medial nasal process, from around
HH22, which remained in the mesenchymal bridge post
fusion. This expression has not previously been reported
for the mouse and importantly suggests a role for LHX7
and LHX6 in outgrowth/survival of the medial nasal proc-
ess during formation of the primary palate. cLHX7 and
cLHX6 expression was also detected in the otic vesicle
(from HH25 to HH30) a site of expression also not been
reported in mice or any other species and therefore may
be unique to the chick.

The strong expression in maxillary and medial nasal mes-
enchyme subjacent to the pre- and post fusion ectoderm
indicate that LHX7 and LHX6 would be good candidate
genes for craniofacial anomalies, in particular CL/P
despite the isolated secondary palate cleft in Lhx7 knock-
out mice. In this regard, hLHX7 localizes to chromosome
1p31-4 (and not 4q as previously suggested [20]) and is
found less than 1.4 Mb from marker D1S1665 which
showed the most significant linkage in one cohort of non-
syndromal CL/P cases [20]. In fact, this same region pro-
duced the only positive lod score for an individual Finnish
family presenting with Van der Woude syndrome-like fea-
tures [21]. These data and the results reported herein put
forward a case for screening patients with non-syndromal
CL/P or IRF6 mutation negative Van der Woude syn-
drome for mutations in LHX7.
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IRF6 is mutated in Van der Woude and Popliteal ptery-
gium syndromes [2,3] and has recently been identified as
one of the most significant non-syndromal CL/P loci to
date [4]. This report is the first to describe IRF6 expression
in the facial primordia prior to and during morphogenesis
of the primary palate and supports the notion of a primary
ectodermal defect in patients harboring mutations in
IRF6. In concordance with the later embryonic stages
assessed in the mouse [5], cIRF6 was similarly detected in
the leading edge ectoderm of the palatal shelves and the
ridges of the primitive oral cavity in the chick. Interest-
ingly, we also detected some unique expression domains
of IRF6, which may be specific to the chick. Strong IRF6
expression was detected in the egg tooth primordium
indicating it as an excellent marker for this structure. Like
other genes that are expressed in the ectoderm of the
developing face such as SHH and BMP4 [22,23], high
IRF6 expression was also detected in the apical ectodermal
ridge of the limb buds, which is consistent with the pres-
ence of limb hypoplasia or agenesis of digits, syndactyly,
as well as valgus or varus deformities of the feet seen in
Popliteal pterygium syndrome [24].

Conclusion
The data presented herein shows both highly conserved
and unique temporal and spatial expression of LHX7,
LHX6 and IRF6 in the chick, particularly in the facial pri-
mordia around the time of their fusion to form the pri-
mary palate. The manipulability, minimal cost and
susceptibility of chicks to CL/P will enable more detailed
investigations into the functions of these genes in midfa-
cial development and their role in contributing to com-
mon orofacial clefts.

Methods
Isolation of cLHX7, cLHX6 and cIRF6
Full-length murine Lhx7, Lhx6 and Irf6 cDNAs (Genbank:
AJ000338, AB031040, NM_016851, respectively) were
used to BLAST the BBSRC chick expressed sequenced tag
(EST) database [25]. Clones that displayed a high degree
of homology were purchased from MRC GeneService
(Cambridge, UK) then purified and completely
sequenced using vector primers. Automated DNA
sequencing was performed by cycle sequencing with
Applied Biosystems Dye Terminator chemistry v3. cDNA
sequences and predicted amino acid analyses and align-
ments were performed locally using Vector NTI and via
the internet using BLAST at NCBI [26]. Primers used to
amplify and sequence mLhx7 exons 6–9 were as follows:
mLx7ex6-9f: 5'-TGA-AGA-GAG-AAG-TGG-AGA-ACG-3';
mLx7ex6-9f: 5'-TGG-GCA-AGA-GGA-TGT-TC-3'.

Whole-mount in situ hybridization on chick embryos
Fertilized chicken eggs were purchased from HiChick
(Gawler, South Australia) and incubated at 36°C, 80%

humidity for the appropriate times. Embryos were staged
according to Hamburger and Hamilton [27]. Embryos
were dissected from the eggs in cold phosphate buffered
saline (PBS), fixed in 4% paraformaldehyde (PFA) in PBS
either at room temperature for 2 hours or overnight at
4°C and then dehydrated through a series of increasing
methanol/PBT (PBS + 0.1% Triton X) washes [28]. For
whole-mount in situ hybridization, digoxygenin-labeled
sense and anti-sense RNA probes were generated by in
vitro transcription as follows: cLHX7: a 1.2 kb HindIII frag-
ment from chick EST 766i11 (chEST766i11) was sub-
cloned into appropriately restricted pBluescript and the
resultant plasmid linearised using NotI (antisense) and
ClaI (sense) and transcribed using T3 and T7 polymerases,
respectively. cLHX6: the 709 bp chEST365j8 was line-
arised using NotI (anti-sense) and HindIII (sense) and
transcribed using T3 and T7 polymerases, respectively.
cIRF6: chEST58f7 was digested with SacI and subcloned
into pBluescript. The resultant 889 bp fragment linearised
with MscI (antisense) and EcoRI (sense) and transcribed
using T3 and T7 polymerases, respectively. Hybridisation,
washes and probe detection were carried out on whole or
dissected chick embryos from HH 10–30 according to Xu
and Wilkinson [28]. Post-hybridisation, HH23, 27 and 30
chick embryos were fixed in 4% PFA, embedded in 7%
low melting agarose (Sigma A2576) and sectioned with a
vibratome to a thickness of 100µm. All chick embryo
work was reviewed and approved by the University of
Adelaide Animal Ethics Committee.
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Note added in proof
During review of our article, a study by Inoue et al (Inoue
M, Kawakami M, Tatsumi K, Manabe T, Makinodan M,
Matsuyoshi H, Kirita T, Wanaka A. Expression and regula-
tion of the LIM homeodomain gene L3/Lhx8 suggests a
role in upper lip development of the chick embryo. Anat
Embryol. 2006 Epub ahead) was published that similarly
reported restricted mesenchymal expression of chick
LHX7 and demonstrated that it, like its murine counter-
part, appears to be under the regulatory control of epithe-
lial signals including FGF8.
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