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Immune checkpoint blockade (ICB), therapies that target the PD-1 pathway, CTLA-4
pathway, and other checkpoint pathways, lead to durable responses in many cancer
types. Since only a minority of patients respond to ICB, it may be useful to identify the
future responders early in the course of treatment. In this study we evaluated a small (15
genes) biologically motivated panel, consisting of genes involved in immune activation
and checkpoint pathways, for early identification of future responders to ICB. The panel
passed consistency check, pathological and in-silico validations, and was an excellent
predictor (area under ROC curve >0.95) of eventual response to ICB, both CTLA-4 and
PD-1 blockade, when applied to metastatic melanoma patients undergoing ICB
(i.e., “on-treatment”) in a publicly available dataset. These results suggest that this
small biologically motivated panel may be useful for early identification of future
responders to ICB.
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INTRODUCTION

Immune checkpoint blockade (ICB) leads to durable responses in many cancer types (Kyi and
Postow, 2016; Hargadon et al., 2018; Arora et al., 2019). Since only a minority of patients
respond to ICB and a majority of patients do not (Yarchoan et al., 2017), it may be useful to
identify the future responders early in the course of treatment. In this study, we evaluated a
small (15 genes) biologically motivated panel for early identification of future responders
to ICB.

Based on the current understanding of the mechanism of action of immune checkpoint blockade
(Tumeh et al., 2014; Anagnostou and Brahmer, 2015; Ribas, 2015), potentially sensitive tumors are
expected to show evidence of immune activation and checkpoint pathway upregulation. Immune
activation involves interferon gamma (IFNG) inducing movement of T cells (markers: CXCL9,
CXCL10) towards target cells (Taub et al., 1993; Liao et al., 1995; Farber, 1997), which leads to
infiltration of cytotoxic T cells (marker: CD8A) among target cells. Cytotoxic T cells make pores in
plasma membranes of target cells using perforin (PRF1) and deploy granzyme (GZMB) to induce
programmed cell death in the target cell (Trapani, 1995; Lopez et al., 2013). The immune checkpoint
pathway includes the PD-1 axis (the receptor PD-1, and its ligands PD-L1 and PD-L2), the CTLA-4
axis (the receptor CTLA-4, and its ligands CD80 and CD86), and several other genes (e.g., LAG-3,
TIM-3, BTLA). While currently available agents mostly target the PD-1 and CTLA-4 pathways,
agents targeting other immune checkpoints such as LAG-3, TIM-3, BTLA are under active clinical
development (Pardoll, 2012).
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Therefore, in this study, we constructed a small biologically
motivated panel, consisting of these 15 genes (Figure 1) involved
in immune activation (6 genes) and checkpoint pathway (9
genes), and evaluated its usefulness for early identification of
future responders to ICB.

METHODS

Source of Data
RNA-seq data of tumor and adjacent normal samples from the
Cancer Genome Atlas (TCGA) was obtained fromNCI GDC (v4)
Data Portal (https://portal.gdc.cancer.gov), and RNA-seq data of
true normal samples from Genotype-Tissue Expression project
(GTEx) was obtained from GTEx (v6p) Portal (https://www.
gtexportal.org/).

Activation Score, Checkpoint Score, and
Immunogenicity Score
Both TCGA and GTEx datasets were restricted to 18,669 protein
coding genes common in the two datasets using Ensembl BioMart
(https://www.ensembl.org/biomart/martview/), and single
sample gene set enrichment analysis (ssGSEA) (Barbie et al.,
2009) as implemented in the ESTIMATE package (Yoshihara
et al., 2013) was used to calculate the enrichment levels of various
gene sets. Activation score, checkpoint score, and
immunogenicity score were defined as the enrichment level of
the 6 immune activation genes (Figure 1), 9 immune checkpoint
genes (Figure 1), and all 15 genes respectively.

Quantification of Immune Infiltration and
CD8+ T Cell Infiltration
For each tumor in the TCGA dataset, the mRNA expression data
was divided by the median value per sample, and then used to
quantify immune infiltration and leukocyte composition by
ESTIMATE (Yoshihara et al., 2013) and CIBERSORT
(Newman et al., 2019) respectively.

Cancer Subtypes Analyzed Separately
Subsequently, the mRNA expression data of tumors from the
TCGA dataset was log transformed as x -> log2(1 + 1023*x), and
breast cancer samples were classified into clinical subtypes based
on the mRNA expression of ESR1 and ERBB2 (Supplementary
Figure S1). The 3 clinical subtypes of breast cancer were analyzed

separately, as were esophageal adenocarcinoma and esophageal
squamous cell carcinoma, and pheochromocytoma and
paraganglioma.

Quantification of Pathology-Based
Lymphocyte Infiltration
A pathologist scored >300 tumors from 10 cancer types in TCGA
for the presence of tumor infiltrating lymphocytes in a blinded
manner as previously described (Panda et al., 2017).

Validation Dataset
Normalized nanostring data of metastatic melanoma patients
undergoing ICB (i.e., “on-treatment”, not “pre-treatment”) was
collected from the supplementary material (Tables S6a and S9c)
of a recent study (Chen et al., 2016). Expression data of BTLAwas
not available for these patients, and only the data from Table S6a
was used if a patient was present in both tables.

Control Analysis
15 genes were randomly chosen from the non-immune genes
common among the analyzed datasets and used as control
(AMIGO1, CDH1, CYCS, EFNA3, EFNA5, EPHA7, NFKBIE,
NKIRAS1, P4HA2, S100A5, S1PR2, SDHA, SEMA3F, SEMA4B,
SEMA5A). Various analysis performed for the genes in our panel
(Figure 1) were repeated for this control gene set.

Statistics
Wilcoxon rank-sum test was used for all pairwise comparisons,
and Pearson coefficient was used for all correlation analysis. All
p-values are from two-sided tests, and p < 0.05 was used as the
threshold for statistical significance.

RESULTS

Consistency Check
To check whether the gene list in our panel (Figure 1) is
reasonable, we defined activation score and checkpoint score
as the ssGSEA (Barbie et al., 2009) enrichment level of the 6
immune activation genes and the 9 immune checkpoint genes
respectively, and calculated these scores in tumor and adjacent
normal samples from TCGA and true normal samples from
GTEx (GTEx Consortium, 2013). Tumor adjacent normal
samples from TCGA had substantially higher activation score
and checkpoint score than true normal samples from GTEx in

FIGURE 1 | A small (15 genes) biologically motivated panel.
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most tissue type (Supplementary Figure S2), which suggests that
tumor adjacent normal samples are not truely normal at least
from an immunological point of view. Therefore, for consistency
check of the gene list in our panel (Figure 1), we compared tumor
samples from TCGA and true normal samples from GTEx
(Figure 2). As expected, in almost every tissue type, tumor
samples had substantially higher activation score and
checkpoint score than true normal samples (Figure 2A). Since

tumor cells are more “non-self” than normal cells, tumor samples
attract more immune infiltration than normal samples, hence the
usually higher activation score in tumor samples than normal
samples. Tumor samples usually have higher checkpoint score
than normal samples most probably because tumor cells
preferentially use the checkpoint pathways to block the anti-
tumor immune response, more so than normal cells which also
use the checkpoint pathways to avoid autoimmunity. Activation

FIGURE 2 | Consistency check. Activation score and checkpoint score (A) were substantially higher and (B) showed substantially stronger correlation in tumor
than normal in almost every tissue type. Cancer type acronyms are standard TCGA abbreviations (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/
tcga-study-abbreviations) except esophageal adenocarcinoma (ESAD) and esophageal squamous cell carcinoma (ESSC), pheochromocytoma (PC) and paraganglioma
(PG), and the 3 subtypes of breast cancer. ns = difference between tumor and normal not statistically significant.
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FIGURE 3 | Pathological and in-silico validation. Immunogenicity score was correlated with (A) pathology-based lymphocyte infiltration score in almost all of the
tested cancer types, and in-silico estimates of (B) overall immune infiltration and (C)CD8+ T cell infiltration in almost all cancer types. Cancer type acronyms are standard
TCGA abbreviations (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations) except esophageal adenocarcinoma (ESAD) and
esophageal squamous cell carcinoma (ESSC), pheochromocytoma (PC), and the three subtypes of breast cancer. Pearson correlation coefficients are specified in
green in (A,B), ns = not statistically significant.
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score and checkpoint score were significantly correlated in almost
every tissue type even in normal samples (Figure 2B), as even
normal samples use checkpoint pathways to block immune
response and avoid auto-immunity; but the correlation was
substantially stronger in tumor than normal in almost every
tissue type (Figure 2B), suggesting that tumors preferentially
use the checkpoint pathway to block immune response. Tumor
cells over-expressing PD-L1 and other ligands merely prevents
CD8+ T-cells from killing the tumor cells, potentially inducing
T-cell exhaustion, but does not eliminate T-cell infiltration, and
they remain stationed near the tumor cells. Also, in some cases
PD-L1 is expressed by both tumor cells and infiltrating immune
cells. Hence a high checkpoint score does not lower the
activation score, instead a high checkpoint score and a high
activation score usually occur together. Activation score and
checkpoint score were very strongly correlated (Pearson
coefficient >0.5) in every cancer type except paraganglioma
and acute myeloid leukemia (Supplementary Figure S3),
making it unnecessary to have two separate scores in the
remaining cancer types. Therefore, we excluded these two
cancer types from further analysis, and defined a single
immunogenicity score as the ssGSEA (Barbie et al., 2009)
enrichment level of all 15 genes in the remaining cancer
types. The immunogenicity score was almost perfectly
correlated (Pearson coefficient >0.99) with the sum of
activation score and checkpoint score (Supplementary
Figure S4), and well-correlated with the expression of each
of the 15 genes in all cancer types (Supplementary Figure S5).

Pathological and In-Silico Validation
To test the utility of our gene panel (Figure 1), we performed
pathological and in-silico validation of the immunogenicity score
in the TCGA dataset. We randomly chose 15 genes from the non-
immune genes common among the analyzed datasets and used
them as control. A pathologist scored >300 tumors from 10
cancer types for the presence of tumor infiltrating lymphocytes in
a blindedmanner as previously described (Panda et al., 2017), and
tumors with strong lymphocyte infiltration, as evidenced by a
high pathology-based lymphocyte infiltration score, also had high
immunogenicity score (Figure 3A). No such correlation was
observed between pathology-based lymphocyte infiltration
score and enrichment level of the control genes
(Supplementary Figure S6). For in-silico validation, the
immunogenicity score was compared to the estimated levels of
overall immune infiltration (Yoshihara et al., 2013) and CD8+

T-cell infiltration (Newman et al., 2019) in tumors. The
immunogenicity score was very strongly correlated with
overall immune infiltration in every cancer type (Figure 3B)
and was significantly correlated with CD8+ T-cell infiltration in
every cancer type except glioblastoma and low-grade glioma
(Figure 3C). In contrast, enrichment level of the control genes
was not correlated with overall immune infiltration
(Supplementary Figure S7) and CD8+ T-cell infiltration
(Supplementary Figure S8) in most cancer types and was
often uncorrelated or anti-correlated instead. These results
confirm that our gene panel (Figure 1) is a robust marker of
immune infiltration in tumor.

Early Identification of Future Responders
Finally, we wanted to test whether our gene panel (Figure 1) can
be used for early identification of future responders to ICB.
Although ssGSEA (Barbie et al., 2009) enrichment levels (e.g.,
activation, checkpoint, and immunogenicity scores) are useful for
consistency checks and in-silico or pathological validation of a
gene list, calculating enrichment directly using this approach is
usually not practical in individual clinical samples where whole
transcriptome level data may not be easily available. So instead of
calculating the enrichment level of the 15 genes in each sample,
we ranked the samples by the normalized expression of each of
the 15 genes (Figure 1) and then calculated the sum of these 15
ranks. In a publicly available dataset (Chen et al., 2016) of
metastatic melanoma patients undergoing ICB (i.e., “on-
treatment”, not “pre-treatment”), this sum of rank was an
excellent predictor (area under ROC curve = 0.96 for our gene
panel vs 0.54 for the control genes) of eventual response to CTLA-
4 blockade and PD-1 blockade (Figure 4), confirming that our
gene panel (Figure 1) can distinguish between future responders
and future non-responders early in the course of ICB.

DISCUSSION

Immune checkpoint blockade (ICB) leads to durable responses in
many cancer types (Kyi and Postow, 2016; Hargadon et al., 2018;
Arora et al., 2019). Since a majority of patients do not respond to
ICB (Yarchoan et al., 2017), it may be useful to identify the future
responders early in the course of treatment. Previous work by our
group (Mehnert et al., 2016; Panda et al., 2017; Panda et al., 2018a;
Panda et al., 2018b; Panda et al., 2020) and others have identified
several mechanism-based predictors of response to ICB, such as
high tumor mutational burden (Mehnert et al., 2016; Panda et al.,
2017), infection with exogenous viruses (Kwong et al., 2017; Panda
et al., 2018b; Carbone et al., 2018), and expression of endogenous
retroviruses (Panda et al., 2018a; Smith et al., 2018), and many
additional mechanism-based predictors will likely be discovered in
the future. Nevertheless, it is still useful to have a mechanism-
agnostic tool for early identification of future responders, including
those responders for whom the mechanism of response is yet to be
discovered. Therefore, in this study, we evaluated a small (15 genes)
biologically motivated panel (Figure 1) for early identification of
future responders to ICB, consisting of 6 immune activation genes
and the 9 immune checkpoint genes.

Our results show that ssGSEA (Barbie et al., 2009) enrichment
level of the 6 immune activation genes and the 9 immune
checkpoint genes were substantially higher (Figure 2A) and
showed substantially stronger correlation (Figure 2B) in tumor
samples from TCGA than normal samples from GTEx in almost
every tissue type. ssGSEA (Barbie et al., 2009) enrichment level of
the 15 genes was correlated with pathology-based lymphocyte
infiltration score (Figure 3A) in almost all of the tested cancer
types, and in-silico estimates of overall immune infiltration
(Figure 3B) and CD8+ T cell infiltration (Figure 3C) in almost
all cancer types. When metastatic melanoma patients on CTLA-4
blockade and PD-1 blockade were ranked by the normalized
expression of each of these genes, the sum of these ranks was
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an excellent predictor (area under ROC curve >0.95) of eventual
response to CTLA-4 blockade and PD-1 blockade respectively
(Figure 4). Thus, our small biologically motivated panel (Figure 1)
passed consistency check, pathological and in-silico validation, and
was an excellent predictor of eventual response to CTLA-4 and PD-
1 blockade when applied to patients on CTLA-4 and PD-1
blockade respectively.

While these results suggest that our gene panel (Figure 1) is
useful for early identification of future responders to ICB, sum of
ranks is not ideal for a clinical assay as ranking only helps when
we have a group of samples. Developing the optimal method of
using our gene panel to categorize individual samples without
reference to a group of samples would be the next step towards a
ready-to-use clinical assay. In addition to comparing the
immunogenicity of different tumors and using it to select or
prioritize patients for ICB, such an assay may also be useful for
assessing or monitoring the immunogenicity of a tumor at
various time-points during ICB, or for assessing the efficacy of
experimental therapies designed to sensitize tumors to ICB. It
may also be useful as a surrogate and/or substitute for
pathological or in-silico estimate of immune infiltration in
tumor. If calibrated using a sufficiently large dataset of
patients treated with ICB, it may also be useful for quantifying
the probability of response to ICB.
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SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.706468/
full#supplementary-material

Supplementary Figure S1 | Breast cancer samples were classified into the 3
clinical subtypes based on the mRNA expression of ESR1 and ERBB2.

Supplementary Figure S2 | Tumor adjacent normal samples from TCGA had
substantially higher activation score and checkpoint score than true normal samples
from GTEx in most tissue type. * p < 0.05

Supplementary Figure S3 | Activation score and checkpoint score were very
strongly correlated (Pearson coefficient >0.5) in every cancer type except
paraganglioma (PG) and acute myeloid leukemia (LAML). Cancer type acronyms
are standard TCGA abbreviations (https://gdc.cancer.gov/resources-tcga-users/

FIGURE 4 | Early identification of future responders. (A)Whenmetastatic melanoma patients on CTLA-4 blockade and PD-1 blockade were ranked by the normalized
expression of each gene in the panel (Figure 1), the sum of these ranks accurately distinguished between future responders (R) and future non-responders (NR) (top). Similar
analysis for 15 control genes did not distinguish between future responders and future non-responders (bottom). (B) Sum of ranks for the gene panel (Figure 1) was an
excellent predictor of eventual response to immune checkpoint blockade (area under ROC curve = 0.96), but sum of ranks for 15 control genes was not predictive of
eventual response to immune checkpoint blockade (area under ROC curve = 0.54). ROC = receiver operating characteristic, AUC = area under the curve.
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tcga-code-tables/tcga-study-abbreviations) except esophageal adenocarcinoma
(ESAD) and esophageal squamous cell carcinoma (ESSC), pheochromocytoma
(PC) and paraganglioma (PG), and the 3 subtypes of breast cancer.

Supplementary Figure S4 | Immunogenicity score was almost perfectly correlated
(Pearson coefficient >0.99) with the sum of activation score and checkpoint score in all
cancer types. Cancer type acronyms are standard TCGA abbreviations (https://gdc.
cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations) except
esophageal adenocarcinoma (ESAD) and esophageal squamous cell carcinoma
(ESSC), pheochromocytoma (PC), and the three subtypes of breast cancer.

Supplementary Figure S5 | Immunogenicity score was well-correlated with the
expression of each of the 15 genes in Figure 1 in all cancer types. Cancer type
acronyms are standard TCGA abbreviations (https://gdc.cancer.gov/
resources-tcga-users/tcga-code-tables/tcga-study-abbreviations) except
esophageal adenocarcinoma (ESAD) and esophageal squamous cell
carcinoma (ESSC), pheochromocytoma (PC), and the 3 subtypes of breast
cancer.

Supplementary Figure S6 | Control results for pathological validation. Enrichment
level of 15 control genes was not correlated with pathology-based lymphocyte
infiltration score in any of the tested cancer types. Cancer type acronyms are

standard TCGA abbreviations (https://gdc.cancer.gov/resources-tcga-users/tcga-
code-tables/tcga-study-abbreviations) except for ER+ HER2− breast cancer.
Pearson correlation coefficients are specified in green, ns = not statistically
significant.

Supplementary Figure S7 | Control results for in-silico validation. Enrichment
level of 15 control genes was not correlated with in-silico estimates of overall
immune infiltration in most cancer types. Cancer type acronyms are standard
TCGA abbreviations (https://gdc.cancer.gov/resources-tcga-users/tcga-
code-tables/tcga-study-abbreviations) except esophageal adenocarcinoma
(ESAD) and esophageal squamous cell carcinoma (ESSC),
pheochromocytoma (PC), and the 3 subtypes of breast cancer. Pearson
correlation coefficients are specified in green, ns = not statistically significant.

Supplementary Figure S8 | Control results for in-silico validation (continued).
Enrichment level of 15 control genes was not correlated with in-silico estimates
of CD8+ T cell infiltration in most cancer types. Cancer type acronyms are
standard TCGA abbreviations (https://gdc.cancer.gov/resources-tcga-users/
tcga-code-tables/tcga-study-abbreviations) except esophageal
adenocarcinoma (ESAD) and esophageal squamous cell carcinoma (ESSC),
pheochromocytoma (PC), and the three subtypes of breast cancer.
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