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Underrepresentation of females is a persistent 
problem in biomedical research and is particularly 
stark among preclinical studies using non-human 
mammals (Beery and Zucker, 2011; Woitowich et al., 
2020). In addition, many preclinical studies either 
do not report the sex of biological samples or do not 
report results by sex (Mamlouk et  al., 2020). 
Altogether, this lack of sex inclusion obscures the 
extent to which research findings generalize to 
roughly half the population (Clayton, 2016). 
Recognizing this issue, the US National Institutes of 
Health (NIH) created a policy in 2016 that requires 

investigators to factor biological sex into the design, 
analysis, and reporting of vertebrate animal and 
human studies (NOT-OD-15-102: Consideration of 
Sex as a Biological Variable in NIH-funded Research, 
n.d.).

Unfortunately, lack of sex inclusion is an issue in 
circadian research as well. For example, only 34% of 
studies on the non-visual effects of light in humans 
have included females (Spitschan et al., 2022). Even 
more striking, among studies on light and circadian 
phase-shifting in rodents published 1964-2017, only 
7% included females (Lee et  al., 2021). The severe 
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Abstract  Biomedical research on mammals has traditionally neglected females, 
raising the concern that some scientific findings may generalize poorly to half 
the population. Although this lack of sex inclusion has been broadly docu-
mented, its extent within circadian genomics remains undescribed. To address 
this gap, we examined sex inclusion practices in a comprehensive collection of 
publicly available transcriptome studies on daily rhythms. Among 148 studies 
having samples from mammals in vivo, we found strong underrepresentation 
of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 
0 of 10 studies in rats, and 9 of 15 studies in humans included samples from 
females. In addition, studies having samples from both sexes tended to have 
more samples from males than from females. These trends appear to have 
changed little over time, including since 2016, when the US National Institutes 
of Health began requiring investigators to consider sex as a biological variable. 
Our findings highlight an opportunity to dramatically improve representation 
of females in circadian research and to explore sex differences in daily rhythms 
at the genome level.

Keywords  genomics, biological sex, circadian rhythms, daily rhythms, transcriptome 
data, sex inclusion

PERSPECTIVE

https://us.sagepub.com/en-us/journals-permissions
mailto:jakejhughey@gmail.com


4  JOURNAL OF BIOLOGICAL RHYTHMS / February 2023

underrepresentation of female rodents in circadian 
research may be a legacy of early observations of 
effects of the estrous cycle and estradiol on daily 
rhythms in hamsters (Morin et  al., 1977; Takahashi 
and Menaker, 1980), although recent work indicates 
that female rats are not more variable than male rats 
in any neuroscience-related traits (Becker et al., 2016). 
Encouragingly, there is growing recognition of the 
importance of addressing sex bias and investigating 
sex differences in sleep and circadian rhythms 
(Spitschan et  al., 2022; Joye and Evans, 2022). 
Although sleep and circadian research increasingly 
makes use of genomic techniques, sex inclusion 
trends in genomic studies of daily rhythms remain 
undescribed.

To address this gap, we first assembled a collection 
of publicly available transcriptome studies (bulk 
microarray or RNA-sequencing) from mice, rats, or 
humans that had samples from at least 3 times of day 
(Supplemental Tables S1 and S2). We downloaded the 
metadata for each study using the seeker R package 
(Schoenbachler and Hughey, 2022). From the meta-
data, we extracted the organism, tissue, time of day, 
and biological sex (where available) of each sample 
from each study. Where necessary, we obtained infor-
mation on biological sex from the published article. 
For our analysis, we only included studies linked to 
a published article and considered one study as cor-
responding to one article. We did not filter studies or 
samples with respect to genotype, light-dark cycle, 
or any other experimental condition. Altogether, the 
collection comprised 123 studies in mice (7305 sam-
ples), 10 in rats (373 samples), and 15 in humans (191 
subjects). We defined each study’s sex inclusion sta-
tus as male only, female only, male and female (if 
each sample’s sex was identifiable), mixed (if each 
sample was based on pooled tissue from males and 
females, or if the article stated using both males and 
females, but each sample’s sex was not identifiable), 
or unspecified.

We examined sex inclusion by organism (Figure 1a 
and Supplemental Table S3). In mice, 91 (74%) of 123 
studies included only males, whereas 23 studies 
(19%) included females, as female only, male and 
female, or mixed. In rats, all 9 studies having speci-
fied sex included only males. In humans, sex inclu-
sion was more balanced, as 8 of 15 studies had 
samples from males and females. We observed simi-
lar trends when analyzing the collection based on 
numbers of samples (Supplemental Table S4). These 
results indicate that females are highly underrepre-
sented in mammalian circadian transcriptome data.

We next examined sex inclusion by organism and 
tissue (Figure 1b and Supplemental Tables S5 and S6). 
In mice, 23 of 44 unique tissues had samples only 
from males, whereas 16 tissues had samples in some 

way from females (as female only, male and female, 
or mixed; Supplemental Table S7). Within liver, by far 
the most common tissue, 46 of 60 studies were male 
only, whereas 5 were female only and 5 were male 
and female (Vollmers et  al., 2009; Yang et  al., 2016; 
Sato et al., 2017; Weger et al., 2019; Mekbib et al., 2022) 
(Supplemental Table S8). In humans, the most com-
mon tissue was blood, for which 6 of 9 studies 
included males and females. However, both mouse 
and human studies including males and females 
tended to have more samples (or subjects) from males 
than from females (Figure 1c; paired differences of 
26.8 ± 34.7 samples for mouse and 2.1 ± 5.0 subjects 
for humans).

We also examined sex inclusion trends over time, 
based on the publication year of each study’s corre-
sponding article (Figure 1d and Supplemental Table 
S9). These results indicate that even as the overall 
number of studies has increased, the representation 
of females has remained low and roughly constant 
since 2011. Although the proportion of male-only 
studies appears slightly lower since 2021, whether 
this is noise or a sustained trend remains to be seen.

To explore these results further, we examined the 
articles for studies published in 2021-2022, which 
revealed 3 main findings (Supplemental Table S10). 
First, most studies whose sex inclusion status was 
male only or female only did not mention a justifica-
tion. Second, the underrepresentation of females in 
transcriptome experiments was concordant with that 
of other experiments. Third, of the 9 studies that 
included males and females for any experiment, 2 
reported results by sex (Jouffe et  al., 2022; Mekbib 
et al., 2022).

Although the collection of studies we examined 
here is extensive, it is not exhaustive. First, it includes 
only transcriptome studies, not studies based on 
other genomic techniques, which are relatively less 
common and often performed on the same or similar 
samples. Second, the collection only includes studies 
in which time of day was an experimental variable, 
and thus excludes studies based on samples from 
post-mortem human donors, where information on 
time of day of death has revealed daily variation in 
gene expression and where donors may be more sex-
balanced (Li et  al., 2013; Chen et  al., 2016; Ruben 
et  al., 2018). Third, the collection does not include 
studies from less commonly used vertebrates or from 
invertebrates—despite the importance of fruit flies to 
circadian research. Nonetheless, our findings are con-
sistent with those for biomedical research as a whole 
(Woitowich et al., 2020) and for circadian phase-shift-
ing experiments (Lee et al., 2021).

Our study highlights the utility of compiling and 
standardizing the vast amount of publicly available 
circadian data (Pizarro et al., 2013; Ceglia et al., 2018), 
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Figure 1.  Sex inclusion in circadian transcriptome studies from mice, rats, and humans. Each study corresponds to a published article. 
(a) Barplots of number of studies by organism and sex inclusion status. The latter is also represented by color, which is consistent 
throughout the figure. (b) Barplots of number of studies by organism, tissue, and sex inclusion status. For mouse studies, the “other” tis-
sue comprises tissues represented in only 1 study. Some studies included samples from multiple tissues, so the total counts in (b) could 
be more than the counts in (a). (c) Beeswarm plots of number of samples (per mouse study) and number of subjects (per human study) 
among studies whose sex inclusion status was male and female. Each point represents a study. Each horizontal line represents the mean 
for that group. (d) Barplot of number of studies (from all organisms) by sex inclusion status and publication year of the corresponding 
article. Abbreviation: SCN = suprachiasmatic nucleus.
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as also recently shown by a meta-analysis of circa-
dian gene expression in mouse liver (Brooks et  al., 
2022). Indeed, a secondary finding of our analysis is 
the predominance of liver as a tissue source among 
mouse studies (amid the unsurprising predomi-
nance of mice overall). Although the liver may have 
somewhat more rhythmic genes compared with 
other tissues (Zhang et al., 2014), its current popu-
larity is likely out of proportion to its importance in 
the mammalian circadian system, even among 
peripheral tissues. A similar argument applies to 
human blood, although here the primary driver is 
likely the relative non-invasiveness of drawing 
blood from live humans. The greater representation 
of females among human studies could be related to 
Institutional Review Board approval and participant 
recruitment. In any case, recent work on organoids 
and diurnal rodents may lead to more species and 
tissue diversity in circadian data sets (Rosselot et al., 
2022; Bano-Otalora et al., 2021).

Given the few studies and tissues having sufficient 
data from males and females, we leave a meta-analy-
sis of sex differences in daily rhythms for future work. 
Previous work indicates that some differences, such 
as those related to development and reproduction, 
may be large, whereas others may be more subtle 
(Kuljis et al., 2013; Weger et al., 2019; Joye and Evans, 
2022). To this point, a sex-based analysis is not possi-
ble for studies whose sex inclusion is “mixed” 
(whether due to pooling or lack of labeling). Rigorous 
quantification of sex differences or sex-specific 
rhythms in circadian genomic data will entail not 
only proper experimental design but also use of sta-
tistically valid methods such as those for quantifying 
differential rhythmicity to avoid misinterpretation 
(Thaben and Westermark, 2016; Singer and Hughey, 
2019; Weger et al., 2021; Pelikan et al., 2021).

Importantly, however, the ethical principle of fair 
representation—as well as the NIH’s policy on sex as 
a biological variable—does not require that all stud-
ies be powered to detect sex differences. Such a 
requirement could be challenging for circadian 
genomic experiments, which already involve a time-
course, potentially in multiple conditions, on limited 
budgets. Instead, the principle and policy require that 
sex be factored into every step of research, from 
design to reporting.

In summary, females remain strongly underrepre-
sented in circadian genomic studies. Given the dura-
tion of funding cycles and peer review, one might not 
expect the 2016 NIH policy to have an immediate 
effect. However, the apparent lack of justification for 
decisions on sex inclusion and infrequent reporting 
of results by sex, even in recent studies, points to an 
opportunity for us as a research community to do bet-
ter. This opportunity seems especially relevant as the 

field moves increasingly from bulk to single-cell 
genomics. Improving sex inclusion could both 
improve our work’s generalizability and contribute 
to a growing understanding of the role of biological 
sex in daily rhythms.

At the reviewers’ request, we cite here all studies 
in the collection (Menger et  al., 2005; Rudic et  al., 
2005; Oster et al., 2006; Yang et al., 2007; Miller et al., 
2007; Bray et  al., 2008; Almon et  al., 2008a; Almon 
et al., 2008b; Hoogerwerf et al., 2008; Hughes et al., 
2009; Zuber et al., 2009; Na et al., 2009; Keller et al., 
2009; Vollmers et  al., 2009; Zieker et  al., 2010; 
Sukumaran et  al., 2010; Balakrishnan et  al., 2010; 
Bedolla and Torre, 2011; Sukumaran et  al., 2011; 
Barclay et al., 2012; Hughes et al., 2012; Le Martelot 
et al., 2012; Li et al., 2012; Cho et al., 2012; Negoro 
et al., 2012; Nikolaeva et al., 2012; Spörl et al., 2012; 
Geyfman et  al., 2012; Tsimakouridze et  al., 2012; 
Koike et al., 2012; Menet et al., 2012; Paschos et al., 
2012; Jouffe et al., 2013; Valekunja et al., 2013; Möller-
Levet et al., 2013; Sutton et al., 2013; Gossan et al., 
2013; Eckel-Mahan et  al., 2013; Dyar et  al., 2014; 
Archer et al., 2014; Du et al., 2014; Masri et al., 2014; 
Young et al., 2014; Haspel et al., 2014; Liu et al., 2014; 
Arnardottir et  al., 2014; Zhang et  al., 2014; Fang 
et al., 2014; Johnson et al., 2014; Hodge et al., 2015; 
Van Dycke et al., 2015; Pembroke et al., 2015; Renaud 
et al., 2015; Atger et al., 2015; Janich et al., 2015; Saleh 
et  al., 2015; Zhang et  al., 2015; Dudek et  al., 2016; 
Yang et al., 2016; Wang et al., 2016; Erion et al., 2016; 
Masri et al., 2016; Rakshit et al., 2016; Gerstner et al., 
2016; Kolbe et al., 2016; Kettner et al., 2016; Petrenko 
et  al., 2017; Laing et  al., 2017; Sobel et  al., 2017; 
Mange et  al., 2017; Husse et  al., 2017; Fan et  al., 
2017;Fan et  al., 2017; Castelo-Szekely et  al., 2017; 
Wang et  al., 2017a; Sato et  al., 2017; Solanas et  al., 
2017; Wang et al., 2017b; Tognini et al., 2017; Quinault 
et  al., 2018; Stubblefield et  al., 2018; Yeung et  al., 
2018; Benegiamo et  al., 2018; Mermet et  al., 2018; 
Perrin et al., 2018; Kervezee et al., 2018; Hirako et al., 
2018; Wittenbrink et al., 2018; Braun et al., 2018; Wu 
et al., 2018; Kinouchi et al., 2018; Brunet et al., 2019; 
Kervezee et al., 2019; Chaix et al., 2019; Weger et al., 
2019; Christou et al., 2019; Resuehr et al., 2019; Fader 
et al., 2019; Cedernaes et al., 2019; Aras et al., 2019; 
Koronowski et al., 2019; Welz et al., 2019; Sato et al., 
2019; Cederroth et al., 2019; Kuang et al., 2019; Nobis 
et al., 2019; Quagliarini et al., 2019; Pei et al., 2019; 
Seillet et  al., 2020; Greenberg et  al., 2020; Rijo-
Ferreira et  al., 2020; Dan et  al., 2020; Levine et  al., 
2020; Wu et  al., 2020; Brami-Cherrier et  al., 2020; 
Guan et  al., 2020; Tognini et  al., 2020; Greco et  al., 
2020; Petrenko et al., 2020; Meng et al., 2020; Alzate-
Correa et al., 2021; Lu et al., 2021; Weger et al., 2021; 
Zhang et  al., 2021; Xin et  al., 2021; Manella et  al., 
2021; Rubio-Ponce et al., 2021; Furlan-Magaril et al., 
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2021; Neumann et  al., 2021; Milićević et  al., 2021; 
Schwartz et al., 2021; Mishra et al., 2021; Præstholm 
et al., 2021; Aviram et al., 2021; Brown et al., 2021; 
Wei et al., 2022; Blacher et al., 2022; Maier et al., 2022; 
Trott et  al., 2022; Jouffe et  al., 2022; Greiner et  al., 
2022; Cresto et al., 2022; DeVera et al., 2022; Egstrand 
et al., 2022; Acosta-Rodríguez et al., 2022; Tsujihana 
et al., 2022; Mekbib et al., 2022; Petrus et al., 2022).
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