inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Non-centrosymmetric Na₃Nb₄As₃O₁₉

Saïda Fatma Chérif, Khaled Hizaoui, Mohamed Faouzi Zid* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université de Tunis El Manar, 2092 El Manar Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 13 January 2012; accepted 9 March 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (As–O) = 0.006 Å; disorder in solvent or counterion; R factor = 0.029; wR factor = 0.076; data-toparameter ratio = 11.1.

A new non-centrosymmetric compound, trisodium tetraniobium triarsenic nonadecaoxide, Na₃Nb₄As₃O₁₉, has been synthesized by a solid-state reaction at 1123 K. The structure consists of AsO₄ tetrahedra and NbO₆ octahedra sharing corners to form a three-dimensional framework containing two types of tunnels running along the c axis, in which the sodium ions are located. Na⁺ cations occupying statistically several sites, respectively, are surrounded by seven, six and four O atoms at distances ranging from 2.08 (1) to 2.88 (4) Å. The title structure is compared with those containing the same groups, viz. M_2 XO₁₃ and M_2X_2 O₁₇ (M = transition metal, and X = As or P).

Related literature

For physical properties of this class of compound, see: Masquelier et al. (1995); Daidouh et al. (1997, 1998, 1999); Sanz et al. (1999, 2001); Baies et al. (2006); Ravez et al. (1972, 1974); Torardi et al. (1985); Krol et al. (1980); Blasse et al. (1992). For synthetic details, see: Zid et al. (1988, 1989); Ben Amor & Zid (2005, 2006); Hizaoui et al. (1999a, b); Haddad et al. (1988); Harrison et al. (1994); Chérif et al. (2011). For related structures, see: Guyomard et al. (1991); Serra & Hwu (1992); Ben Amor & Zid (2006); Ledain et al. (1996); Leclaire et al. (1994); Amos & Sleight (2001). For details of the bondvalences method, see: Brown & Altermatt, (1985).

Experimental

Crystal data

Na ₃ Nb ₄ As ₃ O ₁₉	V = 1600.4 (3) Å ³
$M_r = 969.37$	Z = 4
Orthorhombic, C222 ₁	Mo $K\alpha$ radiation
a = 13.014 (2) Å	$\mu = 9.13 \text{ mm}^{-1}$
b = 24.170 (3) Å	$T = 298 { m K}$
c = 5.0880 (9) Å	$0.35 \times 0.25 \times 0.16 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.083, T_{\max} = 0.230$ 2116 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.076$ S = 1.031757 reflections 159 parameters 2 restraints

1757 independent reflections 1516 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$ 2 standard reflections every 120 min intensity decay: 1%

 $\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.91 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 718 Friedel pairs Flack parameter: 0.019 (16)

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RU2026).

References

- Amos, T. G. & Sleight, A. W. (2001). J. Solid State Chem. 160, 230-238.
- Baies, R., Perez, O., Caignaert, V., Pralong, V. & Raveau, B. (2006). J. Mater. Sci. 16. 2434-2438.
- Ben Amor, R. & Zid, M. F. (2005). Acta Cryst. E61, i228-i230.
- Ben Amor, R. & Zid, M. F. (2006). Acta Cryst. E62, i238-i240.
- Blasse, G., Dirksen, G. J., Crosnier, M. P. & Piffard, Y. (1992). J. Alloys Compd, 189. 259-261.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Chérif, S. F., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, i10.
- Daidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109-117.
- Daidouh, A., Veiga, M. L. & Pico, C. (1997). J. Solid State Chem. 130, 28–34. Daidouh, A., Veiga, M. L. & Pico, C. (1998). Solid State Ionics, 106, 103–112.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Guyomard, D., Pagnoux, C., Zah Letho, J. J., Verbaere, A. & Piffard, Y. (1991). J. Solid State Chem. 90, 367-372.
- Haddad, A., Jouini, T., Piffard, Y. & Jouini, N. (1988). J. Solid State Chem. 77, 293-298.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Harrison, W. T. A., Liang, C. S., Nenoff, T. M. & Stucky, G. D. (1994). J. Solid State Chem. 113, 367-372.
- Hizaoui, K., Jouini, N., Driss, A. & Jouini, T. (1999a). Acta Cryst. C55, 1972-1974
- Hizaoui, K., Jouini, N. & Jouini, T. (1999b). J. Solid State Chem. 144, 53-61.
- Krol, D. M., Blasse, G. & Powell, R. C. (1980). J. Chem. Phys. 73, 163-166.
- Leclaire, A., Borel, M. M., Grandin, A. & Raveau, B. (1994). J. Solid State
- Chem. 110, 256-263. Ledain, S., Leclaire, A., Borel, M. M. & Raveau, B. (1996). J. Solid State Chem. 124 322-328
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Masquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33-42
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Ravez, J., Budin, J. P. & Hagenmuller, P. (1972). J. Solid State Chem. 5, 239-246.

- Ravez, J., Perron, A., Chaminade, J. P., Hagenmuller, P. & Rivoallan, L. (1974). J. Solid State Chem. 10, 274–281.
- Sanz, F., Parada, C., Rojo, J. M. & Ruiz-Valero, C. (2001). Chem. Mater. 13, 1334–1340.
- Sanz, F., Parada, C., Rojo, J. M., Ruiz-Valero, C. & Saez-Puche, R. (1999). J. Solid State Chem. 145, 604–611.
- Serra, D. L. & Hwu, S. J. (1992). J. Solid State Chem. 98, 174-180.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Torardi, C. C., Brixner, L. H. & Foris, C. M. (1985). J. Solid State Chem. 58, 204–210.
- Zid, M. F., Jouini, T., Jouini, N. & Omezzine, M. (1988). J. Solid State Chem. 74, 334–342.
- Zid, M. F., Jouini, T., Jouini, N. & Omezzine, M. (1989). J. Solid State Chem. 82, 14–20.

supplementary materials

Acta Cryst. (2012). E68, i25-i26 [doi:10.1107/S1600536812010537]

Non-centrosymmetric Na₃Nb₄As₃O₁₉

Saïda Fatma Chérif, Khaled Hizaoui, Mohamed Faouzi Zid and Ahmed Driss

Comment

Dans le cadre de la synthèse des matériaux à charpentes ouvertes, nous avons poursuivi l'exploitation des systèmes A— Nb—As—O (A = alcalin, argent) dans lesquels nous avons précédemment caractérisé les phases suivantes: $K_3NbAs_2O_9$ (Zid *et al.*, 1989), Ag_3Nb_3As_2O_{14} (Ben Amor & Zid, 2006), Na_3NbAs_2O_9 (Hizaoui *et al.*, 1999*b*), K_2Nb_2As_2O_{11} (Zid *et al.*, 1988), KNb_4AsO_{13} (Haddad *et al.*, 1988) et $K_{0.12}Na_{0.58}Ag_{0.30}Nb_4AsO_{13}$ (Chérif *et al.*, 2011).

La structure du composé Na₃Nb₄As₃O₁₉ peut être décrite à partir d'octaèdres NbO₆ et de tétraèdres As1O₄ partageant leurs sommets. Au sein de la structure (Fig. 1), ces polyèdres forment des groupements classiques cycliques Nb₂AsO₁₃ (Fig. 2 (a)) de type M_2 XO₁₃ (M = Mo, Nb et X = As, P) similaires à ceux rencontrés dans Ag₃Nb₃As₂O₁₄ (Ben Amor & Zid, 2006), LiMo₂O₃(PO₄)₂ (Ledain et al., 1996) et RbNb₂PO₈ (Leclaire et al., 1994) et des unités originales Nb₂As₂O₁₇ (Fig. 2 (b)). Dans la charpente, les octaèdres Nb1O₆ sont liés par les sommets et forment, selon c, des chaînes ondulées de type $[Nb1_2O_{10}]_{\infty}$ (Fig. 3(a)) comme celles rencontrées dans NbOPO₄ (Amos & Sleight, 2001). Les octaèdres Nb2O₆ et Nb3O₆ se connectent par les sommets pour former des rubans de type $[Nb_4O_{18}]_{\infty}$ (Fig. 3 (b)). Ces derniers et les chaînes ondulées [Nb1₂O₁₀]_∞ sont liés par les sommets par l'intermédiaire de tétraèdres AsO₄ (Fig. 4). Il en résulte une charpente tridimensionnelle possédant deux types de canaux, disposés parallélement à la direction [001], respectivement de sections très allongées larges et hexagonales où résident les cations Na⁺ (Fig. 5). Les atomes d'arsenic, de niobium et de sodium forment respectivement avec les atomes d'oxygène des liaisons As-O, Nb-O et Na-O conformes à celles rencontrées dans la littérature (Hizaoui et al., 1999a; Harrison et al., 1994; Ben Amor & Zid, 2005). Au sein de l'octaèdre Nb(1)O₆, on *rel*ève une liaison courte caractéristique d'un groupement niobyl (d(Nb-O) = 1,762 (5) Å). Le calcul des différentes valences des liaisons (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des ions: Nb1(4,92), Nb2(4,98), Nb3(5,14), As1(4,98), As2(5,03), Na1(0,98), Na2(1,04), Na3(1,07), Na4(1,12), Na5(0,79), Na6(0,79), Na7(0,77) et Na8(0,77), en accord avec les degrés d'oxydation attendus. La comparaison de la structure avec celles rencontrées dans la littérature et renfermant les mêmes types de groupements: M_2 XO₁₃ et M_2 X₂O₁₇ (M = métal de transition, X = As, P) révèle une filiation structurale avec les matériaux à charpentes: unidimensionnelle Na₃SbO(PO₄)₂ (Guyomard et al., 1991), bidimensionnelle CaNb₂P₂O₁₁ (Serra & Hwu, 1992) et tridimensionnelles Ag₃Nb₃As₂O₁₄ (Ben Amor & Zid, 2006), LiMo₂O₃(PO₄)₂ (Ledain et al., 1996) et RbNb₂PO₈ (Leclaire et al., 1994). En effet dans cette filiation, ces unités se regroupent, selon les trois directions de l'espace, par établissement de ponts mixtes M—O—X pour conduire à diffèrentes structures tridimensionnelles (three-dimensional). Une disposition particulière des groupements: $M_2 XO_{13}$ et $M_2 X_2 O_{17}$ (M = Nb et X = As) prévoie la formation de deux types de ponts Nb—O -Nb et Nb-O-As et aboutit à une charpente tridimensionnelle (three-dimensional) similaire à celle rencontrée dans notre matériau Na₃Nb₄As₃O₁₉. L'occupation partielle des sites par Na⁺ dans la stucture du composé Na₃Nb₄As₃O₁₉ pourrait conférer à ce matériau des propriétés de conduction ionique (Masquelier et al., 1995; Daidouh et al., 1997, 1998, 1999; Sanz et al., 1999, 2001; Baies et al., 2006). Le composé Na₃Nb₄As₃O₁₉, appartenant à une classe non-centrosymétrique (groupe d'espace: C222₁) pourrait présenter des propriétés optiques non linéaires (Ravez et al., 1972, 1974). La présence

de groupements niobyl dans la structure laisse prévoir également des propriétés de luminescence (Torardi *et al.*, 1985; Krol *et al.*, 1980; Blasse *et al.*, 1992).

Experimental

Les cristaux de Na₃Nb₄As₃O₁₉ ont été obtenus à partir des réactifs: Nb₂O₅ (Fluka, 72520), NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01–775) et Na₂CO₃ (Prolabo, 27766) pris dans les proportions Na:Nb:As=5:3:4. Le mélange, finement broyé, a été mis dans un creuset en porcelaine, placé dans un four puis préchauffé à l'air à 523 K pendant 24 heures en vue d'éliminer les composés volatils. Il est ensuite porté à une température proche de sa fusion, 1123 K. Le mélange est maintenu à cette température pendant une semaine pour favoriser la germination et la croissance des cristaux puis il subit en premier lieu un refroidissement lent (5°/jour) jusqu'à 1073 K puis un second rapide (50°/h) jusqu'à la température ambiante. Des cristaux incolores ont été séparés du flux par de l'eau bouillante. Une analyse qualitative au M.E.B de type FEI Quanta 200 d'un cristal choisi, confirme la présence des différents éléments chimiques attendus notamment: Nb, As, Na et l'oxygène.

Refinement

Les Na⁺ ont été localisés par Fourier-différence sur 1 site Na1 et sur 2 sites éclatés respectivement en 3 sites (Na2, Na3 et Na4) et 4 sites (Na5, Na6, Na7 et Na8). Les distances entre ces sites éclatés sont: Na2—Na4 = 0,761; Na3—Na4 = 0,979; Na5—Na8 = 0,725; Na5—Na6 = 0,759; Na6—Na7 = 0,631 et Na7—Na8 = 0,606 Å. Les taux d'occupation des sites Na⁺ ont été affinés et constraints de façon à assurer l'électroneutralité en utilisant l'option SUMP du programme *SHELX* (Sheldrick, 2008). *L*'affinement des paramètres de déplacement atomique conduit à des ellipsoïdes bien définis. Les densités électroniques résiduelles maximale et minimale observées sur la Fourier-différence finale sont situées respectivement à 1,07 Å de O9 et à 0,97 Å de Nb2.

Computing details

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Unité structurale dans Na₃Nb₄As₃O₁₉. Les éllipsoïdes ont été définis avec 50% de probabilité. [*Code de symétrie*: (i)-*x*, -*y* + 1, *z* + 1/2; (ii)*x*, *y*, *z* + 1; (iii)-*x* + 1, -*y* + 1, *z* + 1/2; (iv)-*x* + 1, *y*, -*z* + 1/2; (v)-*x* + 1, *y*, -*z* + 3/2; (vi)-*x* + 1/2, -*y* + 3/2, *z* + 1/2; (vii)*x* + 1/2, -*y* + 3/2, -*z*; (viii)-*x*, *y*, -*z* + 1/2; (ix)-*x* + 1, *y*, -*z* + 5/2; (*x*)-*x*, *y*, -*z* + 3/2; (xi)-*x*, -*y* + 1, *z* - 1/2].

Représentation: (a) du groupement classique cyclique Nb₂AsO₁₃ et (b) de l'unité originale Nb₂As₂O₁₇.

Représentation: (*a*) des chaînes ondulées de type $[Nb1_2O_{10}]_{\infty}$ et (*b*) des rubans de type $[Nb_4O_{18}]_{\infty}$.

Vue en perspective, selon c, montrant la jonction entre les rubans et les chaînes ondulèes.

Projection de la structure de Na₃Nb₄As₃O₁₉ selon c, montrant les canaux où se situent les cations.

trisodium tetraniobium triarsenic nonadecaoxide

Crystal data
Na ₃ Nb ₄ As ₃ O ₁₉
$M_r = 969.37$
Orthorhombic, C2221
Hall symbol: C 2c 2
a = 13.014 (2) Å
b = 24.170(3) Å
c = 5.0880 (9) Å
V = 1600.4 (3) Å ³

Z = 4

F(000) = 1792 $D_x = 4.023 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 9.13 \text{ mm}^{-1}$ T = 298 KPrism, colourless $0.35 \times 0.25 \times 0.16 \text{ mm}$ Data collection

Enraf–Nonius CAD-4 diffractometer	1757 independent reflections 1516 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
Graphite monochromator	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
$\omega/2\theta$ scans	$h = -1 \rightarrow 16$
Absorption correction: ψ scan	$k = -1 \rightarrow 30$
(North <i>et al.</i> , 1968)	$l = -6 \rightarrow 6$
$T_{\min} = 0.083, T_{\max} = 0.230$	2 standard reflections every 120 min
2116 measured reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = \frac{1}{[\sigma^2(F_0^2) + (0.0368P)^2]}$
$wR(F^2) = 0.076$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$

1757 reflections159 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

$\Delta \rho_{\text{max}} = 0.75 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.91 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 718 Friedel pairs Flack parameter: 0.019 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Nb1	0.09989 (4)	0.61182 (2)	0.98822 (12)	0.00837 (14)	
Nb2	0.5000	0.55734 (4)	0.7500	0.0191 (2)	
Nb3	0.5000	0.66841 (3)	0.2500	0.0147 (2)	
As1	0.28249 (5)	0.61930 (3)	0.51616 (17)	0.00926 (16)	
As2	0.0000	0.73103 (4)	0.2500	0.0116 (2)	
Na1	0.2677 (4)	0.5000	0.0000	0.066 (3)	0.937 (16)
Na2	0.0494 (12)	0.5000	0.5000	0.044 (4)	0.68 (3)
Na3	0.184 (4)	0.5000	0.5000	0.027 (18)*	0.092 (18)
Na4	0.105 (7)	0.5000	0.5000	0.029 (17)*	0.11 (3)
Na5	0.771 (3)	0.7465 (10)	0.753 (13)	0.014 (11)*	0.12 (2)
Na6	0.742 (4)	0.7414 (15)	0.629 (18)	0.022 (14)*	0.11 (3)
Na7	0.7659 (13)	0.7594 (7)	0.006 (11)	0.010 (5)*	0.191 (16)
Na8	0.7726 (19)	0.7525 (11)	0.892 (12)	0.018 (8)*	0.17 (2)
01	0.3557 (4)	0.6722 (2)	0.3978 (9)	0.0126 (11)	
O2	0.0000	0.4110 (3)	0.7500	0.0139 (14)	
03	0.2178 (4)	0.64941 (19)	0.7635 (11)	0.0148 (10)	

supplementary materials

O4	0.1043 (4)	0.6949 (2)	0.1612 (10)	0.0151 (10)
05	0.2132 (4)	0.5923 (2)	0.2719 (12)	0.0156 (11)
O6	0.6461 (4)	0.56446 (17)	0.8803 (9)	0.0096 (10)
O7	0.4590 (5)	0.5000	0.0000	0.0149 (14)
08	0.1235 (4)	0.5478 (2)	0.8340 (10)	0.0151 (10)
09	-0.0435 (4)	0.7711 (2)	0.0017 (15)	0.0264 (14)
O10	0.0000	0.6408 (3)	0.7500	0.0150 (15)
O11	0.4634 (4)	0.61482 (19)	0.0053 (14)	0.0234 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nb1	0.0069 (3)	0.0093 (3)	0.0089 (3)	-0.00043 (19)	0.0005 (4)	-0.0009 (2)
Nb2	0.0102 (4)	0.0107 (4)	0.0364 (6)	0.000	-0.0103 (5)	0.000
Nb3	0.0139 (4)	0.0088 (4)	0.0212 (4)	0.000	0.0098 (4)	0.000
As1	0.0060 (3)	0.0116 (3)	0.0101 (4)	0.0003 (2)	0.0005 (3)	0.0015 (3)
As2	0.0091 (5)	0.0072 (4)	0.0186 (5)	0.000	-0.0002 (5)	0.000
Na1	0.012 (3)	0.036 (4)	0.150 (8)	0.000	0.000	0.036 (6)
Na2	0.045 (8)	0.024 (4)	0.063 (7)	0.000	0.000	-0.026 (5)
01	0.007 (2)	0.015 (3)	0.015 (3)	0.000 (2)	-0.0004 (19)	0.004 (2)
O2	0.010 (3)	0.020 (3)	0.012 (3)	0.000	-0.006 (3)	0.000
03	0.013 (2)	0.014 (2)	0.017 (3)	-0.0008 (19)	0.004 (3)	-0.003 (2)
O4	0.008 (2)	0.015 (2)	0.022 (3)	0.000 (2)	-0.001 (2)	-0.005 (2)
05	0.010 (2)	0.018 (2)	0.019 (3)	-0.002 (2)	-0.007 (2)	0.000(2)
06	0.011 (2)	0.002 (2)	0.016 (3)	-0.0010 (19)	-0.005 (2)	0.0001 (18)
07	0.012 (3)	0.012 (3)	0.020 (4)	0.000	0.000	0.009 (4)
08	0.016 (2)	0.010(2)	0.020 (2)	0.002 (2)	0.001 (2)	-0.006 (2)
09	0.016 (3)	0.022 (3)	0.041 (4)	-0.003 (2)	-0.001 (3)	0.025 (3)
O10	0.014 (3)	0.016 (3)	0.015 (4)	0.000	-0.005 (4)	0.000
011	0.011 (2)	0.023 (3)	0.037 (3)	-0.0011 (18)	-0.004 (3)	-0.016 (4)

Geometric parameters (Å, °)

Nb1—O8	1.762 (5)	Na2—O8 ^x	2.270 (9)
Nb1-010	1.910 (3)	Na2—O2 ^{xiii}	2.580 (7)
Nb1—O2 ⁱ	1.941 (3)	Na2—O2	2.580 (7)
Nb1—O5 ⁱⁱ	2.117 (6)	Na2—O8 ^{xiii}	2.667 (14)
Nb1—O3	2.119 (5)	Na2—O8 ^{xiv}	2.667 (14)
Nb1—O4 ⁱⁱ	2.194 (5)	Na3—O8 ^x	2.202 (19)
Nb2—O7 ⁱⁱⁱ	1.955 (2)	Na3—O8	2.202 (19)
Nb2—O7 ⁱⁱ	1.955 (2)	Na3—O5	2.542 (9)
Nb2—O11 ⁱⁱ	1.961 (6)	Na3—O5 ^x	2.542 (9)
Nb2—O11 ^{iv}	1.961 (6)	Na3—O6 ^v	2.77 (4)
Nb2—O6 ^v	2.021 (5)	Na3—O6 ^{xii}	2.77 (4)
Nb2—O6	2.021 (5)	Na4—O8	2.069 (11)
Nb3—O11	1.859 (6)	Na4—O8 ^x	2.069 (11)
Nb3—O11 ^{iv}	1.859 (6)	Na4—O2 ^{xiii}	2.85 (4)
Nb3—O9 ^{vi}	2.024 (6)	Na4—O2	2.85 (4)
Nb3—O9 ^{vii}	2.024 (6)	Na4—O5	2.88 (4)
Nb3—O1	2.025 (5)	Na4—O5 ^x	2.88 (4)

Nb3—O1 ^{iv}	2.025 (5)	Na5—O3 ^v	2.35 (3)
As105	1.669 (6)	Na5—O1 ^{xv}	2.38 (2)
As1—O3	1.680 (6)	Na5—O4 ^{xv}	2.62 (2)
As1—O6 ^v	1.702 (4)	Na5—O9 ^{xvi}	2.80 (5)
As101	1.705 (5)	Na6—O3 ^v	2.35 (4)
As2—O4 ^{viii}	1.676 (5)	Na6—O1 ^{xv}	2.56 (4)
As2—04	1.676 (5)	Na6—O4 ^{xv}	2.59 (4)
As2—O9 ^{viii}	1.690 (6)	Na6—O9 ^{vi}	2.68 (6)
As2—09	1.690 (6)	Na7—O9 ^{xvii}	2.496 (17)
Na1—O8 ^{ix}	2.360 (7)	Na7—O4 ^{vii}	2.523 (18)
Na1—O8 ^x	2.360 (7)	Na7—O3 ^{xv}	2.57 (4)
Na1—O7	2.489 (8)	Na7—O1 ^{iv}	2.681 (17)
Na1—O5	2.718 (6)	Na8—O9 ^{xvi}	2.50 (3)
Na1—O5 ^{xi}	2.718 (6)	Na8—O4 ^{xv}	2.55 (2)
Na1—O6 ^{iv}	2.726 (6)	Na8—O1 ^{xv}	2.58 (3)
Na1—O6 ^{xii}	2.726 (6)	Na8—O3 ^v	2.62 (4)
Na2—O8	2.270 (9)		
O8-Nb1-O10	99.1 (2)	O6 ^v —Nb2—O6	170.2 (2)
08-Nb1-O2 ⁱ	99.9 (3)	O11—Nb3—O11 ^{iv}	91.6 (4)
O10-Nb1-O2 ⁱ	94.80 (12)	O11—Nb3—O9 ^{vi}	177.1 (3)
08—Nb1—O5 ⁱⁱ	89.2 (2)	O11 ^{iv} —Nb3—O9 ^{vi}	90.5 (3)
O10-Nb1-O5 ⁱⁱ	171.3 (2)	O11—Nb3—O9 ^{vii}	90.5 (3)
O2 ⁱ —Nb1—O5 ⁱⁱ	86.28 (18)	O11 ^{iv} —Nb3—O9 ^{vii}	177.1 (3)
O8—Nb1—O3	90.6 (2)	O9 ^{vi} —Nb3—O9 ^{vii}	87.5 (4)
O10-Nb1-O3	89.64 (18)	O11—Nb3—O1	92.5 (2)
O2 ⁱ —Nb1—O3	167.8 (2)	O11 ^{iv} —Nb3—O1	91.2 (2)
O5 ⁱⁱ —Nb1—O3	87.7 (2)	O9 ^{vi} —Nb3—O1	89.5 (2)
08—Nb1—O4 ⁱⁱ	168.0 (2)	O9 ^{vii} —Nb3—O1	86.7 (2)
O10—Nb1—O4 ⁱⁱ	86.4 (2)	O11—Nb3—O1 ^{iv}	91.2 (2)
O2 ⁱ —Nb1—O4 ⁱⁱ	90.2 (2)	O11 ^{iv} —Nb3—O1 ^{iv}	92.5 (2)
$O5^{ii}$ —Nb1—O4 ⁱⁱ	85.0 (2)	O9 ^{vi} —Nb3—O1 ^{iv}	86.7 (2)
O3—Nb1—O4 ⁱⁱ	78.75 (19)	O9 ^{vii} —Nb3—O1 ^{iv}	89.5 (2)
O7 ⁱⁱⁱ —Nb2—O7 ⁱⁱ	89.72 (14)	O1—Nb3—O1 ^{iv}	174.8 (3)
07 ⁱⁱⁱ —Nb2—O11 ⁱⁱ	178.2 (2)	O5—As1—O3	117.2 (3)
07 ⁱⁱ —Nb2—O11 ⁱⁱ	90.3 (2)	O5—As1—O6 ^v	102.7 (2)
O7 ⁱⁱⁱ —Nb2—O11 ^{iv}	90.3 (2)	O3—As1—O6 ^v	112.3 (3)
O7 ⁱⁱ —Nb2—O11 ^{iv}	178.2 (2)	O5—As1—O1	109.4 (3)
O11 ⁱⁱ —Nb2—O11 ^{iv}	89.8 (4)	O3—As1—O1	102.7 (2)
O7 ⁱⁱⁱ —Nb2—O6 ^v	95.9 (2)	O6 ^v —As1—O1	112.8 (2)
O7 ⁱⁱ —Nb2—O6 ^v	91.0 (2)	O4 ^{viii} —As2—O4	117.2 (3)
O11 ⁱⁱ —Nb2—O6 ^v	85.9 (2)	O4 ^{viii} —As2—O9 ^{viii}	111.6 (3)
011 ^{iv} —Nb2—O6 ^v	87.2 (2)	O4—As2—O9 ^{viii}	103.2 (2)
O7 ⁱⁱⁱ —Nb2—O6	91.0 (2)	O4 ^{viii} —As2—O9	103.2 (2)
O7 ⁱⁱ —Nb2—O6	95.9 (2)	O4—As2—O9	111.6 (3)

O11 ⁱⁱ —Nb2—O6	87.2 (2)	O9 ^{viii} —As2—O9	110.0 (4)
O11 ^{iv} —Nb2—O6	85.9 (2)		

Symmetry codes: (i) -x, -y+1, z+1/2; (ii) x, y, z+1; (iii) -x+1, -y+1, z+1/2; (iv) -x+1, y, -z+1/2; (v) -x+1, y, -z+3/2; (vi) -x+1/2, -y+3/2, z+1/2; (vii) x+1/2, -y+3/2, z+1/2; (vii) x+1/2, -y+3/2, z+1/2; (ix) x, y, z-1; (ix) x, -y+1, -z+1; (ii) x, -y+1, -z+1/2; (iii) -x, -y+1, z-1/2; (iiii) -x, -y+1, z-1/2; (iv) -x, y, -z+3/2; (iv) x+1/2, -y+3/2, -z+1; (iv) x+1, y, z-1; (iv) x+1, y, z-1; (iv) x+1, y, z-1/2; (iv) -x, y, -z+3/2; (iv) x+1/2, -y+3/2, -z+1; (iv) x+1, y, z-1; (iv) x+1, y, z-1; (iv) x+1, y, z-1; (iv) x+1, y, z-1; (iv) x+1, y, z-1/2; (iv) -x, y, -z+3/2; (iv) x+1/2, -y+3/2, -z+1; (iv) x+1, y, z-1; (iv) x+1, y, z.