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Abstract: Highly efficient gene delivery systems are essential for genetic engineering in plants. Tradi-
tional delivery methods have been widely used, such as Agrobacterium-mediated transformation,
polyethylene glycol (PEG)-mediated delivery, biolistic particle bombardment, and viral transfection.
However, genotype dependence and other drawbacks of these techniques limit the application of
genetic engineering, particularly genome editing in many crop plants. There is a great need to develop
newer gene delivery vectors or methods. Recently, nanomaterials such as mesoporous silica particles
(MSNs), AuNPs, carbon nanotubes (CNTs), and layer double hydroxides (LDHs), have emerged as
promising vectors for the delivery of genome engineering tools (DNA, RNA, proteins, and RNPs)
to plants in a species-independent manner with high efficiency. Some exciting results have been re-
ported, such as the successful delivery of cargo genes into plants and the generation of genome stable
transgenic cotton and maize plants, which have provided some new routines for genome engineering
in plants. Thus, in this review, we summarized recent progress in the utilization of nanomaterials
for plant genetic transformation and discussed the advantages and limitations of different methods.
Furthermore, we emphasized the advantages and potential broad applications of nanomaterials in
plant genome editing, which provides guidance for future applications of nanomaterials in plant
genetic engineering and crop breeding.

Keywords: gene delivery; transformation; genetic engineering; nanomaterials; crop breeding

1. Introduction

Climate change and rapidly increasing human populations pose challenges to ensuring
food security worldwide [1]. Plant genetic engineering, which is also known as genetic
transformation or genomic manipulation, is a key strategy for breeding crops with valuable
traits such as increased yield and nutrition value, enhanced tolerance to biotic and abiotic
stresses, efficient nutrient uptake, and herbicide tolerance to meet future demands [2].
Delivering genes of interest from other species into a plant genome by transient expression
or stable integration enables attainment of desired agronomic traits [3].

Highly efficient gene delivery methods are essential for genetic engineering. Tradi-
tional delivery systems include Agrobacterium-mediated transformation, biolistic particle
bombardment, polyethylene glycol (PEG)-mediated transfection, and viral transfection.
These systems have been established in many plant species, including staple crops, fruits,
vegetables, and even trees. However, strong genotype dependence and highly technical
requirements of these systems limit their broad application [4,5]. In recent years, the uti-
lization of developmental regulators (DRs), which are also referred to as morphogenic reg-
ulators (MRs), such as the WUS (WUSCHEL), BBM (BABY BOOM) and GRFs (GROWTH-
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REGULATING FACTORs), have been proven to overcome genotype dependence in plant
regeneration [6–11], while in many plant species, the delivery of exogenous DNA or RNA
is genotype dependent and is the main bottleneck in genetic transformation. Therefore,
there is an urgent need to develop new delivery vectors for genome engineering.

The clustered regularly interspaced short palindromic repeats (crispr)/crispr asso-
ciated protein (Cas) genome editing system is the most popular and promising genome
engineering tool in the past decade, because of its ability to precisely modify target DNA
with high efficiency and conveniency [12]. This RNA-guided endonuclease system can
be delivered into cells in the form of plasmid DNA, DNA fragments, RNA, and ribonu-
cleoproteins (RNPs) [13]; other materials can only be conveyed in certain forms, such as
single-stranded oligo donor (ssODN) and double-stranded oligo donor (dsODN) that are
commonly used in target fragment insertions and replacements [14,15]. As compared with
studies in mammalian cells and bacteria, which could directly escort these materials into
single cells with well-established lipofectamine and polyethyleneimine (PEI) transforma-
tion assay, the presence of the cell wall and the requirements of the tissue culture process
make delivery of these materials quite challenging in plants. Some of these materials are
quite critical, such as the RNA and RNPs, which can generate transgene-free genome-edited
plants without the integration of exogenous DNA sequences [13]. These generated plants
are not regarded as genetically modified organisms (GMOs) in many countries [16]. Thus,
new delivery methods with various cargo types and high efficiency are key to applying
genome editing in crop breeding.

A special lecture entitled “There’s plenty room at the bottom” expanded the influ-
ence of nanomaterials [17]. In the 21st century, there have been rapid developments in
nanomaterials which are used in some of the most advanced technologies and have the
potential to revolutionize fields such as catalytic science, electronic technology, medicine,
and agriculture [18]. Due to their small size (<100 nm), nanomaterials exhibit unique
physical and chemical properties, and further potential applications in gene delivery have
been taken into consideration. For example, several nanomaterials have been reported to
be directly taken up by animal and plant cells. Nanomaterials have been commonly used
as drug vectors in animal cells. Modifications can be made to nanomaterial surfaces that
allow them to act as vectors to deliver nucleotides and proteins. Inspired using transgenic
nanomaterials in animals and human cells, some studies have reported that nanomaterials
allow foreign plasmid DNA or dsRNA to pass through rigid plant cell walls and remain
functional. In this review, we summarize the advantages and disadvantages of traditional
gene delivery methods. Furthermore, we focus on the prospects of nanomaterials for future
crop breeding and genome engineering in plants.

2. The Merits and Limitations of Traditional Delivery Methods

Genome engineering is an important strategy for sustainable crop development and
breeding and it is expected to be the key in future breeding efforts [19]. Commonly
used methods of engineering in the last century have included Agrobacterium-mediated
infection, particle bombardment, PEG-induced transfection, and viral transfection showed
as the Table 1 [20,21].

Agrobacterium-mediated infection is the most widely used delivery system in plant
genetic engineering [22]. Transfer DNA (T-DNA) is released from the binary vectors, which
is engineered from the Agrobacterium tumor-inducing (Ti) plasmid and subsequently
integrated into the plant genome [23]. As dicots are the natural hosts for Agrobacterium,
Agrobacterium-mediated infection is relatively easier in dicots as compared with monocots.
This is mainly due to the fact that wounds cause phenolic signal molecules in dicot plants to
induce the expression of Vir genes to facilitate the transformation process, which is absent
in monocots. Adding exogenous acetosyringone (AS) can also activate the expression of the
Vir genes, thus, it is required for Agrobacterium-mediated transfection of monocot plants.
This obstacle can also be bypassed by constitutive strains, which constitutively activate the
expression of Vir genes [24,25]. Now, in many model monocot varieties, Agrobacterium-
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mediated transformation is quite efficient and stable. However, in many other cultivars,
both in monocots and dicots, Agrobacterium-mediated genetic transformation is still
quite challenging.

There are many factors that affect the efficiency of Agrobacterium-mediated transfor-
mation [26]. The most well-known barrier is the genotype dependence among different
varieties even from the same plant species. Differences in genetic background, and the phys-
ical and metabolic conditions lead to different responses to Agrobacterium infection [27–29].
Different regeneration abilities among cultivars have been observed almost in all plants.
DRs are activated during plant regeneration, with dramatic responses in different plant
species. In recent years, transient or stable overexpression of DRs, such as BBM, WUS,
GRF5, and GRF4-GIF1, have been proved to successfully overcome this bottleneck in many
plants’ genetic transformation processes [6–10].

However, in some plant species, the physical and metabolic properties make Agrobac-
terium an unsuitable vector to deliver exogenous DNAs [26]. For example, the specialized
metabolites (such as ethylene, salicylic acid, and γ-aminobutyric acid (GABA)) in many
varieties inhibit the growth and the gene transferring efficiency of Agrobacterium [30–32].
Antagonism between some host plants and Agrobacterium can lead to a diseased state [33].
Furthermore, tissue culture conditions, such as the density of Agrobacterium, the concentra-
tion of AS, the preculture course, the co-inoculation time, and the types and concentrations
of hormones need to be tested for every variety. Apart from this, other transformation
materials, such as RNA, RNPs, or oligonucleotides, cannot be delivered through Agrobac-
terium. In addition, these materials are quite important in the genome editing of crops to
produce transgene-free and precise genome-edited varieties [34,35]. Thus, Agrobacterium-
mediated transformation is simple and convenient but it is not suitable for all plant species
or purposes, and its efficiency should be improved.

Particle bombardment is carried out by a biolistic delivery system, also known as a
gene gun, which was established in 1987. Exogenous biomolecules (such as DNA, RNA,
proteins, and peptides) bound to gold particles pass through the plant cell wall to reach
the nucleus and other organelles with the help of external high pressure [36–38]. This
method is considered to be one of the most promising methods in plant genetic engineering,
because there is no limit in the genetic materials and the tissue types used, especially for
transformation of mitochondria and chloroplasts [39]. Nevertheless, its application in
commercial breeding is quite limited due to random and multiple-copy insertions of target
DNA, and the often observed chromosome deletions, translocations, and inversions [40],
which are the result of highly pressurized particles [41].

PEG-induced protoplast transfection was the earliest method used in cereal crop
transformation. PEG solution reverses the permeability of the cell membrane, which allows
foreign genes to easily pass into the nucleus [42]. This method is highly efficient, relatively
easy to perform on many plant species, and has been used to deliver plasmids, RNA, and
RNPs [13,43]. Thus, it has been widely used to transiently investigate the localization and
functions of desired genes and to identify the genome editing efficiency of target sites.
However, regeneration of transfected protoplasts into mature plants is time-consuming,
laborious, and has highly technical requirements [44].

Plant viruses can also be used to deliver genes; genes of interest can be packed and
replicated during the viral replication cycle [45]. Viral vectors have been widely used to
study gene function via the virus-induced gene silencing (VIGS) system [46]. Last year, a
method was reported in which Agrobacterium with virus vectors was sprayed on leaves to
improve crop features [47]. Recently, viral vectors have been used to deliver single guide
RNAs (sgRNAs) to transgenic cotton, tobacco, Arabidopsis thaliana, tomato, wheat, and
maize plants overexpressing Cas9. Formation of the Cas9–sgRNA complex allowed for
precise genome editing at the target site. Genome-edited plants that were free of viruses
could be obtained in the next generation [48]. However, many concerns existed in virus
vectors. Utilization of plant viruses is a great safety concern in plant breeding, as many
viruses, seed borne and transmissible, cause severe growth defects. Engineered virus
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vectors undermine the toxicity of these viruses, but they can still cause growth abnormities.
Endogenous gene silencing of viruses is a major resistance for the efficiency of virus vectors,
which explains why tobacco is the most used host for virus and virus vector studies, as
the gene silencing of viruses is very weak in tobacco [49]. The host range of viruses also
limits their application. The tobacco rattle virus (TRV) vectors are the most widely used
virus vectors in dicot and monocot plants, but they cannot be used in nonhost plants such
as rice [50]. The virus vectors need to be systemically spread, and the spread time and
operation requires high skills.

Table 1. The merits and limitations of traditional delivery methods of plants genome engineering.

Traditional
Delivery Methods Merits Limitations Cargo Types Ref.

Agrobacterium
Well-established

protocols, low cost and
widely used

Genotype-dependent;
limited cargo type; Antagonism

between Agrobacterium and
plants, not appliable in several

plant species; cargo
type limitation

Plasmid DNA [22,26]

Particle bombardment

Promising in the
genome engineering of

mitochondria and
chloroplasts, suitable

for all cargos

Random insertions, tissue type
depended, host genome
damages often happen,
expensive equipment

and materials

Plasmid DNA, RNA,
RNPs, synthesized

oligonucleotide
[37,38,41]

PEG
Highly efficient in

protoplast, suitable for
all cargos

Time-consuming, cell limitations,
regeneration inefficient,

polyploid formation

Plasmid DNA, RNA,
RNPs, synthesized

oligonucleotide
[13,42]

Plant virus
Genotype-

independent, high level
of transient expression

Cargo size limitations,
plant species restricted,

safety concern in crop yield
DNA, RNA [46,48]

3. Nanomaterial-Induced Gene Delivery Systems

Nanoscale materials exhibit a significant advantage in agricultural activities [51].
Nanonutrients, -pesticides, and -fertilizers promote plant health and yield better than
common commercial formulations with equal or lower concentrations, smaller size which
facilitates their better physical and chemical performance, and they can be easily assimilated
by cells. Nanopesticides and -fertilizers are nearly 30% more efficient than conventional
applications [52]. Furthermore, nanomaterials have minimal toxicity, which may yield
more opportunities for future agricultural development [53].

The unique properties of nanomaterials make them easily obtained by plant cells.
Nanoparticles such as pesticides and fertilizers have been confirmed via transmission
electron microscopy to be delivered into plant cells. However, the mechanisms by which
such nanoparticles enter plant cells have only been partially uncovered. A lipid exchange
envelope penetration (LEEP) model was proposed to explain how nanotubes penetrate the
double lipid layer of plant cells [54]. Traditionally, cuticular and stomatal uptake have been
considered to be the two main pathways of nanomaterial entry into foliar and cells [55].
The specific micro/nanostructures on leaf surfaces in different plant species affect the
entry of nanomaterials into leaves [56]. Particle size is the primary factor limiting the
entry of nanoparticles into plants. Yong et al. (2021) reasoned that 50 nm was the baseline
for nanomaterials that could freely penetrate plant pollen cells [57]. Other studies have
suggested that the size of nanoparticles that can freely enter plant cells should be less than
20 nm at least in one dimension. Other nanomaterial features (e.g., shape and zeta potential)
also affect entry into plant cells. Nano-delivery systems have high transferring efficiency
when the net zeta potential values are over 30 mV, because a low zeta potential value can
induce aggregation and a high value makes the delivery system more stable [58,59]. When



Int. J. Mol. Sci. 2022, 23, 8501 5 of 17

the nano-plasmid complex is injected into or absorbed by plants, it can be released, and
high transferring efficiency is obtained [58]. Zhang et al. used different shapes and particle
sizes of AuNPs (sphere, bar) to inject RNAi into GFP-overexpressing N. benthamiana leaves
and found the bar AuNPs had higher transferring efficiency [60].

Nanomaterials have successfully been used to mediate foreign gene expression and
CRISPR/Cas-based genome editing in human cells to treat diseases [61]. The cell wall is a
natural barrier that blocks entry of foreign materials into the cytoplasm or organelles of
plants [62]. Recently, various nanomaterials have been reported as vectors for delivering
foreign genes into plant cells, such as mesoporous silica nanoparticles (MSNs), liposome,
modified magnetic metal particles, layered double hydroxides, and carbon tubes; for
each of these materials, at least one dimension is smaller than 100 nm. Two methods
have been described for loading plasmids onto nanoparticles: ion exchange (IE) and
electrostatic adsorption. As compared with IE, the electrostatic adsorption method adsorbs
nearly 100% of the plasmid within a short time period and gives strong protection from
deoxyribonuclease I (Figure 1).
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Figure 1. The gene nanovectors for future breeding works in different plants. Several types of
nanomaterials, such as the liposome, modified metal nanoparticles (NPs), magnetic NPs, mesoporous
silica nanoparticles (MSNs), layered double hydroxides (layer NPs), and carbon nanotubes (CNTs)
have been used to deliver cargo genes into plants. Since the target nucleotide (DNA and RNA) are
negatively charged, these nanovectors are positively charged. The nanomaterial–DNA complex could
be delivered to plant cells by spraying, injection, or co-culturing, to improve the performance of
the plants.

It was first reported in 1992 that a micromaterial, silicon carbide fibers, was utilized to
deliver plasmid with GUS and Bar genes into tobacco suspension cells [63]. A Southern blot
analysis proved a high percentage of positive transformation events. They proposed that
silicon carbide fibers, which are like a needle, hooked on the tissues and penetrated into the
cells. This method was applied to wheat and maize mature embryos, and transgenic maize
was harvested. Strong GUS expression was observed in offspring after two years [64]. In
2008, salt tolerant cottons were reported by using silicon carbide whiskers to introduce a
foreign gene [65]. The exact mechanism for this method is still in dispute. It is possible that
the silicon carbide whiskers do not carry the gene, but they are hard enough to penetrate
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cell walls and open access for gene to enter the plant callus (cotton, maize, and wheat).
Since then, gene nanovector technology has been gradually developed and reported.

Due to the intrinsic hardness and excellent shock of silicon nanomaterials, lots of
decorated MSNs surfaces are used as vectors, which has drawn a great deal of attention
in recent years. MSN particles have been used to deliver pesticides, fertilizers, and other
agricultural chemicals [66,67]. Torney et al. (2007) used different functional groups to
decorate MSNs. These functional MSNs with green fluorescence label can penetrate tobacco
protoplast without external force. Additionally, decorated MSNs have been used as the
‘powder’ of the gene gun to replace the expensive gold powder required in bombardment
of leaves and callus, and the GFP signal can be detected within a short time interval [68].
MSNs decorated with gold nanoparticles (Au-MSNs) have been used to co-deliver plasmids
and proteins into white onion epidermis cells with the help of a gene gun, and the green
signal was detected after 24 h [69]. The Au-MSNs release plasmids and proteins after
passing through cell walls. To find other routines for the nano-mediated transgene, smaller
MSNs (~40 nm) bound to DNA can be absorbed by tomato leaf and shoot cells after
spraying or injection. The GUS gene was applied to test the feasibility of the delivery
system. Reverse transcription (RT)-PCR and Western blot were conducted to monitor gene
expression and demonstrated that materials less than 100 nm in size could pass through
the cell wall without assistance depicted as the Figure 2 [70].
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Figure 2. The application of nanomaterials in plant genetic engineering. By spraying, injection,
and co-culturing cargo-packaged nanomaterials, plants can be engineered using stable integration
or transient expression of exogenous genes (a), or by knockdown of target genes by delivering
microRNAs (b), or by precise genome editing through the delivery of the CRISPR/Cas system (c).

There have been reports in which magnetic particles are used as the vector to enter
plant cells through larger pores such as pollen cells or protoplasts, and foreign genes are
then expressed with the help of a magnetic field. FITC signals, which are delivered by
PEG-modified magnetic gold particles (mGNPs, ~30 nm) have been observed in over 95%
of canola protoplasts [71]. Plasmid with GUS gene bound with mGNPs were transferred
into canola cells and GUS expression was detected after co-culturing for 48 h. In 2017,
magnetic Fe3O4 was decorated with branched polyethyleneimine (PEI) and introduced
into pollen cells via the pollen aperture. This system was tested by GUS gene in many
plant species including cotton, lily, chili pepper, etc. Furthermore, Bt-resistance genes
have been transferred in to cotton pollens. Transgenic plants were obtained and it was
hypothesized that integration of the foreign genes into the cotton genome was responsible
for the high pest resistance observed in the offspring. This method was much faster than
the traditional breeding process [72]. Similar methods have also been reported in maize. It
has been found that pollen can absorb DNA nanoparticles with high ability under specific
conditions; maize embryos have been confirmed to contain GUS genes transferred by
magnetic nanoparticles [73]. Similarly, the offspring of transgenic maize displayed the
desired features of foreign genes vividly showed as the Figure 3.
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Figure 3. The magnetic nanovectors induce genome engineering with pollens of plants. Plant pollens
(about 3–5 µm) are collected and incubated with nanomaterial–DNA complexes in a magnetic field.
Then, the transgene DNA-containing pollens are sprayed onto the surface of pistil stigma to obtain
the transgenic seeds.

Single and multiple wall nanotubes (SWNTs and MWNTs, respectively) have both
been used as gene vectors in plants. Demirer et al. (2019) used positively charged materials
including PEI (with different molecular weights), chitosan, and sodium dodecyl sulfate
(SDS) as the nucleic acid joint to modify SWNTs and MWNTs. In addition, green fluorescent
protein (GFP) and yellow fluorescent protein (YFP) have been successfully expressed in
N. benthamiana leaves and even in the chloroplast using decorated SWNTs as the vector
after injection or co-culture [59,74]. They found this delivery system coulf be applied to
wheat, cotton, and arugula. However, GFP signals diminished within one week, which
may be due to physical damage caused by injection of foreign genes. Furthermore, GFP
signals have been observed in protoplasts several hours after penetration by SWNT with
SDS decorating. This technique was used to knock down target genes by delivering siRNA
into GFP-overexpressing tobacco plants just as the Figure 2a,b [75]. A series of studies by
the same authors clearly demonstrated the potential of nanomaterials in gene engineering
assays and applied this technique as a sensor for plant disease detection [76].

Other nanomaterials have also received attention as potential gene vectors. Layered
double hydroxides (LDHs) is a 2D nano-sheet material that can easily be synthesized and
contains highly positive charges. As compared with other methods, it is more compatible
with animal cells (including human cells). LDHs show better leaf adhesion as a result of
multiple hydroxyl groups among the layers [57]. Traditionally, LDHs have been used as a
tracker for medicine and agrichemicals [77,78]. Bao et al. (2016) used LDHs to introduce
an FITC–DNA short fragment into BY2 and Arabidopsis root cells, and strong signals of
FITC were detected within 2 days [79]. Double-stranded RNA has shown great potential
to replace genetically modified crops for pest control in the future [80]. Mitter et al. (2017)
used LDH nano-sheets as a dsRNA vector, which gave plants long-lasting (over 20 days)
protection against viruses as compared with a direct spray of dsRNA and the RNA obtained
better protection due to nanovectors. Double standed RNA was hard to wash off plant
leaves when it was loaded on LDHs [81]. Liu et al. (2020) obtained similar results using
LDHs; plants showed better resistance to whitefly-transmitted begomoviruses when LDHs
were used as a vector of artificial microRNA [82]. As compared with other nanomaterials,
LDHs are safer and can be decomposed in ambient air. Therefore, they may be a promising
nanovector for genome engineering. The relatively small LDH–RNA complexes can also
enter plant pollen without external force and show higher knockdown efficiency than larger
complexes. Yong et al. synthesized four classes of LDHs (nearly 120, 80, 50 and 30 nm).
They demonstrated that, when the nanovector particle size was smaller than 50 nm, it could
penetrate into plant cells freely. The smallest vectors (30 nm) showed the best silencing
efficiency to target gene [58]. The unique adhesive properties of plant leaves may allow for
novel methods of LDH application. The above results indicate that LDH is an advanced
gene vector for plants.
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The smallest nanomaterials (less than 20 nm), such as carbon dots (CDs) and AuNPs,
also show great promise as gene vectors in plants. Crops treated with CDs show enhanced
yield and great resistance to adversity [83]. A CD–DNA complex applied with a surfactant
resulted in GFP expression in mature tomato leaves. Then, they realized target gene knock-
down in GFP overexpression plants [84]. Huang et al. used PEI-decorated CDs, whose
particle size was less than 10 nm, as the vector realized foreign gene expression. Firstly,
they used the CDs to take the report systems (mcherry and GFP) realized expression in rice
root and wheat leaves. GUS gene expression was delivered by PEI-CDs in fresh rice callus
under the help of vacuum infiltration. The nanovector was used to transfer the plasmid
expressing the hygromycin resistance gene into wheat leaves which showed great resistance
in the hygromycin solution as compared with the wide type. [85]. AuNPs have shown
advanced applications in unique optical, sensor, biochemical, etc. They are also used as the
gene vector for animal cells. This delivery system has minimal cytotoxicity [86]. However,
the use of this vector in plant cells has rarely been reported. Zhang et al. 2021) used the
different sizes and shapes of AuNPs to take DNA-Cy3 into plant cells by injection [60].
Rod-shaped AuNPs can internalize into plant cells but the 10 nm spherical AuNPs show
high RNAi efficiency to target gene [60].

Actually, the other organic polymers and liposome are often used in genome engineer-
ing works, especially in animal and clinical treatment of diseases [87,88]. In 2021, liposomes
as the vector of the CRISPR-Cas system were applied for human cancer therapy [61]. Lipo-
somes are synthesized by different single amphiphilic lipids or different lipids which are
charged or neutral [89]. Liposomes have better compatibility to biomolecules including
proteins, enzymes, and nucleic acids [90]. The spraying method has been used to apply
liposomes to plant leaves by Karny et al. They found the active ingredient (contained Mg
and Ca) can be realized in plants [91].

Because of the special characteristic of liposomes, they are often used as the carrier
for genes into cells by infusion with cytomembrane or endocytosis [92]. Wang et al. (1986)
used calcein fluorescence as the marker to detect the transferring rate in carrot protoplasts,
over 89% of which could absorb negative liposomes [93]. Liposomes can envelope various
materials including DNA plasmid, RNA, and different sized DNA fragments. Tobacco
mosaic virus (TMV) RNA has been entrapped in negative liposomes, which could be
expressed in target cells. According to previous results, entrapped TMV RNA infected
Vinca, Petunia, and the protoplasts of tobacco [94–98]. GAD et al. (1988) found that negative
liposomes could adhere to watermelon pollen grains and other organs [99]. Two works
have disclosed that positive charged liposomes showed much lower efficiency (almost
0.05%) [98,100]. In addition to protoplast, liposome can also enter the pollen cells and callus.
It was reported by GAD et al. that 150 nm liposomes helped macromolecular material enter
budding watermelon pollen [99]. At the same time, a positive charged liposomes have
been reported to be used to deliver labeled DNA into germinating pea pollen grains [101].
Tissue culture technology is often used during genome engineering works. Rosenberg et al.
(1988) used liposomes to deliver the foreign DNA of chloramphenicol acetyltransferase
and tomato yellow leaf curl virus into tomato and tobacco callus. The DNA expression was
demonstrated by Southern blot [102,103]. Based on the above research, liposom can take
DNA into protoplast and also can reach specific tissues. Until now, there have not been
any works published that reported liposomes could pass through cell walls and obtain
genetic transformations.

Other natural high-molecular polymers such as chitosan, starch can be used as the
vector or ligand between nucleic acid and nanoparticles. Chitosan has applied SWNT
and delivered plasmid into chloroplast and realized expression [60]. The super features of
chitosan have broad prospect in organelle genome engineering.

Liu et al. (2008) synthesized positive charged starch sphere (less than 100 nm) as the
vehicle for plant genetic transformation. Plasmid was loaded on the surface of spheres and
the complex entered the suspension cells treated with ultrasound. However, the ultrasound
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often induced cell damage. There is a great need to search for new routines for polymer
nanovectors [104].

The shapes of various nanomaterials even the DNA-nanostrucutre can promote move-
ment of exogenous DNA or RNA into some plants or explant cells either with or without
further assistance [105]. Agrobacteria can directly or indirectly introduce DNA and RNA
into explants to alter the host genome [106]. However, it is difficult to take the RNP, short or
modified, donor to reach efficient transgene-free and homology directed repair (HDR) for
genome engineering in plants. Nanomaterials have small particle sizes and large surface
areas, which provide anchor spaces for different sizes of plasmids or DNA fragments [107].
Gene guns can be used to transform cells with a mixture of gold powder and DNA, RNA,
or RNPs. However, the strong pulses required may fragment the host genome, and random
insertions commonly occur. It takes a great deal of time and it is difficult to obtain homozy-
gotes. In contrast, nanovectors can introduce foreign genes into cells in a manner similar to
nutrient absorption, decreasing potential harm to the host genome. Nanomaterials has low
toxicity to plants. Inspired by the nano-delivery systems used for other organic materials,
nanovectors could be developed as foreign gene vectors for advanced genetic engineering
methods for different organelle of plants in future breeding works.

4. Future Prospects for Plant Genetic Engineering with Nanomaterials

Previous studies described above have demonstrated the great value and potential
of nanomaterials for gene delivery showed in Table 2. However, many factors and the
detailed mechanisms associated with these methods remain to be resolved.

It is still unclear whether foreign DNA delivered into plant cells by nanomaterials
is integrated into the plant genome. Nanovectors lack genes that are essential for the
integration of T-DNAs, such as the Vir genes from the Ti plasmid. Foreign DNA has
been shown to be quickly degraded during cell replication in plant cells [59]. However,
studies have shown that foreign DNA delivered into cotton and maize pollen cells using
magnetic nanomaterials indeed integrated into the genome. Moreover, the expression of
reporter genes, such as GUS and GFP, have been detected in progeny seedlings [72,73],
demonstrating the stable integration and inheritance of exogenous DNA. However, detailed
analyses, such as the identification of the integration sites and the border sequences of the
integrated foreign DNA, remain to be conducted. The underlying mechanisms of these
integration processes are key research topics in the future.

Successfully transient expression of cargo DNAs have been achieved with several
nanomaterials in plants. However, the expression efficiency may not be enough for ge-
netic engineering, especially genome editing. In the work of Ali et al. (2022), they used
SWNT as the vector, which was similar to Demirer et al. (2019), to introduce foreign genes
into mature plant leaves [108]. As compared with a traditional Agrobacterium-mediated
delivery system, very weak signals were detected surrounding the infiltration sites when
nanomaterials were used to deliver plasmids containing GFP. When cotton was injected by
the complex of the DNA and nanovector, low level expression was detected by confocal
microscopy. This was mainly due to the transient expression of target DNAs, instead of
stable expression, and the uptake efficiency of cargo plasmids [108]. The CRISPR-Cas
system is a promising method for genome editing in plants to enhance crop yield, adversity
resistance, and disease resistance. However, the efficiency is far from satisfactory even
with the traditional delivery method [109]. To ensure the efficient and successful editing of
desired sites, strong, constitutive, and sometimes virus promoters have often been used to
boost the expression level of Cas and sgRNA [110–113]. These methods could be used in
nanomaterial-mediated genome editing, and also in other nanomaterial-based plant genetic
engineering. The types of nanomaterials, modifications, the size and type of the DNA
vector, and the production and transfection processes, abovementioned, play significant
roles in determining delivery efficiency [60]. We could also elevate expression efficiency by
increasing the number of exogenous genes. At present, delivery efficiency is highly variable
between labs. We speculate that the complex synthesized process, explant types, and status
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may affect the transformation efficiency. All these factors have limited widespread use
among different labs. It is, therefore, urgently needed to establish a simple, stable, and
highly efficient nano-induced delivery system.

Table 2. Summary of the micro/nanovectors for plants in recent years.

Materials-Vectors Cargos Plants Cell Types Delivery Methods Ref.

Silicon
carbide fibers

Plasmid (contains Bar
and GUS)

N. tabacum, maize,
rice, ryegrass,

and cotton

Cells
suspension, callus Co-culture [63–65]

Gold
functional MSNs Plasmid (GFP gene) N. tabacum, maize,

white onion

Mesophyll
protoplasts,

epidermis cells
Gene guns [68,70]

Functional MSNs Plasmid (GUS gene) Tomato Epidermis cells Spraying
or injection [69]

Magnetic NPs Plasmid (GFP, GUS
and Bt gene) Cotton, lily, maize Pollen cells Magnetic field [72,73]

Layer
double hydroxides dsRNA for RNAi

Cowpea,
A. thaliana,
N. tabacum,

N. benthamiana,
S. lycopersicum,

Mature leaves Spraying [81,82]

tomato Pollen cells Co-culture [54]

SWNT/MWNT Plasmid (GFP, YFP)
siRNA for RNAi

N. benthamiana,
E. sativa, arugula,

A. thaliana

Mature leaves,
protoplast

and chloroplast

injection without
needle

or co-culture
[58,74,75]

Carbon dots

Plasmids (GFP, GUS,
hygromycin resistance

gene); siRNA
for RNAi

Wheat,
rice, tomato

Mature
leaves, callus

Spraying/
vacuum assisted [84,85]

Different shapes of
AuNPs

or magnetic

Plasmid (GFP);
siRNA for RNAi N. benthamiana Mature leaves Injection

without needle [60,71]

DNA-
nanostructure siRNA for RNAi N. benthamiana Mature leaves Injection

without needle [105]

Liposomes
Plasmid of DNA

(acetyl transferase)
TMV-RNA

Watermelon,
Tobacco, Vinca,

Petunia, Pea

Pollen cells
Protoplast Co-culture [91–103]

The cytotoxicity of nanomaterials is a major concern to further agricultural activity
applications. As advanced gene vectors for plants, all the reported materials have shown
non-cytotoxicity to plant cells or organs. Various nanomaterials can help plants or crops
gain more resistance to adversities or gain yield. As we know, PEI is used as the ligand
for DNA, siRNA, and miRNA because of its positive charge. Traditionally, the high
molecule weight of PEI has more toxicity to animal cells [114]. To date, all the representative
nanovectors show safety to plants or protoplast. To avoid the occurrence of cytotoxicity,
natural original or low-toxicity positive compounds such as chitosan, arginine, and low
molecule weight PEI are recommended [74,115].

Nanomaterials are promising for gene delivery in plants because they can overcome
species limitations in genetic transformation with conventional method in cereals, vegeta-
bles, and fruits. As a result, many labs have attempted to use nanomaterials for the delivery
of genome editing systems, which are promising for crop breeding. In contrast with
Agrobacterium-mediated methods, DNA as well as RNA and RNPs can be delivered via
nanomaterials showed in Figure 4. Plant scientists have attempted to deliver ssODNs and
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dsODNs as the template for HDR or as the cargo for target insertion and replacement [116],
which has been conducted in mammals. With traditional delivery systems, this is mainly
accomplished through particle bombardment, which often generates multiple insertions of
oligodeoxynucleotides and the Cas9 gene fragments [15], making this approach unsuitable
for commercial use. These difficulties could be solved using nanomaterials.

New selection strategies must be established for nanomaterial-based genome engi-
neering as compared with traditional integration-based gene delivery systems. Transgenic
or gene-edited plants via traditional genetic engineering methods are often screened with
selection markers (e.g., kanamycin, hygromycin, or spectinomycin). However, the integra-
tion of foreign genes with nanovector is still unclear and delivery efficiency is currently
limited. It is well known that gene editing is very important for future breeding works, and
it may be achieved during the transient expression processes. There is a great possibility
to realize gene editing affairs without insertion [117]. The new method may give strong
support to obtain transgene free plants [58]. There is an urgent need to develop efficient
screening methods for genetically engineered plants using more sensitive selection markers.
Furthermore, new transformation routines should also be developed based on nanomaterial
induction and shortened tissue-culture cycles [118].
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Figure 4. The promising application of nanomaterials in plant genome editing. The ability of
nanomaterials in delivering all types of cargos, including plasmids encoding the CRISPR/Cas system,
single-strand and double-strand oligo donor (ssODN and dsODN), RNA and ribonucleoproteins
(RNPs), makes them quite promising in plant genome editing, since traditional delivery methods can
only deliver certain types of cargos or have other drawbacks. These nanomaterials could be directly
used to transform protoplasts, callus, and plants, and precisely edit the genome. New selection and
transformation methods are needed to screen and finally obtain the mutant plants. These methods
are genotype independent, we can acquire new plant varieties without integration of exogenous
DNA, and the genome can be precisely modified as we wish, to achieve better performances in the
field and ensure food safety.
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5. Conclusions

Genetic engineering is an efficient way to obtain specific agricultural characteristics
in crops. The CRISPR-Cas system uses highly specific nucleases to create double-strand
breaks (DSBs) in target sites; this approach has a promising future in crop breeding. Many
editing affairs are caused by transient expression in a short time [110]. As we all known,
the strict regulation of GMOs has promoted the development of plant genetic engineering
techniques in which target or functional gene expression is instantaneous and foreign DNA
is not integrated into the genome of host plants. However, technical barriers have emerged
in genetic engineering and are difficult to overcome by conventional methods such as the
high random insertion ratios of gene guns. Furthermore, bombardment pressure may cause
host genome damage and active multiple repairing mechanisms. Agrobacterium infection
is commonly used for plant genetic works. It also can induce random insertions and it is
hard to obtain transgene-free plants. The PEG method is a special approach for transgene
works because the protoplast is harvested from leaves without cell walls. The various
foreign gene cargos can pass the lipid bilayer and reach the nucleus or organelles. However,
the differentiation from protoplasts into plants is a time-consuming and challenging task.
Functional nanomaterials show superior ability to deliver a variety of sizes of DNA, RNA,
and RNPs in animal cells [119–121]. They exhibit great potential for relatively simple and
highly efficient HDR or transgene-free engineering in plants. It is necessary to design
vectors and enrolled exogenous genes to enhance differentiation or regeneration. To sum
up, the nanomaterial delivery system is more bio-compatible, non-toxicity, and low cost as
compared with conventional methods. Nanovectors have exciting potential for advanced
applications in future crop breeding.

Author Contributions: H.Z. (Huawei Zhang) and Z.Z. conceived the review; H.Z. (Heng Zhi), S.Z.,
W.P. and Y.S. wrote the draft and prepared the figure; H.Z. (Heng Zhi) edited and finalized the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from Taishan Scholar Foundation of Shandong Province
(tsqn202103160), the Excellent Youth Foundation of Shandong Scientific Committee (ZR202103010168)
for H.Z. (Huawei Zhang), and the China Postdoctoral Science Foundation (no. 2021T140017) for W.P.
(Wenbo Pan).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Molla, K.A.; Sretenovic, S.; Bansal, K.C.; Qi, Y.J.N.P. Precise plant genome editing using base editors and prime editors. Nat.

Plants 2021, 7, 1–22. [CrossRef] [PubMed]
2. Venugopal, P.D.; Dively, G.P. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm. R. Soc.

Open Sci. 2017, 4, 170210. [CrossRef] [PubMed]
3. Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346,

1258096. [CrossRef] [PubMed]
4. Altpeter, F.; Baisakh, N.; Beachy, R.; Bock, R.; Capell, T.; Christou, P.; Daniell, H.; Datta, K.; Datta, S.; Dix, P.J.; et al. Particle

bombardment and the genetic enhancement of crops: Myths and realities. Mol. Breed. 2005, 15, 305–327. [CrossRef]
5. Delporte, F.; Pretova, A.; du Jardin, P.; Watillon, B. Morpho-histology and genotype dependence of in vitro morphogenesis in

mature embryo cultures of wheat. Protoplasma 2014, 251, 1455–1470. [CrossRef] [PubMed]
6. Aesaert, S.; Impens, L.; Coussens, G.; Van Lerberge, E.; Vanderhaeghen, R.; Desmet, L.; Vanhevel, Y.; Bossuyt, S.; Wambua, A.N.;

Van Lijsebettens, M.; et al. Optimized Transformation and Gene Editing of the B104 Public Maize Inbred by Improved Tissue
Culture and Use of Morphogenic Regulators. Front. Plant Sci. 2022, 13, 883847. [CrossRef]

7. Debernardi, J.M.; Tricoli, D.M.; Ercoli, M.F.; Hayta, S.; Ronald, P.; Palatnik, J.F.; Dubcovsky, J. A GRF-GIF chimeric protein
improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 2020, 38, 1274–1279. [CrossRef]

http://doi.org/10.1038/s41477-021-00991-1
http://www.ncbi.nlm.nih.gov/pubmed/34518669
http://doi.org/10.1098/rsos.170210
http://www.ncbi.nlm.nih.gov/pubmed/28680673
http://doi.org/10.1126/science.1258096
http://www.ncbi.nlm.nih.gov/pubmed/25430774
http://doi.org/10.1007/s11032-004-8001-y
http://doi.org/10.1007/s00709-014-0647-7
http://www.ncbi.nlm.nih.gov/pubmed/24763701
http://doi.org/10.3389/fpls.2022.883847
http://doi.org/10.1038/s41587-020-0703-0


Int. J. Mol. Sci. 2022, 23, 8501 13 of 17

8. Kong, J.; Martin-Ortigosa, S.; Finer, J.; Orchard, N.; Gunadi, A.; Batts, L.A.; Thakare, D.; Rush, B.; Schmitz, O.; Stuiver, M.; et al.
Overexpression of the Transcription Factor GROWTH-REGULATING FACTOR5 Improves Transformation of Dicot and Monocot
Species. Front. Plant Sci. 2020, 11, 572319. [CrossRef]

9. Lowe, K.; Wu, E.; Wang, N.; Hoerster, G.; Hastings, C.; Cho, M.J.; Scelonge, C.; Lenderts, B.; Chamberlin, M.; Cushatt, J.; et al.
Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation. Plant Cell 2016, 28, 1998–2015. [CrossRef]

10. Qiu, F.; Xing, S.; Xue, C.; Liu, J.; Chen, K.; Chai, T.; Gao, C. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat
regeneration and improves genome editing. Sci. China Life Sci. 2022, 65, 731–738. [CrossRef]

11. Pan, W.; Cheng, Z.; Han, Z.; Yang, H.; Zhang, W.; Zhang, H. Efficient genetic transformation and CRISPR/Cas9-mediated genome
editing of watermelon assisted by genes encoding developmental regulators. J. Zhejiang Univ. Sci. B 2022, 23, 339–344. [CrossRef]
[PubMed]

12. Gao, C. Genome engineering for crop improvement and future agriculture. Cell 2021, 184, 1621–1635. [CrossRef]
13. Woo, J.W.; Kim, J.; Kwon, S.I.; Corvalán, C.; Cho, S.W.; Kim, H.; Kim, S.-G.; Kim, S.-T.; Choe, S.; Kim, J.-S. DNA-free genome

editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015, 33, 1162–1164. [CrossRef]
14. Sharma, A.; Toepfer, C.N.; Ward, T.; Wasson, L.; Agarwal, R.; Conner, D.A.; Hu, J.H.; Seidman, C.E. CRISPR/Cas9-Mediated

Fluorescent Tagging of Endogenous Proteins in Human Pluripotent Stem Cells. Curr. Protoc. Hum. Genet. 2018, 96, 21.11.1–21.11.20.
[CrossRef] [PubMed]

15. Lu, Y.; Tian, Y.; Shen, R.; Yao, Q.; Wang, M.; Chen, M.; Dong, J.; Zhang, T.; Li, F.; Lei, M.; et al. Targeted, efficient sequence
insertion and replacement in rice. Nat. Biotechnol. 2020, 38, 1402–1407. [CrossRef]

16. Duensing, N.; Sprink, T.; Parrott, W.A.; Fedorova, M.; Lema, M.A.; Wolt, J.D.; Bartsch, D. Novel Features and Considerations for
ERA and Regulation of Crops Produced by Genome Editing. Front. Bioeng. Biotechnol. 2018, 6, 79. [CrossRef] [PubMed]

17. Feynman, R.P. There’s Plenty of Room at the Bottom. J. Microelectromechanical Syst. 2011, 16, 890. [CrossRef]
18. Thiruvengadam, M.; Rajakumar, G.; Chung, I.-M. Nanotechnology: Current uses and future applications in the food industry.

3 Biotech 2018, 8, 74. [CrossRef]
19. Steinwand, M.A.; Ronald, P.C. Crop biotechnology and the future of food. Nat. Food 2020, 1, 273–283. [CrossRef]
20. Jähne, A.; Becker, D.; Euphytica, H.L.J. Genetic engineering of cereal crop plants: A review. Euphytica 1995, 85, 35–44. [CrossRef]
21. Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.;

Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [CrossRef] [PubMed]
22. Abdallah, N.A.; Prakash, C.S.; McHughen, A.G. Genome editing for crop improvement: Challenges and opportunities. GM Crops

Food 2015, 6, 183–205. [CrossRef] [PubMed]
23. Gordon, J.E.; Christie, P.J. The Agrobacterium Ti Plasmids. Microbiol. Spectr. 2014, 2, 455–472. [CrossRef] [PubMed]
24. Gelvin, S.B. Plant DNA Repair and Agrobacterium T-DNA Integration. Int. J. Mol. Sci. 2021, 22, 8458. [CrossRef]
25. Wu, C.F.; Smith, D.A.; Lai, E.M.; Chang, J.H. The Agrobacterium Type VI Secretion System: A Contractile Nanomachine for

Interbacterial Competition. Curr. Top. Microbiol. Immunol. 2018, 418, 215–231.
26. Gelvin, S.B. Integration of Agrobacterium T-DNA into the Plant Genome. Annu. Rev. Genet. 2017, 51, 195–217. [CrossRef]
27. Pu, X.-A.; Goodman, R.N. Induction of necrogenesis by Agrobacterium tumefaciens on grape explants. Physiol. Mol. Plant Pathol.

1992, 41, 241–254. [CrossRef]
28. Deng, W.; Pu, X.A.; Goodman, R.N.; Gordon, M.P.; Nester, E.W. T-DNA genes responsible for inducing a necrotic response on

grape vines. Mol. Plant-Microbe Interact. 1995, 8, 538–548. [CrossRef]
29. Das, D.; Reddy, M.; Upadhyaya, K.; Sopory, S. An efficient leaf-disc culture method for the regeneration via somatic embryogenesis

and transformation of grape (Vitis vinifera L.). Plant Cell Rep. 2002, 20, 999–1005. [CrossRef]
30. Ciardi, J.A.; Tieman, D.M.; Lund, S.T.; Jeffrey, B.J.; Stall, R.E.; Klee, H.J. Response to Xanthomonas campestris pv. vesicatoria in

Tomato Involves Regulation of Ethylene Receptor Gene Expression. Plant Physiol. 2000, 123, 81–92. [CrossRef]
31. Nonaka, S.; Ezura, H. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene

transfer. Front. Plant Sci. 2014, 5, 681. [CrossRef] [PubMed]
32. Nonaka, S.; Someya, T.; Zhou, S.; Takayama, M.; Nakamura, K.; Ezura, H. An Agrobacterium tumefaciens Strain with Gamma-

Aminobutyric Acid Transaminase Activity Shows an Enhanced Genetic Transformation Ability in Plants. Sci. Rep. 2017, 7, 42649.
[CrossRef] [PubMed]

33. Baker, C.J.; Mock, N.M.; Whitaker, B.D.; Roberts, D.P.; Rice, C.P.; Deahl, K.L.; Aver’yanov, A.A. Involvement of acetosyringone in
plant–pathogen recognition. Biochem. Biophys. Res. Commun. 2005, 328, 130–136. [CrossRef] [PubMed]

34. Gu, X.; Liu, L.; Zhang, H. Transgene-free Genome Editing in Plants. Front. Genome Ed. 2021, 3, 805317. [CrossRef] [PubMed]
35. Park, J.; Choi, S.; Park, S.; Yoon, J.; Park, A.Y.; Choe, S. DNA-Free Genome Editing via Ribonucleoprotein (RNP) Delivery of

CRISPR/Cas in Lettuce. Methods Mol. Biol. 2019, 1917, 337–354.
36. Jinturkar, K.A.; Rathi, M.N.; Misra, A. 3—Gene Delivery Using Physical Methods. In Challenges in Delivery of Therapeutic Genomics

and Proteomics; Misra, A., Ed.; Elsevier: London, UK, 2011; pp. 83–126.
37. Liang, Z.; Chen, K.; Li, T.; Zhang, Y.; Wang, Y.; Zhao, Q.; Liu, J.; Zhang, H.; Liu, C.; Ran, Y.; et al. Efficient DNA-free genome

editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 2017, 8, 14261. [CrossRef]
38. Zhang, Y.; Liang, Z.; Zong, Y.; Wang, Y.; Liu, J.; Chen, K.; Qiu, J.L.; Gao, C. Efficient and transgene-free genome editing in wheat

through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016, 7, 12617. [CrossRef]

http://doi.org/10.3389/fpls.2020.572319
http://doi.org/10.1105/tpc.16.00124
http://doi.org/10.1007/s11427-021-1949-9
http://doi.org/10.1631/jzus.B2200119
http://www.ncbi.nlm.nih.gov/pubmed/35403388
http://doi.org/10.1016/j.cell.2021.01.005
http://doi.org/10.1038/nbt.3389
http://doi.org/10.1002/cphg.52
http://www.ncbi.nlm.nih.gov/pubmed/29364522
http://doi.org/10.1038/s41587-020-0581-5
http://doi.org/10.3389/fbioe.2018.00079
http://www.ncbi.nlm.nih.gov/pubmed/29967764
http://doi.org/10.1007/s12045-011-0109-x
http://doi.org/10.1007/s13205-018-1104-7
http://doi.org/10.1038/s43016-020-0072-3
http://doi.org/10.1007/BF00023928
http://doi.org/10.1039/C6CS00636A
http://www.ncbi.nlm.nih.gov/pubmed/28585944
http://doi.org/10.1080/21645698.2015.1129937
http://www.ncbi.nlm.nih.gov/pubmed/26930114
http://doi.org/10.1128/microbiolspec.PLAS-0010-2013
http://www.ncbi.nlm.nih.gov/pubmed/25593788
http://doi.org/10.3390/ijms22168458
http://doi.org/10.1146/annurev-genet-120215-035320
http://doi.org/10.1016/0885-5765(92)90024-P
http://doi.org/10.1094/MPMI-8-0538
http://doi.org/10.1007/s00299-002-0441-4
http://doi.org/10.1104/pp.123.1.81
http://doi.org/10.3389/fpls.2014.00681
http://www.ncbi.nlm.nih.gov/pubmed/25520733
http://doi.org/10.1038/srep42649
http://www.ncbi.nlm.nih.gov/pubmed/28220841
http://doi.org/10.1016/j.bbrc.2004.12.153
http://www.ncbi.nlm.nih.gov/pubmed/15670760
http://doi.org/10.3389/fgeed.2021.805317
http://www.ncbi.nlm.nih.gov/pubmed/34927134
http://doi.org/10.1038/ncomms14261
http://doi.org/10.1038/ncomms12617


Int. J. Mol. Sci. 2022, 23, 8501 14 of 17

39. Baltes, N.J.; Gil-Humanes, J.; Voytas, D.F. Chapter One—Genome Engineering and Agriculture: Opportunities and Challenges. In
Progress in Molecular Biology and Translational Science; Weeks, D.P., Yang, B., Eds.; Academic Press: Cambridge, MA, USA, 2017;
Volume 149, pp. 1–26.

40. Banakar, R.; Eggenberger, A.L.; Lee, K.; Wright, D.A.; Murugan, K.; Zarecor, S.; Lawrence-Dill, C.J.; Sashital, D.G.; Wang, K.
High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in
rice. Sci. Rep. 2019, 9, 19902. [CrossRef]

41. Liu, J.; Nannas, N.J.; Fu, F.F.; Shi, J.; Aspinwall, B.; Parrott, W.A.; Dawe, R.K. Genome-Scale Sequence Disruption Following
Biolistic Transformation in Rice and Maize. Plant Cell 2019, 31, 368–383. [CrossRef]

42. Yoo, S.-D.; Cho, Y.-H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis.
Nat. Protoc. 2007, 2, 1565–1572. [CrossRef]

43. Lin, C.S.; Hsu, C.T.; Yang, L.H.; Lee, L.Y.; Fu, J.Y.; Cheng, Q.W.; Wu, F.H.; Hsiao, H.C.; Zhang, Y.; Zhang, R.; et al. Application of
protoplast technology to CRISPR/Cas9 mutagenesis: From single-cell mutation detection to mutant plant regeneration. Plant
Biotechnol. J. 2018, 16, 1295–1310. [CrossRef] [PubMed]
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