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Objectives: Cerebrospinal fluid (CSF) visinin-like protein 1 (VILIP-1) has been suggested

as a biomarker for neuron injury, which has been shown to have a important diagnostic value

in symptomatic Alzheimer’s disease (AD). The study purpose is investigating potential

effects of apolipoprotein E (APOE) ε4 on CSF VILIP-1 levels among the preclinical AD.

Methods: A total of 110 subjects (including 43 APOE ε4 carriers and 67 ε4 non-carriers)

were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) in the present

study.

Results: The results showed that VILIP-1 concentrations in the CSF were statistically

significantly increased in APOE ε4 carriers in comparison with non-carriers. Increased

CSF VILIP-1 level was positively associated with the concentrations of both CSF-tau and

P-tau levels.

Conclusions: Our findings suggested that APOE ε4 might affect CSF VILIP-1 level in

preclinical AD, indicating an important role of APOE ε4 in neuron injury leading to AD.
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Introduction
As we have known, Alzheimer’s Disease (AD) is the most globally popular

neurodegenerative disease. The apolipoprotein E (APOE) ε4 allelic variant has

a crucial dose-dependent association with AD risk,1,2 which can accelerate the

age of symptom onset.3 Based on the type of pathophysiology of each measure-

ment, a core “A/T/N” system for biomarkers has been proposed that classifies the

seven most important AD biomarkers into three binary categories, “A” represents

the value of Aβ biomarker (amyloid PET or CSF Aβ42), “T” refers to the value of

tau biomarker (CSF p-tau or tau PET), and “N” is a biomarker for neurodegenera-

tion or neuronal injury (18F-fluorodeoxyglucose-PET, structural MRI, or CSF total

tau).4 However, the mechanism underlying the regulation of AD progression

associated with APOE ε 4 remains unknown.

As a neuronal calcium-sensor protein,5,6 visinin-like protein 1 (VILIP-1) has

been suggested as a biomarker of neuron injury.7 Previous studies have shown that

cerebrospinal fluid (CSF) VILIP-1 was significantly associated with AD, indicating

that VILIP-1 may be a potential biomarker for neurodegeneration.8–10 Although it

is unclear whether low levels of APOE actually contribute to the pathological

changes of AD, it is hypothesized that APOE is critical for Aβ clearance and

aggregation.11–13 Increasing evidence suggested that APOE was a major carrier of

cholesterol required for neuronal activity and injury repair in the brain.14,15
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Therefore, the hypothesis that APOE ε4 deleteriously

influences neuron injury, and contributes to elevated CSF

VILIP-1 concentrations, which subsequently leads to cog-

nitive degeneration in APOE ε4 carriers who are at risk of

progressing from mild cognitive impairment (MCI) to AD.

So, the objective of the research is to explore the

effects of APOE ε4 on CSF VILIP-1 concentrations

among the elderly participants from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI).

Methods
ADNI Study
ADNI database (adni.loni.usc.edu) provided detailed data

for the research. During the experiment, data collectors

have no access to participant information. The ADNI was

founded in 2003 as a public–private partnership with the

leading of Principal Investigator Michael W. Weiner, MD.

The principle aim of ADNI is to examine if serial mag-

netic resonance imaging (MRI), positron emission tomo-

graphy (PET), other biological markers, and clinical and

neuropsychological evaluation could be used to assess the

progression of MCI and early AD. For more details, please

find www.adni-info.org. All participants or authorized

representatives offered written informed consent. And

each ADNI site received institutional review board (IRB)

individually.

Participants
Demographic data were extracted from ADNI. Selection

standard was discussed with details at http://www.adni-info.

org. The participants involved in our analysis were aged from

55 to 90 years, with more than 6 years of schooling, and

Spanish or English speaking. In addition, we excluded indi-

viduals having any other neurological disease other than AD.

Totally, 110 individuals (including 43 APOE ε4 carriers and

67 non-carriers) were enrolled in our analysis.

Clinical Assessments
A certified cognitive evaluation containing the following

listed contents was used to evaluate different domains of

cognition in all participants: Mini-Mental State Examination

(MMSE),16 Alzheimer’s Disease Assessment Scale-cognitive

subscale 13 (ADAS-13),17 and Global Clinical Dementia

Rating Scale (CDR-SB)18 were used to measure general cog-

nitive function; The Rey Auditory Verbal Learning Test

(RAVLT), including 5-min delayed recall (RAVLT-

immediate recall), 30-min delayed recall (RAVLT-delayed

recall), and yes-no recognition (RAVLT-recognition) were

applied to measure memory;19 The Trail Making Test-A and

B (TMT-A/B)20 was adopted to assess attention/executive

function; Animal fluency and 30-item Boston Naming Task

(BNT-30)21 was used to evaluate language; Clock Drawing

Test (CDT) was applied to measure visuospatial;22 Functional

Assessment Questionnaire (FAQ)23 and Neuropsychiatric

Inventory (NPI)24 were used to assess psychosocial function.

Genotyping Analysis
APOE genotypes (gene map locus 19q13.2) were achieved

from the ADNI database for all participants (adni.loni.usc.

edu). Individuals involved were stratified into two groups:

the ε2/ε4, ε3/ε4, or ε4/ε4 genotypes were defined as APOE

ε4 carriers; the ε2/ε2, ε2/ε3, or ε3/ε3 genotypes were

defined as APOE ε4 non-carriers.

CSF Measurements
A sandwich ELISA (together with the Erenna® immunoas-

say platform) was used to test VILIP-1 level in CSF.9 CSF

Aβ42, total-tau, and P-tau levels were analyzed using

a multiplex xMAP Luminex system (Luminex Corp,

Austin, TX, USA) combining an INNOBIA AlzBio3 kit

(Fujirebio, Ghent, Belgium), which has been described in

previous publications.25–27 The unit for VILIP-1, Aβ42,
total-tau and P-tau was pg/mL. More details of methodolo-

gies for the acquisition of ADNI and measurements as well

as quality control process are located at www.adni-info.org.

Neuroimaging
The description of detailed information about ADNI neuroi-

maging standardized procedure can be found in a previous

paper.28 ADNI MRI data were obtained from a 3-Tesla MRI

scanner. FreeSurfer version 5.1 image analysis (http://surfer.

nmr.mgh.harvard.edu/)29 was used to reflect cortical recon-

struction and volumetric segmentation, as described in pre-

vious studies.30–33 In the current study, we also measured the

hippocampus, entorhinal cortex (EC), fusiform and medial

temporal-lobe atrophy (MTA) volumes. More description

regarding the imaging protocol of ADNI is located at http://

adni.loni.usc.edu/methods/documents/mri- protocols/.

Statistical Analysis
Student’s t-test for normally distributed continuous variables

or Mann–Whitney test for skewed distributed variables was

applied to tell demographic profile differences between

APOE ε4 carriers and non-carriers in the elderly subjects.

Chi-square test analysis was done to check the distribution
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of categorical parameters. Spearman’s correlation test was

conducted to explore whether CSF VILIP-1 concentrations

were linked to other core CSF biomarkers. In addition, linear

regression models were adopted to examine if CSF VILIP-1

level is correlated to APOE ε4 genotype. SPSS software

(version 23.0; IBM SPSS) was used for statistical analyses.

A value of two-sided P < 0.05 was treated as the standard to

show statistical significance in the paper. GraphPad Prism 6

was used to produce figures.

Results
Demographic Features for Participants,

Stratified by APOE Alleles
Baseline demographic details of the subjects are shown in

Table 1. We included 43 APOE ε4 carriers together with

67 APOE ε4 non-carriers in the current study. In brief,

APOE ε4 carriers were younger than APOE ε4 non-

carriers (P = 0.021). Gender (P = 0.796) and education

levels (P = 0.284) did not appear to be different between

the two groups. Furthermore, the scores of RAVLT-

immediate recall (P = 0.003), RAVLT-delayed recall (P <

0.001), and RAVLT-recognition (P = 0.016) were lower

among APOE ε4 carriers when comparing to APOE ε4

non-carriers. APOE ε4 carriers performed worse on

MMSE (P = 0.003), ADAS13 (P < 0.001), CDR-SB

(P < 0.001), and FAQ (P = 0.002) than APOE ε4 non-

carriers. However, no significantly statistical differences

existed in TMT-A, TMT-B, Animals fluency, BNT-30,

CDT, or NPI (P = 0.693; P = 0.379; P = 0.437; P =

0.377; P = 0.534; P = 0.130) between APOE ε4 carriers

and non-ε4 carriers. Finally, the CSF Aβ42, total tau, and

P-tau levels appeared to be significantly different between

two groups (P < 0.001; P < 0.001; and P < 0.001; respec-

tively). Significantly smaller volumes of hippocampus and

entorhinal cortex were found in APOE ε4 carriers in

comparison to APOE ε4 non-carriers (P = 0.020;

P < 0.001; respectively).

Table 1 Demographic and Clinical Characteristics of Participants by APOE ε4 Zygosity

Characteristics ε4 Carriers (n = 43) ε4 Non-Carriers (n = 67) P-value

Age, years 73.17 (6.09) 75.82 (5.58) 0.021

Gender (female), % 15 (34.88) 25 (37.31) 0.796

Education, years 16 (14–18) 16 (14–18) 0.284

MMSE 27 (26–29) 29 (27–30) 0.003

ADAS-13 17.65 (7.04) 12.10 (6.31) <0.001

CDR-SB 1.5 (0.5–2.0) 0 (0–1) <0.001

RAVLT-immediate recall 4.35 (3.91) 6.52 (3.52) 0.003

RAVLT-delayed recall 1 (0–5) 7 (3–9) <0.001

RAVLT-recognition 10 (8–14) 13 (11–14) 0.016

TMT-A 34 (29–45) 36 (29–45) 0.693

TMT-B 92 (70–118) 85 (67–106) 0.379

Animals fluency 16.88 (4.38) 17.61 (5.01) 0.437

BNT-30 28 (26–29) 28 (25–30) 0.377

CDT 5 (4–5) 5 (4–5) 0.534

FAQ 1 (0–5) 0 (0–1) 0.002

NPI 0 (0–0) 0 (0–0) 0.130

CSF Aβ42 (pg/mL) 576.8 (498.6–723.1) 1148.0 (775.6–1643.0) <0.001

CSF-tau (pg/mL) 333.29 (107.99) 248.92 (85.90) <0.001

CSF P-tau (pg/mL) 33.71 (12.69) 23.15 (9.28) <0.001

CSF VILIP-1 (pg/mL) 189.16 (58.90) 148.25 (50.55) <0.001

Hippocampus (mm3) 6385.54 (1051.64) 6872.28 (1052.59) 0.020

Entorhinal (mm3) 3177.65 (717.05) 3762.28 (772.20) <0.001

Fusiform (mm3) 17,168.63 (2260.15) 16,819.05 (1932.13) 0.388

MTA (mm3) 19,307.09 (2643.83) 19,345.96 (2769.64) 0.942

Notes: Data are presented as mean ± SD by using Student’s t test for normally distributed continuous variables, median (M) and the interquartile range

(IQR) by Mann–Whitney test for skewed distribution variables. For gender, values are presented as number (%) by using Chi-square test.

Abbreviations: ADAS-13, Alzheimer’s disease assessment scale-cognitive subscale 13; BNT-30, boston naming task; CDR-SB, global clinical dementia

rating scale; CDT, clock drawing Test; CSF, cerebrospinal fluid; FAQ, functional assessment questionnaire; MMSE, mini-mental state examination; MTA,

mesial temporal atrophy; NPI, neuropsychiatric inventory; RAVLT, rey auditory verbal learning test; SD, standard deviation; TMT, the trail making test;

VILIP-1, visinin-like protein-1.

Dovepress Wang et al

Neuropsychiatric Disease and Treatment 2020:16 submit your manuscript | www.dovepress.com

DovePress
925

http://www.dovepress.com
http://www.dovepress.com


Levels of CSF VILIP-1 in the Two Groups
To further look into the association between APOE ε4 geno-

type and concentration of CSF VILIP-1, the concentrations of

CSFVILIP-1 betweenAPOE ε4 carriers and non-carrierswere
compared.We saw an obvious increased VILIP-1 level among

the APOE ε4 carriers than the APOE ε4 non-carriers (mean,

189.16 vs. 148.25 pg/mL, P < 0.001, Table 1, Figure 1A).

Furthermore, to evaluate the gene dose-effect of APOE ε4 on
the level of CSF VILIP-1, the concentrations of CSF VILIP-1

among APOE ε4 (+/+), APOE ε4 (+/-) and APOE ε4 (-/-)

subjects (APOE ε4 +/+, n = 8; APOE ε4 +/-, n =35; APOE ε4
-/-, n = 67) were compared. The results showed that CSF

VILIP-1 concentrations were higher in APOE ε4 (+/+) com-

pared to APOE ε4 (-/-) (P = 0.001), and CSF VILIP-1 levels

were elevated in APOE ε4 (+/-) compared to APOE ε4 (-/-)

subjects (P = 0.003) (Figure 1B).

Correlations Between Aβ42, Tau, P-Tau
and CSF VILIP-1
In order to evaluate if changes in CSF concentrations of VILIP-

1 are associated with Aβ42, Tau and P-tau in the elderly, the

associations between CSFVILIP-1 and other core CSF biomar-

kers in the whole sample (Table 2) were examined by conduct-

ing Spearman’s correlation analyses. The results demonstrated

that CSF VILIP-1 concentration was positively related to Tau

and P-tau (R = 0.857, P < 0.001; R = 0.815, P < 0.001).

Nevertheless, no significant association between the levels of

CSF VILIP-1 and Aβ42 (R = 0.000, P = 0.997) was found.

Relation Between CSF VILIP-1

Concentrations and APOE ε4 Levels
The linear regression analysis revealed the possible correla-

tion of the presence of APOE ε4 allele and CSF VILIP-1

levels between the elderly subjects (Table 3). In the unad-

justed model (Model 1), the CSF VILIP-1 concentration was

statistically related with APOE ε4 (standardized β = 0.350,

P < 0.001). In model 2 on the basis of fixed age, sex and

education level, a significant association between concentra-

tions of CSF VILIP-1 and APOE ε4 (standardized β = 0.344,

P < 0.001) was witnessed. In the adjusted model 3 (which is

model 2 plus MMSE, CDR-SB, RAVLT-immediate recall

and RAVLT-delayed recall), the VILIP-1 level was still

linked to APOE ε4 (standardized β = 0.298, P = 0.003). In

model 4 (which is model 3 plus CSF Aβ42 and P-tau), the

association between CSF VILIP-1 level and APOE ε4 (stan-
dardized β = 0.137, P = 0.050) continued to exist. In model 5

(model 4 plus volumes of hippocampus and entorhinal cor-

tex), the concentration of CSF VILIP-1 was still linked with

APOE ε4 (standardized β = 0.144, P = 0.049).

Discussion
As a neuronal calcium-sensor protein,5,6 VILIP-1 has been

suggested as a marker for neuron injury in brain injury

models.7,34,35 Previous studies indicated that the level of

CSF VILIP-1 was associated with the concentrations of CSF-

tau and P-tau,6,8,9 supporting its utilization as

a neurodegeneration marker. In addition, some studies

revealed that CSF VILIP-1 could diagnostically

discriminate AD from other dementias.36,37 Therefore, these

numerous studies implied that CSF VILIP-1 might be a useful

biomarker for AD pathophysiology.9,10,38-44 Although only

one study found no significant difference in the longitudinal

changes of CSF VILIP-1 levels in cognitively normal subjects

and AD patients.45 Importantly, researchers also showed ele-

vated levels of plasma VILIP-1 in AD patients compared to

non-demented controls.9 Generally, the current VILIP-1 data

suggest a possible role in the selection and prognosis of

Figure 1 Comparison of CSF VILIP-1 concentrations in APOE ε4 carriers and APOE ε4 non-carriers in the elderly subjects. (A) CSF VILIP-1 levels were significantly

elevated in APOE ε4 carriers compared with APOE ε4 non-carriers (P = 0.000). (B) The CSF VILIP-1 concentrations are elevated in a gene dose-dependent manner of

APOE ε4. All data are shown as mean ± SD. P values tested by Student’s t-test.
Abbreviations: CSF, cerebrospinal fluid; SD, standard deviation; VILIP-1, visinin-like protein-1.
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subjects (Table 4), but the results are different and require

further investigation.

In our current study, we investigated the concentration of

CSF VILIP-1 between APOE ε4 carriers and non-carriers in

the elderly subjects. It was observed that CSF VILIP-1 level

was statistically significantly elevated in APOE ε4 carriers

than non-carriers. The concentration of CSF VILIP-1 was

linked to CSF-tau and P-tau concentrations. What is more,

CSF VILIP-1 level was substantially related to APOE ε4

genotype, regardless of age, gender, education, MMSE,

CDR-SB, RAVLT-immediate recall, RAVLT-delayed recall,

CSFAβ42 and P-tau, volumes of hippocampus and entorhinal

cortex. Notably, these findings are consistent with the pre-

vious follow-up study that in healthy individuals CSF VILIP-

1 still has predictive value for future cognitive decline.9,46

APOE ε4 ranks top of genetic risk factors in the pro-

gression of sporadic AD.2 However, the precise underlying

pathophysiologic mechanisms of APOE ε4 in the develop-

ment of AD remain debated. The hypothesis that APOE ε4

carriers may play a role in neuron injury and has values in

predicting rates of cognitive decline was supported by our

findings. That CSF VILIP-1 level was elevated among the

APOE ε4 allele carriers suggesting that APOE may influ-

ence VILIP-1 level. In this study, we found a notable

association between CSF VILIP-1 and CSF-tau protein.

As the cross-sectional design does not indicate causality,

future prospective studies were warranted.

There were a few limitations to our study. Firstly, the eva-

luation of the prospective changes of VILIP-1 levels over time

was not conducted due to the cross-sectional design applied in

our study. Further longitudinal researches are in needed to

confirm the conclusions. Secondly, when interpreting our

results, the restricted sample inclusion inADNI database should

be considered. The relationship between APOE ε4 and CSF

VILIP-1willwarrant further investigations in prospective study.

In summary,APOE ε4carriers had elevatedCSFVILIP-1 levels
in comparison with APOE ε4 non-carriers in preclinical AD.

Conclusion
Our findings suggested that APOE ε4 might affect CSF

VILIP-1 level in preclinical AD, indicating an important

role of APOE ε4 in neuron injury leading to AD.

Data Sharing Statement
Data used in preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). As such, the investigators

Table 2 Correlations of CSF VILIP-1 Level with Aβ42, Tau and

P-Tau

Aβ42 Tau P-Tau

CSF VILIP-1

R 0.000 0.857** 0.815**

P 0.997 <0.001 <0.001

Notes: Associations were measured by Spearman’s correlation analyses. **P < 0.01.

Abbreviations: CSF, cerebrospinal fluid; VILIP-1: visinin-like protein-1.

Table 3 Linear Regression to Evaluate the Potential Association Between CSF VILIP-1 and APOE ε4 Status in the Elderly (Unadjusted

and Adjusted)

Model 1 Model 2 Model 3 Model 4 Model 5

Beta P Beta P Beta P Beta P Beta P

APOE ε4 (+) vs. (-) 0.350 <0.001 0.344 <0.001 0.298 0.003 0.137 0.050 0.144 0.049

Age −0.080 0.390 −0.061 0.526 −0.038 0.515 −0.044 0.484

Gender 0.208 0.033 0.211 0.035 0.027 0.659 0.032 0.633

Education 0.064 0.507 0.050 0.605 −0.042 0.48 −0.039 0.528

MMSE 0.069 0.537 0.042 0.539 0.045 0.518

CDR-SB −0.010 0.929 0.010 0.889 0.006 0.936

RAVLT-immediate recall 0.020 0.907 0.054 0.607 0.062 0.574

RAVLT-delayed recall −0.215 0.218 −0.101 0.346 −0.107 0.325

CSF Aβ42 0.314 <0.001 0.306 <0.001

CSF P-tau 0.776 <0.001 0.772 <0.001

Hippocampus −0.033 0.691

Entorhinal 0.042 0.584

Notes: Model 1: unadjusted; Model 2: adjusted by age, gender, education; Model 3: adjusted by age, gender, education, MMSE, CDR-SB, RAVLT-immediate recall and RAVLT-

delayed recall; Model 4: adjusted by age, gender, education, MMSE, CDR-SB, RAVLT-immediate recall, RAVLT-delayed recall, CSF Aβ42 and P-tau; Model 5: adjusted by age,

gender, education, MMSE, CDR-SB, RAVLT-immediate recall, RAVLT-delayed recall, CSF Aβ42, P-tau, volumes of hippocampus and entorhinal cortex. Beta is standardized

beta.

Abbreviations: CDR-SB, global clinical dementia rating scale; MMSE, mini-mental state examination; RAVLT, rey auditory verbal learning test.
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within the ADNI contributed to the design and implemen-

tation of ADNI and/or provided data but did not partici-

pate in the analysis or writing of this report. A complete

listing of ADNI investigators can be found at: http://adni.

loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf.

Ethical Approval
This study was carried out in accordance with the

recommendations of each ADNI site. The protocol was

approved by the ADNI. All subjects gave written

informed consent in accordance with the Declaration

of Helsinki.

Table 4 Studies to Assess the Role of CSF VILIP-1 as a Potential Biomarker

Study AD MCI Controls Analysis Method Results

Lee et al (2008)8 33 / 24 ELISA Significantly increased in AD compared to control subjects

Tarawneh et al (2011)9 98 / 211 Microparticle based

immunoassay (Erenna,

Singulex, CA)

Significantly higher in AD compared to controls

Tarawneh et al

(2012)10
60 / 211 Microparticle based

immunoassay (Erenna,

Singulex, CA)

Significantly elevated in AD compared to controls

Luo et al (2013)37 61 / 40 ELISA Significantly higher in AD patients than control subjects

Kester et al (2015)45 65 61 37 Microparticle based

immunoassay (Erenna,

Singulex, CA)

Baseline levels elevated in AD and MCI than controls but not

significantly (P = 0.88); Baseline levels significantly increased in

MCI progressed to AD than stable MCI; Longitudinal increased

in MCI, but not in AD or cognitively normal individuals

Mroczko et al (2015)39 33 15 18 ELISA Significantly higher in AD patients compared with MCI and

control individuals

Sutphen et al (2015)46 169 Microparticle based

immunoassay (Erenna,

Singulex, CA)

Significantly increased in late middle-aged individuals compared

with early and mid in APOE ε4 non-carriers

Tarawneh et al

(2015)38
23 / 64 Microparticle based

immunoassay (Erenna,

Singulex, CA)

Significantly elevated in AD compared with controls

Babic ́Leko et al

(2016)36
109 43 9 ELISA Significantly higher in AD compared to MCI and control subjects

Tarawneh et al

(2016)41
95 / 207 Microparticle based

immunoassay (Erenna,

Singulex, CA)

Significantly elevated in AD compared with controls

Höglund et al (2017)47 / / 129 ELISA No difference between high CSF Aβ and low CSF Aβ groups

Muszyn ́ ski et al

(2017)48
45 18 23 ELISA Significantly elevated only in AD group in comparison to control

subjects

Sutphen et al (2018)42 16 76 56 Microparticle based

immunoassay (Erenna,

Singulex, CA)

Baseline levels elevated in the MCI Aβ+ and AD Aβ+ groups

compared with MCI Aβ- and controls Aβ- groups; Longitudinally

decreased in AD Aβ+ groups

Zhang et al (2018)44 18 24

sMCI,

47

pMCI

32 Microparticle based

immunoassay (Erenna,

Singulex, CA)

Significantly elevated in AD and pMCI groups compared with

control and sMCI groups

Abbreviations: AD, Alzheimer’s disease; sMCI, stable mild cognitive impairment; pMCI, progressive mild cognitive impairment.
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