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FKBPL-based peptide, ALM201, targets angiogenesis
and cancer stem cells in ovarian cancer
Stephanie Annett1,2, Gillian Moore1, Amy Short2, Andrea Marshall3, Cian McCrudden2, Anita Yakkundi2, Sudipto Das1,
W. Glenn McCluggage4, Laura Nelson2, Ian Harley5, Nermeen Moustafa2, Catherine J. Kennedy6,7, Anna deFazio6,7,8, Alison Brand6,8,
Raghwa Sharma8,9, Donal Brennan10, Sharon O’Toole11, John O’Leary12, Mark Bates11,12, Ciarán O’Riain13, Darran O’Connor1,
Fiona Furlong2, Helen McCarthy2, Adrien Kissenpfennig14, Lana McClements14,15 and Tracy Robson1,2

BACKGROUND: ALM201 is a therapeutic peptide derived from FKBPL that has previously undergone preclinical and clinical
development for oncology indications and has completed a Phase 1a clinical trial in ovarian cancer patients and other advanced
solid tumours.
METHODS: In vitro, cancer stem cell (CSC) assays in a range of HGSOC cell lines and patient samples, and in vivo tumour initiation,
growth delay and limiting dilution assays, were utilised. Mechanisms were determined by using immunohistochemistry, ELISA, qRT-
PCR, RNAseq and western blotting. Endogenous FKBPL protein levels were evaluated using tissue microarrays (TMA).
RESULTS: ALM201 reduced CSCs in cell lines and primary samples by inducing differentiation. ALM201 treatment of highly
vascularised Kuramochi xenografts resulted in tumour growth delay by disruption of angiogenesis and a ten-fold decrease in the
CSC population. In contrast, ALM201 failed to elicit a strong antitumour response in non-vascularised OVCAR3 xenografts, due to
high levels of IL-6 and vasculogenic mimicry. High endogenous tumour expression of FKBPL was associated with an increased
progression-free interval, supporting the protective role of FKBPL in HGSOC.
CONCLUSION: FKBPL-based therapy can (i) dually target angiogenesis and CSCs, (ii) target the CD44/STAT3 pathway in tumours
and (iii) is effective in highly vascularised HGSOC tumours with low levels of IL-6.
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BACKGROUND
Ovarian cancer affects one in 70 women in developed countries,
and high-grade serous ovarian cancer (HGSOC) is the most
common and aggressive subtype accounting for the majority
of advanced cases.1,2 The 10-year survival is lower than 30% and
this has not improved in 30 years, despite improved diagnostic
and therapeutic interventions.3 The standard management con-
sists of operative tumour debulking and administration of six
cycles of paclitaxel and carboplatin chemotherapy.4 Approxi-
mately 80% of patients respond to first-line treatment; however,
tumour recurrence and chemotherapy resistance eventually
occurs in almost all patients within a median progression-free
interval of 15 months post diagnosis.4

Angiogenesis has a pivotal role in the pathogenesis of ovarian
cancer by promoting tumour growth and progression through
ascites formation and metastatic spread.5 Targeting angiogenesis
in ovarian cancer has been an active area of research, and
bevacizumab, a monoclonal antibody against VEGF-A, has been

approved by the European Medicines Agency (EMA) and recently
the Food and Drug Administration (FDA) as a first-line therapy in
combination with chemotherapy.6,7 This is based on the pivotal
Phase III GOG-0218 trial in which those women who received
bevacizumab in combination with chemotherapy had a median
progression-free survival (PFS) of 18.2 months compared
with 12.0 months in women who received chemotherapy alone
(HR= 0.64; 95% CI 0.54–0.77, p < 0.0001).8 However, concerns
regarding toxicity and resistance remain major hurdles for the
clinical use of anti-angiogenic therapy. Across all tumour types,
bevacizumab is discontinued in 8.4–22% of all patients due to
adverse reactions.9 Furthermore, anti-angiogenic resistance, at
least in part, is attributed to hypoxia-driven cancer stem cell (CSC)
enrichment.10 It is now recognised that CSCs have major roles in
the aetiopathogenesis, metastasis and chemoresistance of ovarian
cancer and their targeting is an important therapeutic strategy.11

The successful elimination of CSCs could have unprecedented
implications in the clinical management of patients.12
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FK506-binding protein like (FKBPL) is a divergent member of the
FK506-binding protein family first identified as having a role in the
response of cells to radiation.13,14 At the intracellular level, and in a
complex with Hsp90, FKBPL stabilises p21 and regulates oestrogen
receptor (ER), androgen receptor and glucocorticoid receptor
signalling.15–18 Furthermore, FKBPL demonstrated prognostic
potential in a meta-analysis of five independent breast cancer
TMA cohorts.19 FKBPL is also a secreted anti-angiogenic protein
and the cell surface receptor, CD44, is a potential target for its
activity.20,21 In support of a role for FKBPL in angiogenesis, FKBPL
knockout mice are embryonically lethal and FKBPL heterozygous
embryos display vascular irregularities, suggesting a critical role
for FKBPL in developmental angiogenesis.22 In vitro and in vivo
knockdown of FKBPL in breast cancer cell lines increases
mammosphere formation accompanied by an increase in the
pluripotency transcription factors (Nanog, Sox2 and Oct4).23,24

Furthermore, FKBPL was identified by using an shRNA genetic
screen library as a regulator of breast cancer tumour initiation,25

and high tumour Fkbpl and low Nanog are associated with
improved survival outcomes in breast cancer patients (n= 94).23

The highly potent anti-angiogenic and anti-CSC activity of
FKBPL is due to a unique sequence within the N-terminal region. A
24-residue peptide comprising amino acids 34–58 of FKBPL was
developed and termed, AD-01. AD-01 has demonstrated potent
anti-angiogenic and anti-CSC activity potentially through binding
to CD44.21,23 Furthermore, FKBPL and its peptide derivatives
inhibit breast cancer metastasis through Notch signalling.26

Analysis of the structure, activity and stability of AD-01 led to
the selection of ALM201, a 23-residue peptide as the clinical drug
candidate. ALM201 lacks cytotoxicity and displayed a very good
safety profile in a Phase I, first-in-man, dose-escalation clinical trial
in patients with ovarian cancer and other solid tumours (EudraCT
number: 2014-001175-31).27,28 Furthermore, ALM201 was desig-
nated orphan drug status by the FDA in ovarian cancer. Given that
anti-angiogenic agents are demonstrating efficacy in the HGSOC
setting, a disease of unmet clinical need, we assessed whether
ALM201 could elicit dual anti-angiogenic and anti-stemness
activity in this disease. Indeed, this would differentiate this drug
from other agents targeting angiogenesis only.
To begin addressing this, we investigated if ALM201 could target

CSCs in a range HGSOC cell lines and patient samples. OVCAR3 cells
were sensitive to ALM201 in vitro; however, xenograft studies
indicated no antitumour or anti-CSC efficacy in vivo. On the other
hand, Kuramochi xenografts demonstrated significantly reduced
tumour growth and CSC frequency following ALM201 treatment.
Further studies indicated differences in tumour vascularisation and
cytokine levels between these two xenografts. OVCAR3 xenografts
displayed extensive vasculogenic mimicry and limited CD31+ blood
vessels, whilst Kuramochi xenografts had an extensive blood vessel
network. In addition, OVCAR3 cells dramatically increased the
expression of IL-6 in vivo and we demonstrated that IL-6 could
inhibit the ability of ALM201 to target CSCs.

METHODS
Tumoursphere assay
Briefly, 250 cells/cm2 were seeded in six-well dishes in non-adherent
culture as described previously and treated once with ALM201 upon
seeding.29 Tumourspheres > 50 µm were counted by using a Nikon
Eclipse TE300 (Japan) microscope under ×4 magnification after
3–4 days for cell lines and 7 days for primary samples.

Tumour initiation experiment
A total of 1 × 106 OVCAR3 or 5 × 106 Kuramochi cells were
resuspended in PBS and diluted 1:1 in Matrigel (BD Bioscience,
UK) and immediately implanted intradermally into female, 6-week-
old, female SCID mice (Harlan Laboratories, UK). PBS (vehicle
control) or ALM201 (0.3 mg/kg/day) were administered daily

(d1–d5), from day 1, by subcutaneous injection (n= 5 mice/group)
in the morning (between 9 am and 12 pm). Injections were
conducted in a laminar flow to reduce infection risk. Tumour cells
were implanted with the mice anaesthetised by using inhaled
isoflurane (induction concentration 3–5% and maintenance con-
centration 1.25–3%) with an anaesthetic machine and a face mask.
Route of administration and dose were chosen based on previously
conducted experiments by the lab.21,23,26 The mice were randomly
allocated to experimental groups, with a weight range of 18– 22 g.
Tumour volume was calculated as described previously.23 For all
in vivo experiments, mice were housed in individually ventilated
cages according to EU Directive 2010/63 at constant temperature
and humidity with 12-h light/dark cycle and fed standard chow.
The welfare of all the mice was monitored daily and health
screening carried out regularly as per the policy of licensed
establishment. Mice were euthanised by using exposure to carbon
dioxide. No adverse events were noted for in vivo experiments. The
experimental protocols were compliant with the UK Scientific Act
of 1986 and ARRIVE guidelines (Supplementary Table 1) and Perso-
nal License Number 1598 under the Project License Number 2794.

In vivo limiting dilution assay
SCID mice bearing Kuramochi xenografts from the above tumour
initiation experiment were treated with PBS or ALM201 until
tumours reached geometric mean diameter (GMD) of 12 mm3.
Tumours were excised, disaggregated using a scalpel and added
to a MACs C tube (Miltenyi Biotec, UK) containing collagenase type
II (Invitrogen, UK), DNAase type 1 (Sigma-Aldrich, UK) in RPMI/1%
penicillin/streptomycin (Invitrogen, UK). Tumours were minced by
using a gentleMACS dissociator (Miltenyi Biotec, UK) and
incubated at 37 °C in an orbital incubator for 45min. The cell
suspension was resuspended in red blood cell lysis buffer (Roche,
UK) for 2–3min. The cells were resuspended in ice-cold PBS and
counted using a haemocytometer. Cells were implanted intrader-
mally, as described above, into secondary SCID mice at 2.5 × 106,
1 × 106, 5 × 105, 1 × 105 and 1 × 104 cells per mouse. Mice did not
receive treatment and were observed for tumour initiation for
6 months. The tumour- initiating cell frequency was calculated by
using ELDA software.30

In vivo tumour growth delay
OVCAR3 and Kuramochi cells were implanted intradermally
into SCID mice, as described previously. Established tumours
(100mm3) were then treated with PBS (vehicle control) or ALM201
(0.3 mg/kg/day) as described previously for 30 or 56 days in the
OVCAR3 or Kuramochi xenografts, respectively (n= 5/group).
Tumours were excised and used for downstream experiments.

Tissue microarray
Individual patient data from four HGSOC tissue microarray (TMA)
cohorts were obtained and summarised in Supplementary Table 2.
TMAs were constructed at the various centres by using formalin-
fixed, paraffin-embedded tissue from primary HGSOC with a 0.6-
mm-diameter core (Cohort 1, 2, 3) or 1-mm- (Cohort 4) diameter
core taken from tumour areas. Tissue staining was carried out at
the Northern Ireland Molecular Pathology Laboratory of Queen’s
University Belfast as described previously.19 TMAs were scored fully
by one ‘trained’ scorer (SA/GM), with a second, independent scorer
(SA/GM) evaluating a minimum of 20% of the cohort. Two cohorts
were further independently scored by a clinical gynaecological
pathologist (GMcC). Each scorer was blinded to all pathological
information, and slides were scored according to staining intensity;
only cores that consisted of >20% tumour were scored. A
histoscore was calculated from the sum of (1 × % weakly positive
tumour cells) + (2 ×% moderately positive tumour cells)+ (3 ×%
strongly positive tumour cells) with a maximum histoscore of 300
as described in ref. 19 and sent to the independent statistics team
at the University of Warwick for analysis.
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RESULTS
The FKBPL-derived therapeutic peptide, ALM201, targets CSCs in
HGSOC cell lines and patient samples
The tumoursphere assay was used to assess the ability of ALM201 to
reduce ovarian CSCs in vitro and ex vivo. A significant reduction in
tumoursphere-forming efficiency (TFE) of 20–30% was obtained
across all cell lines, PE01, PE04, OVCAR3 and OVCAR4 cell lines
(Fig. 1a–d), similar to what we had observed in breast cancer cell
lines with the preclinical peptide, AD-01.23 FKBPL levels were
assessed in all cell lines, with highest expression observed in
OVCAR4 cells and lowest expression in PE01 cells (Fig. 1e). There
was no difference between endogenous FKBPL levels and the
response of the cell lines to ALM201 in the tumoursphere assay
(Fig. 1e, Supplementary Fig 1). RBCK1 is an FKBPL-interacting
protein, which regulates FKBPL stability at the post-translational
level via ubiquitination.31 RBCK1 was also measured in the ovarian
cancer cell lines. Again, there was no correlation between RBCK1,
USP19 and FKBPL in the ovarian cancer cell lines (Fig. 1e,
Supplementary Fig 1). The Kuramochi cell line, reported to closely
resemble HGSOC,32 did not form tumourspheres (Fig. 1f). However,
polypoid giant cancer cells (PGCCs) were routinely observed in the
Kuramochi monolayer (Fig. 1f). PGCCs are induced by hypoxia or
chemotherapy and they generate daughter cells with CSC-like
properties through an evolutionary conserved, asymmetric budding

mechanism. Zhang et al. reported that spheroids derived from
PGCCs are positive for CSC markers and a single PGCC spheroid
from the ovarian HEY cell line was able to form tumours in vivo.33

Encouragingly, ALM201 (100 nmol/L) significantly reduced the
number of spheroids formed, suggesting a reduction in the
tumour-initiating population in the Kuramochi cell line (Fig. 1g).
The anti-CSC activity was further evaluated by using clinically
relevant fresh primary HGSOC tissue directly from patients
(Supplementary Table 3). Treatment with ALM201 (1 and 100
nmol/L) was able to reduce the number of tumourspheres
representative of CSCs in three chemo-naive samples by ~40%
(Fig. 1h, Supplementary Fig. 2a). Neoadjuvant chemotherapy is
reserved for patients with aggressive tumours for whom optimal
tumour debulking is not possible.34 Patients who received
neoadjuvant chemotherapy demonstrated an approximately ten-
fold increase in the TFE compared with chemo-naive patients
(Fig. 1h, i). However, ALM201 also reduced CSCs in the neoadjuvant
patients, albeit with a lower average reduction of ~20% TFE (Fig. 1i,
Supplementary Fig. 2b). Upon grouping the patient samples,
treatment with ALM201 significantly inhibited tumoursphere
formation in chemo-naive patients, but not in the neoadjuvant
patients (Supplementary Fig. 2). On the whole, ALM201 appears to
effectively reduce tumoursphere formation in chemo-naive HGSOC,
indicating that it may be more effective as a first-line agent. ALM201
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demonstrates a mixed anti-CSC response in other subtypes of
ovarian cancer, with clear activity in the A2780 cell line
(endometrioid like cell line), an endometrioid patient, adenocarci-
noma patient, clear-cell patient and a serous borderline patient
(Supplementary Fig. 3).
To validate the tumoursphere assays, we used flow cytometry to

quantitate the ALM201-mediated reduction in ovarian CSCs using
well-characterised ovarian CSC surface markers, CD44+/CD117+.35

There was a significant decrease in the CD44+/CD117+ sub-
population in OVCAR3 cells following ALM201 (100 nmol/L)
treatment (Fig. 2a, b). The Kuramochi cell line had no detectable
CD44+/CD117+ subpopulation. The ALDEFLUOR assay was also

used to analyse the effect of ALM201 on the ALDH+ subpopula-
tion, which is also representative of ovarian CSCs.36 There was a
significant decrease in OVCAR3 ALDH+ cells following ALM201 (1
and 100 nmol/L) treatment (p < 0.05; n= 5) and a decrease of
Kuramochi ALDH+ cells following ALM201 treatment, but this was
not significant (n= 4) (Fig. 2c–e). There was an average of 15.1%
ALDH+ cells in the OVCAR3 cell line compared with 3.46% in the
Kuramochi cell line (Fig. 2d, e). Together, this indicates that the
stem cell-like population is small in the Kuramochi in vitro
population, given the lack of ability to form tumourspheres, no
detectable CD44/+CD117+ subpopulation and a small ALDH+

subpopulation.
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In order to investigate the fate of CSCs following treatment with
ALM201, we assessed colony morphology by using a clonogenic
assay. By using this assay, we have previously reported that the
preclinical peptide, AD-01, was not cytotoxic but rather differ-
entiated breast CSCs into a more committed cell phenotype.23

Similar to what was observed with AD-01, ALM201 was not
cytotoxic (Fig. 2f) and it significantly reduced holoclone formation
and increased meroclone and paraclone formation (Fig. 2g, h).
These results further support the hypothesis that ALM201
differentiates CSCs into more ‘mature’ cancer cells.

ALM201 does not target CSCs or angiogenesis in OVCAR3
xenografts
To validate the antitumour activity of ALM201 in vivo, a tumour
initiation experiment was performed by using the OVCAR3
xenograft model. Mice were treated with ALM201 (0.3 mg/kg/

day) from day 1 of implantation. Surprisingly, ALM201 did not
delay tumour initiation of the OVCAR3 xenografts (Fig. 3a). We
then used a tumour growth delay model to investigate the ability
of ALM201 to inhibit angiogenesis. Established (100 mm3) OVCAR3
xenografts were treated with ALM201 (0.3 mg/kg/day; d1–d5). No
significant delay in tumour growth was observed either, suggest-
ing that ALM201 does not inhibit angiogenesis in this model
(Fig. 3b). Following 30 days of treatment, tumours were excised
and dissociated. The dissociated OVCAR3 xenograft cells were
assessed in an ex vivo tumoursphere assay, and no decrease in
TFE was observed in the ALM201 treatment group (Fig. 3c). In
addition, flow cytometry was conducted and ALM201-treated
xenografts demonstrated no significant decrease in the
CD44+CD117+ CSC-like subpopulation (Fig. 3d). Overall, these
results indicate that ALM201 does not target CSCs or angiogenesis
in OVCAR3 xenografts. We had previously shown that the
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preclinical peptide, AD-01, significantly decreased the mRNA
expression of pluripotency markers OCT4, NANOG and SOX2 in
breast cancer xenografts, consistent with the differentiation of the
CSCs.23 Likewise, Sox2 mRNA levels were significantly reduced in
OVCAR3 monolayer cells after 24-h in vitro treatment with
ALM201 (1 and 100 nmol/l) (Fig. 3e). However, Oct4, Nanog and
Sox2 mRNA levels were significantly increased in the ALM201-
treated xenografts, consistent with the lack of anti-CSC activity in
the tumour xenograft setting (Fig. 3f). The OVCAR3 xenografts
were sectioned and stained for CD31+ blood vessels. Not
surprisingly, given the lack of any significant antitumour efficacy
in this xenograft model, there were very few CD31+ blood vessels
in the OVCAR3 xenografts (Fig. 3g, h), and so we considered that
other methods of vascularisation were driving growth. The
xenografts were dual stained with CD31+/PAS+, markers for
vasculogenic mimicry (VM). An extensive network of PAS+ vessels
was observed in the xenografts, suggesting a non-angiogenic
tumour phenotype (Fig. 3i). An in vitro model of VM was
evaluated, by inducing tubule formation in OVCAR3 cells. There
was no difference in tubule formation after ALM201 (100 nmol/L)
treatment in OVCAR3 cells (Fig. 3j). Together, these data indicate
that OVCAR3 xenografts induce VM channels for tumour growth
and this cannot be inhibited by ALM201 (Fig. 3). The Kuramochi
cells do not form tubules in vitro (Supplementary Fig. 4).

ALM201 targets CSCs and angiogenesis in Kuramochi xenografts
A tumour initiation experiment was performed by using Kuramochi
cells, and a significant 28-day delay in tumour initiation and
subsequent delay in tumour growth was observed in the ALM201
(0.3mg/kg/day) treatment group (n > 5) (Fig. 4a, b). This was also
reflected in the Kaplan–Meier survival curves (Fig. 4c). Kuramochi
xenografts from mice treated with PBS or ALM201 (0.3mg/kg/day)
were then stained for CD31+ blood vessels. Unlike the OVCAR3
xenografts, Kuramochi xenografts demonstrated a robust vascular
network, and there was a significant decrease in CD31+ vessels
after treatment with ALM201, indicating a reduction in angiogen-
esis (Fig. 4d). Interestingly, the Kuramochi tumour cells also stained
positive for CD31 (Fig. 4d). The in vivo limiting dilution assay is the
gold standard for assessing agents that target the tumour-initiating
potential of CSCs. Kuramochi xenografts were treated with ALM201
(0.3mg/kg/day) until a GMD= 12. Tumours were then disaggre-
gated and implanted into second-generation mice at defined cell
numbers (2.5 × 106, 1 × 106, 5 × 105, 1 × 105 and 1 × 104 cells/
mouse, Fig. 4e). The second-generation mice did not receive
ALM201 treatment, and extreme limiting dilution analysis (ELDA)
software was used to estimate the frequency of tumour-initiating
cells in the xenografts.30 There was a greater than ten-fold decrease
in the tumour-initiating frequency (TIF) in untreated second-
generation xenografts derived from primary ALM201 treatment
mice compared with the PBS controls (TIF; PBS 1.36 × 105 vs.
ALM201 1.59 × 106; p= 8.77 × 105, n > 4) (Fig. 4f; Supplementary
Fig. 5). In addition, there was a dramatic 131.5-day delay in tumour
initiation between mice implanted with 2.5 × 106 cells previously
treated with ALM201 and mice implanted with 2.5 × 106 cells from
PBS-treated xenografts (Fig. 4g). These results strongly indicate that
ALM201 is highly effective at targeting both the CSC subpopulation
and angiogenesis in the highly vascularised Kuramochi xenografts.

The Kuramochi cell line displays a pro-angiogenic genotype
compared with OVCAR3 cell line
RNA sequencing was performed to investigate gene expression
differences between the untreated Kuramochi and OVCAR3 cell
lines. The Kuramochi cell line demonstrated a positive correlation
to angiogenesis gene regulation, including an upregulation of
VEGF-A, compared with the OVCAR3 cell line (Fig. 5a, b). Other
pathways that had differential expression between Kuramochi and
OVCAR3 cells included p38MAPK, TGFβ, mTOR and NOD-like
receptor signalling (Supplementary Fig. 6). These data support the

well-vascularised phenotype observed when Kuramochi cells were
grown as xenografts and the distinct lack of angiogenesis when
OVCAR3 cells were grown as xenografts.

The OVCAR3 cell line upregulated inflammatory cytokines in vivo,
which inhibited anti-stem cell activity of ALM201
A previous study, by using unsupervised hierarchical clustering of
HGSOC patients treated with bevacizumab, a VEGF inhibitor,
identified three major subgroups: two with angiogenic gene
upregulation and one subgroup with immune gene upregula-
tion.37 The OVCAR3 and Kuramochi in vitro monolayers had similar
mRNA expression of the pro-inflammatory cytokines IL-6 and IL-8
(Fig. 5c). However, there was a dramatic 150-fold increase in IL-6
and 12.5-fold increase in IL-8 mRNA levels when OVCAR3 cells
were grown as xenografts (Fig. 5c). Notably, there was no change
in IL-6 and IL-8 mRNA levels between the Kuramochi cell line
cultured as a monolayer or as xenografts (Fig. 5c). The levels of
both mouse and human IL-6 and IL-8 (Kc) in the OVCAR3 and
Kuramochi xenografts were measured by ELISA. Mouse IL-6 or IL-8
was undetectable (data not shown), indicating that the source of
the cytokines was tumour derived rather than being from stromal
tissue. The Kuramochi xenografts had low levels of IL-6 (17 pg/µg),
while the OVCAR3 xenografts had 51-fold more IL-6 (871 pg/µg,
Fig. 5d). The OVCAR3 xenografts also had approximately six-fold
more IL-8 (Kc) protein than the Kuramochi xenografts (Fig. 5d).
This suggests that the OVCAR3 cell line is more representative of
an immune subgroup, whilst the Kuramochi cell line is represen-
tative of an angiogenic subgroup of HGSOC.
We had previously shown that ALM201 targets the CSC

subpopulation in the OVCAR3 cells in in vitro assays (Figs. 1, 2)
but had no anti-CSC activity in in vivo OVCAR3 xenografts (Fig. 3).
We decided to evaluate whether the increased IL-6 and IL-8 in
OVCAR3 xenografts could explain the lack of response to ALM201.
Recombinant IL-6 and IL-8 was added to in vitro OVCAR3
tumoursphere assays in the presence of ALM201. IL-6 significantly
abrogated the ability of ALM201 to decrease tumoursphere
formation at concentrations >10 ng/ml (Fig. 5e). However, ALM201
was still able to reduce tumoursphere formation in the presence of
IL-8 (Fig. 5f), suggesting that IL-6, a known antagonist of other anti-
CSC and anti-angiogenic drugs, might be responsible for the lack of
ALM201 anti-CSC efficacy in OVCAR3 xenografts.38,39

ALM201 decreases phosphorylation of STAT3 in OVCAR3 cells
The principal signalling mechanism for IL-6 is via the JAK/STAT
pathway. Here we addressed whether IL-6 could abrogate ALM201
activity via inhibiting this pathway. We first investigated whether
ALM201 could inhibit phosphorylation of STAT3, a pathway also
associated with CD44 signalling.40 Indeed, ALM201 decreased p-
STAT3(Tyr705) in OVCAR3 cells, whilst recombinant IL-6 abrogated
its activity post treatment with ALM201 (Fig. 5g, h). We have
previously reported that FKBPL and its peptide derivatives might
exert their activity though the cell surface receptor, CD44. STAT3
forms a complex with CD44 in the cytoplasm and acts as a linker
molecule to NFκB signalling to promote the CSC phenotype.40,41

Therefore, to further support a role for FKBPL in this pathway, we
demonstrate that transient knockdown of Fkbpl in OVCAR3 cells
resulted in the transient upregulation of NFĸB1 and the
pluripotency factor NANOG (Fig. 5i, Supplementary Fig. 7).

High FKBPL expression in ovarian cancer is associated with an
increase in progression-free survival
A meta-analysis of five breast cancer TMA cohorts has previously
indicated that FKBPL is an independent marker of good prognosis
in breast cancer,19 not surprising given its anti-angiogenic and
anti-CSC activity in this setting.19,21,23 Here we have demonstrated
that the FKBPL peptide mimetic, ALM201, has antitumour activity
in HGSOC and therefore postulated that FKBPL might also be a
prognostic marker in this setting. The association of FKBPL
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expression with overall survival was assessed within publicly
available data sets. Analysis of 1582 ovarian cancer patients of all
subtypes and treatments demonstrated that low FKBPL expression
was significantly associated with reduced overall survival (p=
0.021) (Fig. 6a). This preliminary data suggested a significant
correlation between reduced mRNA FKBPL expression and
reduced overall survival, correlating with what was observed in
breast cancer.16 We then used four TMA cohorts from HGSOC
patients to determine if FKBPL levels were associated with
prognosis in this tumour type. The patient clinico-pathological
variables for all four cohorts are shown in Supplementary Table 2.
Receiver-operative characteristics (ROC) analysis was carried out
on cohort I and II, and a histoscore of 190 was determined to be
the optimum cut-off (Supplementary Fig. 8). A histoscore of 190

was also previously used as the cut-off in five breast cancer
TMAs19 and was therefore considered a suitable cut-off for this
analysis. In cohort I, there was a significant association between
high FKBPL and progression-free survival (PFS; p= 0.03, HR= 1.44
and 95% CI= 1.04–2.00; Fig. 6b). However, whilst there was a
trend for high FKBPL levels demonstrating improved PFS, this was
not significant in cohorts II (Fig. 6c), III (Fig. 6d) and IV (Fig. 6e). An
individual patient meta-analysis of the four cohorts (n= 649) was
performed and there was low heterogeneity between the cohorts
(χ2= 3.5, p= 0.32). Patients with higher FKBPL levels had a
significantly longer PFS from diagnosis (HR= 1.22, 95% CI
1.03–1.44 and p= 0.02) in the unstratified analysis (Fig. 6f), but
significance was not reached in the stratified analysis (p= 0.07).
The median FKBPL histoscore value over the four cohorts was 165
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(interquartile range 146–186); however, cohort III had a signifi-
cantly higher median at 190 and had a large number of censored
events and thus was considered an outlier. Therefore, a second
meta-analysis of cohorts I, II and IV was conducted (n= 550). There
was a significant association between higher FKBPL levels and PFS
from diagnosis in both the stratified (HR= 1.23, 95% CI 1.02, 1.47
and p= 0.03) and unstratified analysis (HR= 1.27, 95% CI 1.06,
1.52 and p= 0.009; Fig. 6g).

DISCUSSION
The majority of ovarian cancer patients relapse after standard
treatment and this has been partially attributed to the CSC
subpopulation. HGSOC therefore remains a disease of unmet
clinical need, and here, for the first time, we evaluate a FKBPL
peptide fragment, ALM201, to dual-target HGSOC stem cells and
tumour angiogenesis.
One of the challenges with studying new therapeutics for

HGSOC is determining the histopathological origin of the most
commonly used cell lines. OVCAR3 and Kuramochi cells contain
the major oncogenes and tumour-suppressor genes associated

with HGSOC and are most likely to resemble the disease and were
therefore used for the majority of the in vitro and in vivo
experiments.32 ALM201 clearly demonstrated in vitro anti-CSC
efficacy, by using both tumoursphere assays and flow cytometry
in the OVCAR3 cell line monolayer (Figs. 1c, 2a–d). The Kuramochi
cell line did not form tumourspheres or contain a CD44+/CD117+

cell population and also had a reduced ALDH+ subpopulation,
thus indicating a lower CSC subpopulation in vitro. However,
following treatment with ALM201, there was a decrease in
spheres produced from PGCCs in vitro and a nonsignificant
reduction in the ALDH+ population in the Kuramochi cell line
(Figs. 1g, 2e).
FKBPL and its peptide derivatives have previously shown potent

anti-angiogenic activity resulting in a tumour growth delay in a
range of xenografts studies, potentially through the cell surface
receptor CD44.20,22,24 However, for the first time, we observed no
tumour growth delay in the OVCAR3 xenografts after treatment
with ALM201 (Fig. 3b). Ex vivo analysis of the xenografts by IHC
revealed limited blood vessels and extensive VM (Fig. 3g–i). In
vitro tubule formation assays suggested that ALM201 had no
effect on inhibiting VM channels in the OVCAR3 cells (Fig. 3j). In
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summary, the paucity of blood vessels, and the high level of VM
within the OVCAR3 xenografts, is a likely explanation for ALM201’s
lack of anti-angiogenic efficacy in this xenograft model.
Angiogenesis is regarded as an essential hallmark of cancer;

however, non-angiogenic tumours have been reported to occur in
brain,42 liver metastasis43,44 and lymph node metastasis.45,46 Gene
expression analysis in angiogenic and non-angiogenic non-
small cell lung cancer (NSCLC) samples suggests that in non-
angiogenic tumours, hypoxia leads to an increased activation of
the mitochondrial respiration chain and rapid tumour growth.47

Indeed, the OVCAR3 xenografts had a more rapid tumour growth,
compared with the angiogenic Kuramochi xenografts (Figs. 3a,
b, 4a, b). Moreover, there is emerging evidence in the literature
that the non-angiogenic growth of tumours is responsible for
both the intrinsic or acquired resistance to anti-angiogenic
treatment.48,49 Here, for the first time, we describe an ovarian
cancer xenograft that is dependent upon VM as opposed to
classical angiogenesis. On the other hand, the Kuramochi cell line
formed well-vascularised xenografts in vivo, and treatment with
ALM201 resulted in a significant tumour growth delay (Fig. 4b).
Analysis of the xenografts showed an extensive blood vessel
network consistent with high expression of angiogenesis-related

genes in Kuramochi cells (Fig. 5a). Kuramochi xenografts treated
with ALM201 had decreased CD31+ blood vessels (Fig. 4d), in line
with our previous studies with recombinant FKBPL and AD-01.21,24

Furthermore, the in vivo gold standard limiting dilution assay
clearly demonstrated that ALM201 significantly decreased the
tumour-initiating potential by ten-fold in Kuramochi xenografts
(Fig. 4f). This result has significant clinical relevance since therapies
against CSCs are a very active area of research, and there are
comparatively very few agents that specifically target HGSOC stem
cells. Overall, ALM201 had a potent anti-CSC efficacy in the
Kuramochi cells in vivo and no effect on the OVCAR3 CSC
population. This suggests that microenvironmental components
are drastically different between the two different tumour
xenografts, not surprising given the dramatic differences in
tumour vascularisation in these tumour types.
These results further highlight the clinical need to stratify

patients even within the same subtype of ovarian cancer. Four
molecular subtypes within the umbrella of HGSOC (C1/mesench-
ymal, C2/immune, C4/differentiated and C5/proliferative) have
been identified by gene expression profiling.50 Survival is
statistically different between the subtypes: best in the immunor-
eactive type and worst in the proliferative or mesenchymal
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Fig. 6 High FKBPL expression increased progression-free survival. a FKBPL expression was analysed by using microarray data from publicly
available data sets (http://www.kmplot.com/ovar). Kaplan–Meier survival curves of ovarian cancer patients were generated, showing that those
with low mRNA FKBPL expression indicated a significantly reduced overall survival (p < 0.05). FKBPL expression Kaplan–Meier estimates of
HGSOC PFS from diagnosis in cohort I (n= 177; b), cohort II (n= 193; c), cohort III (n= 99; d) and cohort IV (n= 180; e). Kaplan–Meier estimates
were determined with average FKBPL score for PFS, where FKBPL protein expression has been separated by histoscore of 190: high >190 (blue)
and low < 190 (red). f Hazard ratio plot of HGSOC PFS from diagnosis against FKBPL levels by cohorts I, II, III and IV (n= 639). g Hazard ratio plot
of HGSOC PFS from diagnosis against FKBPL levels by cohort from cohorts I, II and IV (n= 549).
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subtypes.51 The OVCAR3 and the Kuramochi cell lines are both
indicative of the HGSOC subtype although the main drivers of
in vivo tumour growth are clearly very different. In the clinic,
treatment with ALM201 or any other anti-angiogenic therapy, in
patients with HGSOC tumours with similar properties to the
OVCAR3 subtype is likely to be ineffective. On the other hand,
highly vascularised tumours, similar to the Kuramochi xenografts,
are more likely to respond well to anti-angiogenic therapies, and
encouragingly, ALM201 also exhibited a potent anti-CSC effect.
Bais et al. recently demonstrated that higher microvessel density
was predictive for response to bevacizumab in a Phase 3 clinical
trial (GOG-0218).52 This may prove to be a simple and effective
way to stratify patients likely to respond to anti-angiogenic
therapy in HGSOC.
Intriguingly, ALM201 inhibited OVCAR3 CSCs in vitro; however,

there was no effect on the CSC subpopulation in the OVCAR3
xenograft (Figs. 1c, 2a–d, 3c, d). Analysis of the Kuramochi and
OVCAR3 xenografts showed that there were substantial differ-
ences in IL-6 and IL-8 at both mRNA and protein level. Analysis of
the xenografts by using mouse and human ELISA revealed that
only human IL-6 and IL-8 could be detected, thus suggesting that
their source is tumour derived, rather than being from the
endogenous mouse microenvironment. IL-6 and IL-8 levels were
significantly elevated in vivo in the OVCAR3 xenografts compared
with the monolayer, and no difference was observed between
Kuramochi cells grown as monolayers or xenografts (Fig. 5c, d). We
hypothesise that enrichment of the cytokines in OVCAR3
xenograft is a possible contributing factor to the inability of
ALM201 to decrease stemness in vivo, whilst being effective
in vitro where levels were substantially lower. Indeed, addition of
recombinant IL-6 to in vitro OVCAR3 tumoursphere assays
abrogated the ability of ALM201 to decrease TFE (Fig. 5e). The
principal signalling pathway of IL-6 is STAT3, and for the first time,
we demonstrated that ALM201 reduces activation of STAT3 in
OVCAR3 cells (Fig. 5g, h). Future studies using fresh clinical
samples are required to further investigate the role of IL-6-
mediated resistance to FKBPL-based therapies.
We have provided evidence that FKBPL’s clinical peptide,

ALM201, is a novel anti-CSC agent and a potent angiogenic
inhibitor in vascularised HGSOC via STAT3 signalling. The current
study will greatly enhance the clinical utility of this agent during
its subsequent clinical development. In particular, we would
suggest that well-vascularised tumours, with low IL-6, might be
most responsive to its dual anti-angiogenic and anti-CSC activity,
although this will need to be further validated in fresh clinical
samples. Furthermore, we have demonstrated that high FKBPL
levels were associated with an increase in PFS. These data indicate
that FKBPL has potential as a novel prognostic biomarker in
HGSOC, a cancer with no universally accepted biological prog-
nostic biomarkers. Finally, we have provided further evidence that
a number of different subtypes exist under the remit of HGSOC,
with Kuramochi xenografts displaying extensive vascularisation
and the OVCAR3 xenografts representative of ‘immune’ subtypes.
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