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Deep neural networks (DNNs) have attained human-level performance on dozens of

challenging tasks via an end-to-end deep learning strategy. Deep learning allows data

representations that have multiple levels of abstraction; however, it does not explicitly

provide any insights into the internal operations of DNNs. Deep learning’s success

is appealing to neuroscientists not only as a method for applying DNNs to model

biological neural systems but also as a means of adopting concepts and methods from

cognitive neuroscience to understand the internal representations of DNNs. Although

general deep learning frameworks, such as PyTorch and TensorFlow, could be used

to allow such cross-disciplinary investigations, the use of these frameworks typically

requires high-level programming expertise and comprehensive mathematical knowledge.

A toolbox specifically designed as a mechanism for cognitive neuroscientists to map

both DNNs and brains is urgently needed. Here, we present DNNBrain, a Python-based

toolbox designed for exploring the internal representations of DNNs as well as brains.

Through the integration of DNN software packages and well-established brain imaging

tools, DNNBrain provides application programming and command line interfaces for

a variety of research scenarios. These include extracting DNN activation, probing and

visualizing DNN representations, and mapping DNN representations onto the brain. We

expect that our toolbox will accelerate scientific research by both applying DNNs tomodel

biological neural systems and utilizing paradigms of cognitive neuroscience to unveil the

black box of DNNs.

Keywords: deep neural network, brain imaging, neural representation, neural encoding and decoding,

representational similarity analysis (RSA), feature visualization

INTRODUCTION

Over the past decade, artificial intelligence (AI) has been able to make dramatic advances because
of the rise of deep learning (DL) techniques. DL makes use of deep neural networks (DNNs)
to model complex non-linear relationships and thus is able to solve real-life problems. A DNN
often consists of an input layer, multiple hidden layers, and an output layer. Each layer generally
implements some non-linear operations that transform the representation at one level into another
representation at a more abstract level. In one particular example, deep convolutional neural
network (DCNN) architecture stacks multiple convolutional layers hierarchically, inspired by the
hierarchical organization of the primate ventral visual stream. A supervised learning algorithm is
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generally used to tune the parameters of the network to minimize
errors between the network output and the target label in an end-
to-end manner (LeCun et al., 1998; Rawat and Wang, 2017). As
a result, DL is able to automatically discover multiple levels of
representations that are needed for a given task (LeCun et al.,
2015; Goodfellow et al., 2016). With this built-in architecture
and learning from large external datasets, DCNNs have achieved
human-level performance on a variety of challenging object
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; Szegedy
et al., 2015; He et al., 2016) and speech recognition tasks (Hinton
et al., 2012; Sainath et al., 2013; Hannun et al., 2014).

In addition to these achievements in engineering, DNNs
provide a potentially rich interaction between studies on both
biological and artificial information processing systems. On the
one hand, DNNs offer the best models of biological intelligence
to date (Cichy and Kaiser, 2019; Richards et al., 2019). In
particular, good correspondence between DNNs and the visual
systems has been identified (Yamins and DiCarlo, 2016; Kell
and McDermott, 2019; Serre, 2019; Lindsay, 2020). First, DNNs
exhibit behavioral patterns similar to those of human and non-
human primate observers on some object recognition tasks
(Jozwik et al., 2017; Rajalingham et al., 2018; King et al., 2019).
Second, DCNNs appear to recapitulate the representation of
visual information along the ventral stream. That is, early stages
of the ventral visual stream (e.g., V1) are well-predicted by
early layers of DNNs optimized for visual object recognition,
whereas intermediate stages (e.g., V4) are best predicted by
intermediate layers and late stages (e.g., IT) are best predicted
by late layers (Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014; Güçlü and van Gerven, 2015; Eickenberg et al., 2017).
Finally, DNNs designated for object recognition spontaneously
generate many well-known behavioral and neurophysiological
signatures of cognitive phenomena such as shape tuning (Pospisil
et al., 2018), numerosity (Nasr et al., 2019), and visual illusions
(Watanabe et al., 2018). Thus, DNNs provide a new perspective
to study the origin of intelligence. Indeed, neuroscientists have
already used DNNs tomodel the primate visual system (Schrimpf
et al., 2018; Lindsey et al., 2019; Lotter et al., 2020).

Alternatively, the end-to-end DL strategy makes DNN
a black box, without any explanation of its internal
representations. Experimental paradigms and theoretical
approaches from cognitive neuroscience have significantly
advanced our understanding of how DNNs work (Hasson
and Nusbaum, 2019). First, concepts and hypotheses from
cognitive neuroscience, such as sparse coding and modularity,
provide a hands-on terminology to describe the internal
operations of DNNs (Agrawal et al., 2014; Ritter et al., 2017).
Second, a variety of methods of manipulating stimuli, such
as stimulus degradation and simplification, have been used to
characterize unit response dynamics (Baker et al., 2018; Geirhos
et al., 2019). Finally, the rich data analysis techniques from
cognitive neuroscience, such as ablation analysis (Morcos et al.,
2018; Zhou et al., 2018), activation maximization (Nguyen
et al., 2016), and representation similarity analysis (Khaligh-
Razavi and Kriegeskorte, 2014; Jozwik et al., 2017), provide a
powerful arsenal for exploring the computational mechanisms
of DNNs.

Such a crosstalk between cognitive neuroscience and AI needs
an integrated toolbox that meets the objectives of both fields.
However, the most commonly used DL frameworks such as
PyTorch1 and TensorFlow2 are developed for AI researchers.
The use of these frameworks typically requires advanced
programming expertise and comprehensive mathematical
knowledge of DL. To our knowledge, there is no software
package, specifically designed for both AI scientists and cognitive
neuroscientists, that is able to interrogate DNNs and brains at
the same time. Therefore, it would be of great value to have
a unifying toolbox that maximally integrates DNN software
packages and well-established brain mapping tools.

In this paper, we present DNNBrain, a Python-based toolbox
specifically designed for exploring representations of both DNNs
and brains. The toolbox has five major features.

• Versatility: DNNBrain supports a diverse range of applications
for exploring DNN and brain representations. These
include accessing DNN representations, building an
encoding/decoding model for external stimuli, analyzing
representational similarity between DNN and brain, transfer
learning from pretrained models on study-specific stimuli,
and visualizing DNN representations. Moreover, DNNBrain
supports multiple modalities of input stimulus including
image, audio, and video.

• Usability: DNNBrain provides a command line interface
(CLI) and an application programming interface (API) for
the user’s convenience. At the application level, users can
directly run commands to conduct typical representation
analysis for both DNN and brain without any programming
needed. At the programming level, all algorithms and
computational pipelines are encapsulated into objects with
high-level interface in the experimental design and data
analysis language of neuroscientists. Users can easily program
their own pipelines on these encapsulated algorithms objects.

• Transparent input/output (IO): DNNBrain transparently
reads and writes multimodal neuroimaging data and multiple
customized meta-data. As a result, DNNBrain spares users
from the need to have specific knowledge about different
data formats.

• Open source: DNNBrain is freely available in source.
Users can access every detail of DNNBrain implementation.
This improves the reproducibility of experimental results,
leads to efficient debugging, and allows for accelerated
scientific progress.

• Portability: DNNBrain, implemented in Python, runs on all
major systems (e.g., Windows, Mac, and Linux). It is easy to set
up, as it has no complicated dependencies on external libraries
and packages.

As follows, we first introduce the functionalities of DNNBrain
and then describe its framework (i.e., building blocks). Finally,
with a typical application example, we demonstrate the versatility
and usability of DNNBrain in characterizing both DNNs and
brains as well as in examining the correspondences between

1https://pytorch.org
2https://www.tensorflow.org

Frontiers in Computational Neuroscience | www.frontiersin.org 2 November 2020 | Volume 14 | Article 580632

https://pytorch.org
https://www.tensorflow.org
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Chen et al. DNN and Brain Mapping Toolbox

DNNs and brains. The toolbox is freely available for download3

and complemented with an expandable online documentation.4

Functionalities of DNNBrain
The primary aim of DNNBrain is to provide a framework that
makes it easy to explore the internal representations of DNNs
and brains, and the representational similarity between them.
To do this, DNNBrain integrates a diverse range of tools such
as encoding/decoding models to reveal stimuli or behavioral
relevance of the representations, encoding/decoding models to
map DNNs representations to those of brains, representational
similarity analysis (RSA) between DNNs and brains, visualizing
DNN representations, and transfer learning from pretrained
models on study-specific stimuli.

Encoding and Decoding Model
Information processing in the brain and DNNs can generally be
divided into two stages: (1) the neural code is generated from the
stimuli (i.e., map stimuli to neural responses), and (2) the neural
code is used to produce behavior (i.e., map neural responses
to behavioral responses; Kriegeskorte and Douglas, 2019). In
DNNBrain, neural (artificial) encoding models are implemented
to do the former, whereas neural (artificial) decoding models are
used for the latter (Figure 1).

Encoding models are implemented as linear models because
the manner in which features of stimuli are represented in
an explicit format by a neuron/voxel is a primary concern of
neuroscientists (Yamins et al., 2014; Wen et al., 2018). Two kinds
of linear models were introduced into DNNBrain to support
encoding models (Figure 2A). First, univariate linear models
(e.g., GLM, ridge, and lasso regression) were adopted to find
linear combinations of stimuli features to predict the response of
a neuron/voxel (Naselaris et al., 2011). The univariate encoding
model describes how information is encoded in the activity
of the individual neuron/voxel; however, it ignores interactions
between different neurons/voxels. Second, multivariate partial
least squares (PLS) linear models were introduced to find linear
relations in two sets of multivariate variables (i.e., stimulus
features and neural responses) by maximizing covariance of the
transformed variables (Bilenko and Gallant, 2016; O’Connell
and Chun, 2018). PLS models the covariance structures of
stimuli features and neural responses, and thus provides
information on how individual features and their interactions
contribute to predicting responses frommultiple neurons/voxels.
Decoding models, which predict behavioral responses based on
neural responses, work in the opposite direction of encoding
models. Therefore, univariate linear models used for encoding
models can serve as decoding models by simply exchanging
response variables for predictor variables of the encoding models
(Figure 2B).

DNNBrain uses cross-validation (CV) techniques (e.g.,
k-fold and leave-one-out CV) to evaluate the generalization
performance of encoding/decoding models. The CV techniques
divide a dataset into several non-overlapping subsets. Each

3http://github.com/BNUCNL/dnnbrain
4http://dnnbrain.readthedocs.io

subset is held back in turn as the test set, whereas all other
subsets are collectively used as a training dataset. The accuracy
(i.e., the fraction of correct predictions) and explained variance
are generally used to measure performance for classification-
and regression-based encoding/decoding models, respectively.
Permutation testing is utilized to test the significance of the
model performance. The null distribution is generated by
deriving the performance measure multiple times using original
data samples, but with permuted targets.

Analyzing Representational Similarity
Another focus of DNNBrain is to provide tools to examine
representational similarities between DNNs and brains (i.e.,
describe the relationships between neural responses from DNNs
and those from brains) (Figure 1). First, encoding models can be
used to examine the representational similarity between DNNs
and brains if internal representations of DNNs are considered
as extracted features of external stimuli (Figure 2A). Second,
representational similarity analysis (RSA) was implemented in
DNNBrain to evaluate the similarity between two representations
(Kriegeskorte et al., 2008) (Figure 2C). RSA differs from
encoding/decoding models, which measure the representational
similarity between DNNs and brains by examining how
brain responses could be directly predicted from DNN
responses, or vice versa. In contrast, RSA utilizes pairwise
comparison of stimuli in representation space to characterize
their representation. Representational dissimilarity, which is
often calculated as Euclidean distance or correlation distance
between two multivariate response patterns, is first created for
every pair of stimuli or conditions, and then summarized in a
representational dissimilarity matrix (RDM) which characterizes
the geometry of the set of points in the multivariate response
space. Finally, the correlation between RDMs from DNNs and
brains is calculated to measure their representational similarity.
Multiple correlation metrics are supported by DNNBrain
including the Pearson correlation, Kendall’s tau correlation,
and Spearman’s correlation. Permutation tests were integrated
in DNNBrain to estimate significance of the representational
similarity between DNNs and brains. The permutation test
randomizes the stimulus labels multiple times to generate the
null distribution.

Transfer Learning From Pretrained Models on

Study-Specific Stimuli
Training a DNN from scratch often requires a large amount
of computational demand that results in significant time and
energy costs. Moreover, there usually is not enough existing data
available to train a DNN de novo. Fortunately, it turns out that
representations from pretrained DNNs on large datasets (e.g.,
ImageNet) often work well for related new tasks. Therefore,
instead of training a DNN from scratch, it can be trained to
solve a new task by fine-tuning the weights of a pretrained
model using just a very few training examples. This is known
as transfer learning. Clearly, transfer learning is of great value
in the study of representational similarities between DNNs and
brains because it is often not possible to collect large-scale neural
datasets. DNNBrain provides a set of utilities that assists users in
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FIGURE 1 | DNNBrain is designed as an integrated toolbox that characterizes artificial representations of DNNs and neural representations of brains. After stimuli are

submitted to both DNNs and brains, the artificial neural activities, and the biological neural activities are acquired. By assembling the stimuli, the artificial activity data,

and the biological neural activity data together with custom-designed auxiliary IO files, DNNBrain allows users to easily characterize, compare, and visualize

representations of DNNs and brains.

transfer learning from pretrained DNNs on their study-specific
dataset. Users can easily specify which target layers/channels to
be fine-tuned and customize the new task layers.

Visualizing Features From DNNs
DNNs are a kind of complex non-linear transformation that
does not provide explicit explanation of their internal workings.
Identifying the relevant features that contribute most to the
responses of an artificial neuron is central to the understanding
of precisely what each neuron has learned (Montavon et al., 2018;
Nguyen et al., 2019). Three approaches have been implemented
in DNNBrain to assist users in examination of the stimulus
features that an artificial neuron prefers. The first approach is
known as top stimulus discovering. The top images with the
highest activations for a specific neuron (or unit) are identified
from a large image collection (Zeiler and Fergus, 2014; Yosinski
et al., 2015). The second approach, known as saliency mapping,
computes gradients on the input images relative to the target
unit, utilizing a backpropagation algorithm. It highlights pixels
of the image that change the unit’s activation most when its
value changes (Simonyan et al., 2014; Springenberg et al., 2015).

The third approach is termed optimal stimulus synthesizing. This
approach synthesizes the visual stimulus from initial random
noise, guided by increasing activation of the target neuron (Erhan
et al., 2009; Nguyen et al., 2016).

Other Utilities Provided by DNNBrain
In addition to the functionalities described previously,
DNNBrain provides additional flexible pipelines for
neuroscience-orientated analysis of DNNs. These include
ablation analysis of individual units (Morcos et al., 2018; Zhou
et al., 2018) and estimation of the empirical receptive field of a
unit (Zhou et al., 2014). It also comes with a variety of utilities,
such as image processing tools used for converting different data
structures (e.g., PyTorch tensor, NumPy array, and PIL image
objects), translating and cropping images, and more. Details can
be found on the DNNBrain documentation page.4

Implementation of DNNBrain
DNNBrain is a modular Python toolbox that consists of four
modules: IO, Base, Model, and Algorithm (Figure 3). The Python
language was selected for DNNBrain because it provides an ideal
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FIGURE 2 | DNNBrain provides multiple approaches to explore internal representations of DNNs and the brain, and the representational similarities between them. (A)

Top: univariate linear encoding models find optimal linear combinations of multiple stimulus features (or DNN responses) to predict the response of a neuron/voxel.

Bottom: multivariate linear models search optimal linear combinations of multiple stimulus features (or DNN responses) to predict the responses from multiple

neurons/voxels by maximizing their covariance. (B) In the opposite direction of encoding models, linear decoding models find optimal linear combinations of neural

responses (or DNN responses) to predict behavior responses. (C) Representational similarity analysis evaluates the similarity of two representations by comparing

representational dissimilarity matrices obtained from them.

environment for the research on DNNs and brains. First, Python
is currently the most commonly used programming language
for scientific computing. Many excellent Python libraries have
been developed for scientific computing. The libraries used in the
DNNBrain are as follows: NumPy for numerical computation,5

SciPy for general-purpose scientific computing,6 scikit-learn for
machine learning,7 and Python imaging library (PIL) for image

5https://numpy.org
6https://www.scipy.org
7https://scikit-learn.org

processing.8 Second, Python is increasingly used in the field of
brain imaging. Many Python libraries for brain imaging data
analysis have been developed such as NiPy9 (Millman and Brett,
2007) and fMRIPrep10 (Esteban et al., 2019). Finally, Python is
the most popular language in the field of DL. Python is well-
supported by the two most popular DNN libraries (i.e., PyTorch1

and TensorFlow2).

8http://pythonware.com/products/pil
9https://nipy.org
10https://fmriprep.org
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FIGURE 3 | DNNBrain is a modular framework which consists of four

modules: IO, Base, Model, and Algorithm. The IO module provides facilities for

managing file-related input and output operations. The Base module defines

base level classes for array computing and data transforming. The Model

module holds a variety of DNN models. The Algorithm module defines various

algorithms for exploring DNNs and the brain. All modules provide user-friendly

APIs. A set of CLIs was developed for a variety of research scenarios.

Supported by a large variety of existing software packages,
DNNBrain was designed with a high-level API in the
domain language of cognitive neuroscience. All algorithms and
computational pipelines are encapsulated into classes in an
object-oriented programmingmanner. All modules provide user-
friendly APIs. On these APIs, a set of CLIs was developed for a
variety of research scenarios.

Of note, neuroimaging data preprocessing pipelines are not
included in DNNBrain. The data need to be preprocessed
before they are input into DNNBrain. This separation between
the DNNBrain representation analysis pipeline and the data
preprocessing pipeline provides users with maximum flexibility
to utilize different neuroimaging toolboxes to preprocess
their data.

IO Module: Organizing Datasets in DNNBrain
DNNBrain introduces auxiliary file formats to handle various
types of scientific data and supporting metadata. These include
stimulus files, DNN mask files, and DNN activation files. With
these file formats, users can easily organize their inputs and
outputs. The stimulus file is a comma separated values (CSV)
text file designed to configure stimulus information including
the stimulus type (image, audio, and video), stimulus directory,

stimulus ID, stimulus duration, stimulus conditions, and other
possible stimulus attributes. The DNNmask file is also a CSV text
file designed for users to specify channels and units of interest
when analyzing DNNs. Both the stimulus file and the DNN
mask file can be easily configured with a text editor. The DNN
activation file is a HDF5 (Hierarchical Data Format) file in which
activation values from specified channels are stored. In addition,
DNNBrain uses NiBabel11 to access brain imaging files. Almost
all common MRI file formats are supported, including GIFTI,
NIfTI, CIFTI, and MGH.

Base Module: Defining the Basic Data Structure
The base module defines base level objects for data structure
and data transformations. Specifically, a set of objects is defined
to organize either data from the input stimulus or the output
activation data from the DNN. The data objects were designed
to be as simple as possible, while retaining necessary information
for further representation analysis. The stimulus object contains
stimulus paths and associated attributes (e.g., category label),
which are read from stimulus files. The activation object holds
DNN activation patterns and associated location information
(e.g., layer, channel, and unit). Aside from these data objects,
several encoding/decoding models were developed, including
popular classification and regression models such as generalized
linear models, logistic regression, and lasso. Each of these models
was wrapped from the widely used machine learning library,
scikit-learn.7

Model Module: Encapsulating DNNs
In DNNBrain, a DNNmodel is implemented as a neural network
model from PyTorch. Each DNNmodel is a sequential container
which holds the DNN architecture (i.e., connection pattern of
units) and associated connection weights. The DNN model is
equipped with a suite of methods that access attributes of the
model and update states of the model. PyTorch has become the
most popular DL framework because of its simplicity and ease
of use in creating and deploying DL applications. At present,
several well-known PyTorch DCNN models12 pretrained for
different stimulus modalities have been adopted into DNNBrain,
including AlexNet (Krizhevsky et al., 2012), VGG (Simonyan
and Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), and
ResNet (He et al., 2016) for image classification; VGGish for
audio classification (Hershey et al., 2017); and R3D for video
classification (Tran et al., 2018).

Algorithm Module: Characterizing DNNs and Brains
The algorithm module defines various algorithms objects
for exploring DNNs. An algorithm object contains a DNN
model and corresponding methods that allow the study of
specific properties of the model. Three types of algorithms
are implemented in DNNBrain. The first type is the gradient
descent algorithm for DNN model training, which is wrapped
from PyTorch.13 The second type of algorithm comprises
tools for extracting and summarizing the activation of a

11https://nipy.org/nibabel
12https://github.com/pytorch/vision
13https://pytorch.org/docs/stable/optim.html
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DNN model, such as principal component analysis (PCA)
and clustering. The third type is made up of algorithms that
visualize representations of a DNN, including discovering the
top stimulus, mapping saliency features of a stimulus, and
synthesizing the maximum activation stimulus for a specific
DNN channel. Each algorithm takes a DNN model, as well as a
stimulus object, as input.

Command Line Interface
At the application level, DNNBrain provides several workflows
as command line interface, including those that access DNN
representations, visualize DNN representations, evaluate
the behavioral relevance of the representations, and map
DNN representations to brains. Users can conveniently run
commands to perform typical representation analysis on
their data.

Extension of DNNBrain
Along with the modules and algorithms that have already been
implemented in DNNBrain, the user can extend DNNBrain
in the following ways. First, any PyTorch model can be
easily wrapped into DNNBrain by inheriting DNN Class and
overriding its few methods. Second, any linear or non-linear
model can conveniently be introduced into DNNBrain as either

an encoding/decoding model, as long as they have the same
interface as the scikit-learn Classifier/Regression object. Finally,
users can write their own scripts to develop customized pipelines
by reusing the algorithms and dataset objects.

METHODS

DNN Model: AlexNet
AlexNet is used as an example to illustrate the functionality
of DNNBrain. AlexNet is one of the most influential DCNNs.
In the 2012 ImageNet challenge (Krizhevsky et al., 2012),
it demonstrated for the first time that DCNNs can increase
ImageNet classification accuracy by a significant stride. AlexNet
is composed of five convolutional (Conv) layers and three fully
connected (FC) layers that receive inputs from all units in
the previous layer (Figure 4A). Each Conv layer is generally
composed of a convolution, a rectified linear unit function
(ReLU), and max pooling operations. These operations are
repeatedly applied across the image. In this paper, when we refer
to Conv layers, we mean the output after the convolution and
ReLU operations.

Because AlexNet contains thousands of units in each layer, the
dimension (i.e., the number of units) of the activation patterns

FIGURE 4 | AlexNet architecture and activity patterns from example units. (A) AlexNet consists of five Conv layers followed by three FC layers. (B) The activation

maps from each of the five Conv layers of AlexNet were extracted for three example images (cheetah, dumbbell, and bald eagle). Presented channels are those

showing maximal mean activation for that example image within each of the five Conv layers.
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from each layer was reduced to 100 via PCA to avoid the
risk of overfitting the models in further analyses of DNN and
brain representation.

BOLD5000: Stimulus and Neuroimaging
Data
BOLD5000 is a large-scale publicly available human functional
MRI (fMRI) dataset in which four participants underwent
slow event-related BOLD fMRI while viewing ∼5,000 distinct
images depicting real-world scenes (Chang et al., 2019). The
stimulus images were drawn from the three most commonly
used computer vision datasets: 1,000 hand-curated indoor and
outdoor scene images from the Scene UNderstanding dataset
(Xiao et al., 2010), 2,000 images of multiple objects from the
Common Objects in Context dataset (Lin et al., 2014), and
1,916 images of mostly singular objects from the ImageNet
dataset (Deng et al., 2009). Each image was presented for 1 s
followed by a 9-s fixation cross. Functional MRI data were
collected using a T2∗-weighted gradient recalled echo planar
imaging multi-band pulse sequence (In-plane resolution = 2
× 2mm; 106 × 106 matrix size; 2mm slice thickness, no gap;
TR = 2,000ms; TE = 30ms; flip angle = 79◦). The scale,
diversity, and naturalness of the stimuli, combined with a slow
event-related fMRI design, make BOLD5000 an ideal dataset to
explore the DNNs and brain representations of a wide range of
visual features and object categories. The raw fMRI data were
preprocessed utilizing the fMRIPrep pipeline including motion
correction, linear detrending, and spatial registration to native
cortical surface via boundary-based registration (Esteban et al.,
2019). No additional spatial or temporal filtering was applied.
For a complete description of the experimental design, fMRI
acquisition, and preprocessing pipeline, see Chang et al. (2019).

The preprocessed individual fMRI data were firstly
transformed into 32k_fs_LR space using ciftify (Dickie et al.,
2019). BOLD response maps for each image were then estimated

from the fMRI data using the general linear model (GLM)
from HCP Pipelines (Glasser et al., 2013). The response maps
of each image were finally averaged across four subjects in
the fsLR space and used for further analyses. Moreover, we
constrained our analysis to the ventral temporal cortex (VTC), a
critical region for object visual recognition. The VTC region was
defined by merging the areas V8, FFC (fusiform face complex),
PIT (posterior inferotemporal complex), VVC (ventral visual
complex), and VMV (ventromedial visual areas) from HCP
MMP 1.0 (Glasser et al., 2016). DNNBrain pipelines support
both surface and volume data. Here, we preferred to use surface-
based preprocessed data instead of volume-based preprocessed
data because previous studies have shown that surface-based
analysis can increase the specificity of cortical activation patterns
(Van Essen et al., 1998; Brodoehl et al., 2020).

RESULTS

We demonstrated the functionality of DNNBrain on AlexNet
and BOLD5000 dataset. Specifically, we accessed DNN
activation of the images from BOLD5000, probed the category
information represented in each DNN layer, mapped the
DNN representations onto the brain, and visualized the
DNN representations. We do not aim to illustrate the full
functionalities that are available from DNNBrain, but rather to
sketch out how DNNBrain can be easily used to examine DNN
and brain representations in a realistic study. All the analyses
were implemented in both API and CLI levels. The code can be
found in the DNNBrain online documentation.4

Scanning DNNs
To examine the artificial representations of DNNs, we needed
to scan the DNN to obtain its neural activities, just as we scan
the human brain using brain imaging equipment. DNNBrain

FIGURE 5 | DNNBrain provides linear decoding models to probe the explicit representation contents of layers of interest in a DNN. On BOLD5000 stimuli, a logistic

regression model revealed that the higher a layer is, the more animate information is encoded within it.
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provides both API and CLI to extract activation states for user-
specified channels of a DNN. Figure 4 shows the activation
patterns of three example images (cheetah, dumbbell, and bald
eagle) from the channels of AlexNet which showed the maximal
mean activation within each of the five Conv layers. The
activation patterns revealed that DNN representations of the
images became more abstract along the depth of the layers.

Revealing Information Presented in DNN
Layers
To learn whether specific stimuli attributes or behavioral
performances are explicitly encoded in a certain layer of a
DNN, one direct approach is to measure to what degree the
representation from the layer is useful for decoding them. Linear
decoding models (classifier or regression) were implemented in
DNNBrain to enable this. Here, we manually sorted BOLD5000
stimulus images into binary categories (animate vs. inanimate)
according to salient objects located in each image, and then
examined how animate information is explicitly encoded in
AlexNet. In total, 2,547 images were labeled as animate and
2,369 as inanimate. We trained a logistic regression model on
the artificial representations to decode the stimulus category
for each Conv layer of AlexNet. The accuracy of the model
was evaluated with a 10-fold cross-validation. As shown in
Figure 5, the classification accuracy progressed with the depth
of Conv layers, indicating higher layers encoded more animate
information than lower layers. Moreover, the ReLU operation
within each Conv layer played a significant role in improving the
representation capacity for animate information.

Mapping Representations Between a DNN
and the Brain
A growing body of literature is investigating the potential of
DNNs to work as models of brain information processing.
Several recent studies found that internal representations of
object recognition DNNs provided the best current models
of representations of visual images in the inferior temporal
cortex of both humans and monkeys (for a recent review, see
Lindsay, 2020). Here, we adopted the univariate encoding model,
multivariate encoding model, and RSA on BOLD5000 dataset
to map artificial representations from Conv layers of AlexNet
to neural representations from the VTC of the brain. On the
artificial representation from each Conv layer of AlexNet, a
univariate GLM encoding model was constructed for each voxel
within the VTC, and a multivariate PLS encoding model was
built for the whole VTC. Encoding accuracy was evaluated with
the Pearson correlation between the measured responses and the
predicted responses from the encoding model using a 10-fold
cross-validation procedure. For RSA, RDMwas derived using the
correlation distance between each pair of stimuli, and a Pearson
correlation was used to measure the similarity between two
representations. Four main findings were revealed (Figure 6).
First, the encoding accuracy of the VTC gradually increased
for the hierarchical layers of AlexNet, indicating that as the
complexity of the visual representations increases along the DNN
hierarchy, the representations become increasingly VTC-like.
Second, the encoding accuracy varied greatly across voxels within
the VTC for the artificial representations of each AlexNet layer,

FIGURE 6 | Both the encoding model and the representational similarity

analysis are implemented in DNNBrain to help researchers to examine the

correspondence between the DNN and brain representations. (A) Encoding

accuracy maps from univariate GLM encoding models of predicting VTC

BOLD responses using artificial representation from the Conv layers of AlexNet

(top), and encoding accuracy maps from multivariate PLS encoding models of

predicting VTC BOLD responses using artificial representation from the Conv

layers of AlexNet (bottom). (B) RDMs for BOLD5000 stimuli computed on

artificial representations from Conv layers of AlexNet and brain activation

patterns from the human VTC. The representation distance between each pair

of images was quantified as the correlation distance between their

representations. The representational similarity between the DNN and the brain

is further calculated as the Pearson correlation between their RDMs.

suggesting the VTCmay organize in distinct functional modules,
each preferring different kinds of features. Third, the univariate
encoding model and the multivariate encoding model produced
similar results, indicating that interactions between different
voxels encode little representation information from each DNN
Conv layer. Finally, RSA also showed results similar to those of
encoding models, suggesting that the encoding model and RSA
are likely to be equally useful for comparing representations from
DNNs and brains.

Visualizing Features From DNNs
Visualization of critical features of a stimulus that cause the
responses of an artificial neuron is central to the understanding
of precisely what each neuron has learned. As an example, we
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FIGURE 7 | The top stimuli, saliency maps, and optimal images for three output units of AlexNet. (A) Top stimuli discovered from the BOLD5000 dataset. (B) Saliency

maps computed for the top stimuli presented in (A). (C) Optimal images synthesized from initial random noise guided by increasing the activation of corresponding

neurons.

used three DNN visualization approaches from DNNBrain (i.e.,
top stimulus, saliency map, and optimal stimulus) to visualize
the preferred features for three output units of AlexNet (i.e.,
ostrich, peacock, and flamingo). The output units were selected
as examples because produced features for them are easy to
check (i.e., each unit corresponds to a unique category). These
procedures essentially work for any unit in a DNN. As shown
in Figure 7A, the top stimulus was correctly found from 4,916
BOLD5000 images for each of three units: every top stimulus
contains the object in the correct category. Saliency maps
highlight the pixels in the top stimuli that contribute most to
the activation of the neurons (Figure 7B). Finally, the optimal
images synthesized from initial random noise correctly produced
objects of the corresponding category (Figure 7C). In summary,
these three approaches are able to reveal the visual patterns
that a neuron has learned on various levels and thus provide a
qualitative guide to neural interpretations.

DISCUSSION

DNNBrain integrates well-established DNN software and brain
imaging packages to enable researchers to conveniently map
the representations of DNNs and brains, and examine their
correspondences. DNN models provide a biologically plausible

account of biological neural systems, and show great potential for
generating novel insights into the neural mechanisms of brains.
On the other hand, experimental paradigms from cognitive
neuroscience provide powerful approaches to pry open the black
boxes of DNNs. DNNBrain, as a toolbox that is specifically
tailored toward mapping the representations of DNNs and
brains, has good potential to accelerate the merge of these
two trends.

There are some issues that we would like to target in future
development. First, DNNBrain integrates many of the currently
most popular pretrained DCNN models. With the advance of
the interplay between neuroscience and DNN communities, new
DNN models are constantly emerging, and will be included
into future iterations of DNNBrain. For example, generative
adversarial networks could be introduced into DNNBrain to
help users reconstruct external stimuli (Shen et al., 2019;
VanRullen and Reddy, 2019) or synthesize preferred images
for either neurons or brain areas (Ponce et al., 2019). Second,
DNNBrain, up until now, only supports DNN models from
PyTorch, which limits the study of DNNs constructed under
other frameworks. We would like to put significant effort
toward integrating other DNN frameworks into DNNBrain,
especially TensorFlow. Third, only fMRI data are currently
well-supported in DNNBrain. The magnetoencephalography
(MEG), electroencephalography (EEG), multiunit recordings,
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and local field potentials can capture the temporal dynamics of
neural representations which fMRI cannot provide. Support for
these modalities is forthcoming according to recently published
data standardization of electrophysiology (Niso et al., 2018;
Pernet et al., 2019). Finally, DNNBrain mainly supports the
exploration of pretrained DNN models, trained on large-scale
external stimuli. It would be a good idea in the future to equip
DNNBrain with tools that fuse brain activities and external
tasks/stimuli to create DNN models that more closely resemble
the human brain. Recent advances demonstrate that brain
representations provide additional and efficient constraints on
DNN constructions (McClure and Kriegeskorte, 2016; Fong
et al., 2018). The brain has acquired a robust representation
that generalizes across many tasks. As a result, while training
DNNs to solve behavioral tasks, co-training DNNs to match
the brain’s latent representations observed from massive neural
recordings will move the representation of DNNs toward these
neural representations, andmake themmore closely resemble the
human brain.
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