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Abstract: While the Zygomycete fungus Conidiobolus coronatus primarily infects insects, it can be
pathogenic to mammals as well, including humans. High variability in the treatment of this fungal
infection with currently available drugs, including azole drugs is a very common phenomenon.
Azoles bind to the cytochrome P450 monooxygenases (P450s/CYP) including CYP51, a sterol
14-α-demethylase, inhibiting the synthesis of cell membrane ergosterol and thus leading to the
elimination of infecting fungi. Despite P450’s role as a drug target, to date, no information on
C. coronatus P450s has been reported. Genome-wide data mining has revealed the presence of
142 P450s grouped into 12 families and 21 subfamilies in C. coronatus. Except for CYP51, the remaining
11 P450 families are new (CYP5854-CYP5864). Despite having a large number of P450s among
entomopathogenic fungi, C. coronatus has the lowest number of P450 families, which suggests
blooming P450s. Further analysis has revealed that 79% of the same family P450s is tandemly
positioned, suggesting that P450 tandem duplication led to the blooming of P450s. The results of this
study; i.e., unravelling the C. coronatus P450 content, will certainly help in designing experiments
to understand P450s’ role in C. coronatus physiology, including a highly variable response to azole
drugs with respect to P450s.

Keywords: cytochrome P450 monooxygenase; Conidiobolus coronatus; drug resistance; entomopathogens;
P450 blooms; rare and neglected diseases; rhinoentomophthoramycosis; tandem duplications

1. Introduction

Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins that are ubiquitously
distributed in organisms belonging to different biological kingdoms [1]. P450s are well known for their
stereo- and regio-specific enzymatic reactions [2] and thus play a key role in organisms’ physiology,
both in primary and secondary metabolism [3]. Because of their important catalytic activities, P450s’
role in drug metabolism and drug discovery, in the generation of commercial products including
antibiotics, in bioremediation, and in the production of biofuels has been explored [3].
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Analysis of fungal species genomes has revealed the presence of a large number of P450s,
with few exceptions. It is now well known that the number of P450s and diversity of P450s in a fungal
species is largely affected by the fungal species’ lifestyle or their ecological niche [4–7]. This indicates
that P450s play a key role in fungal species’ physiology in terms of their primary and secondary
metabolism. Fungal P450s’ role in fungal species’ physiology and their biotechnological application
has been thoroughly reviewed [8–11]. Among all fungal P450 applications, the use of P450s as drug
targets against fungal pathogens is well explored [12,13] because of their binding affinity to azole drugs,
which are widely used for treating fungal infections [14]. Most of the azole drugs bind and inhibit
CYP51, a sterol 14α-demethylase, thus stopping the synthesis of cell membrane ergosterol, which is an
indispensable component of fungal membranes [12]. Ergosterol depletion affects not only the structure
of the membrane, but also several of its functions, including its hormone-like role that stimulates the
growth and proliferation of fungal cells that eventually lead to the death of fungi [14–16]. Fungal
pathogens were found to develop drug resistance [17] to anti-fungal drugs such as azole drugs and
other drugs belonging to the classes of allylamine, echinocandin, nucleoside analog, and polyene [18].
Understanding the fungal pathogens’ physiology at the molecular level will help to unravel novel
drug targets and develop novel drugs.

Among fungal pathogens, Conidiobolus coronatus, an entomopathogen (pathogen of insects)
developed the ability to infect animals (horses, sheep, and dogs), including humans [19]. C. coronatus
lives in soil and decaying matter, especially dead leaves [20], in addition to the feces of amphibians,
sheep, insects, and horses [19]. C. coronatus has a worldwide distribution, especially in the tropical
rain forests of Africa. It has been found in the United Kingdom [21], on the eastern coast of the United
States [22], in India [23,24], the western region of Africa, and recently in South Africa [25].

C. coronatus causes conidiobolomycosis, an entomophthoramycosis in humans, and is considered
a rare and neglected disease [19]. The definitive route of infection has not been established, but it is
believed that C. coronatus enters the human body via inhalation of spores or from minor trauma [26].
Conidiobolomycosis is a disease of the nasal submucosa and paranasal sinuses, which slowly spreads
to the nasal skin, glabella, cheek, upper lip, and pharynx. Rarely, contiguous lymph nodes may
be involved [24,27–30]. Infection of the nasal and paranasal mucocutaneous tissue is known as
rhinoentomophthoramycosis. Recently, C. coronatus infection in the vagina has been reported [22],
indicating that this fungus is capable of infecting other sites of the human body as well.

C. coronatus is capable of producing mycotoxins that are known to be very toxic to insects [31,32].
This parasitic fungus will attack normal or stressed insects, gaining access by penetrating the host’s
inner skin, and the host will eventually die because of tissue demolition, nutrient depreciation, and the
production of toxins [33]. This entomopathogenic fungus has the potential of becoming a biological
insect control, owing to its ability to infect and kill a varied range of insects [34].

In order to understand C. coronatus’s physiology at the molecular level, genome sequencing
of this fungus has been carried out [35]. However, the genome sequencing study was focused on
analyzing the evolution of cell wall digestion enzymes and no information on C. coronatus P450s has
been presented [35]. Interestingly, conidiobolomycosis treatment employing amphotericin B, azoles
and/or potassium iodide was found to be highly variable [19]. In a case study, a patient infected with
C. coronatus showed no response when treated with amphotericin B; azoles (ketoconazole, fluconazole
and itraconazole) and potassium iodide individually, and a combination of azole drug therapies
were needed to treat the patient [36]. Sometimes treatment includes both the surgical removal of
infected tissue and the use of different drugs [37]. High variability in susceptibility to azole drugs
by C. coronatus was widely observed [19], including C. coronatus species that are resistant to azole
drugs [38].

Since P450s were found to play a key role in organisms’ physiology, including serving as azole
drug targets [12,14–17], it is necessary to unravel the P450 content of this fungus to be able to design
experiments to understand P450s role in C. coronatus physiology and the variability in susceptibility of
this fungus to azole drugs with respect to P450s.
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2. Results and Discussion

2.1. C. coronatus Has the Highest Number of P450s among Entomopathogenic Fungi

Genome data mining, identification, and annotation of P450s in C. coronatus revealed the presence
of 142 P450s in its genome (Figure 1 and Table 1). C. coronatus was found to have the highest number of
P450s compared to other entomopathogenic and animal (including human) pathogenic fungi (Table 2).
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Figure 1. Phylogenetic analysis of C. coronatus P450s. P450 families bloomed in C. coronatus are
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Table 1. Annotation (family and subfamily assignment) of C. coronatus P450s.

P450 Family
P450 Subfamily

No. of P450s in a Family
Subfamily Name No. of P450s

CYP51 F 1 1

CYP5854

A 8

48
B 4
C 1
D 1
E 34

CYP5855 *

A 5

36

B 2
C 12
D 15
E 1

1
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Table 1. Cont.

P450 Family
P450 Subfamily

No. of P450s in a Family
Subfamily Name No. of P450s

CYP5856
A 5

20B 15
CYP5857 A 10 10
CYP5858 A 11 11
CYP5859 A 5 5
CYP5860 A 3 3
CYP5861 A 3 3
CYP5862 A 2 2
CYP5863 A 1 1
CYP5864 A 1 1

CYP-fragment # - 1 1
12 Families 21 subfamilies 142 142

* Belonging to the same family but not assigned to a subfamily because of short amino acid sequence; - not applicable;
# not assigned to family because of short amino acid sequences (284 amino acids) and only showed 24% identity to
named P450s.

Table 2. Comparative P450 analysis in entomopathogenic and animal (including human) pathogenic fungi.

Fungus Host P450 Count No. of P450
Families Reference

Entomopathogenic fungus

Beauveria bassiana Arthropods (termites, thrips,
whiteflies, aphids, and beetles) 83 49 [39]

Cordyceps militaris Butterflies and caterpillars 57 37 [40]

Metarhizium acridum ≥200 insects 100 67 [41]

Metarhizium anisopliae
(formerly Metarhizium robertsii) Locusts 123 87 [41]

Animal including human pathogen

Sporothrix schenckii
Humans and other animals (cats,
dogs, rodents, squirrels, horses,

and birds)
40 32 [7,42]

Animals (including humans) and entomopathogenic fungus

Conidiobolus coronatus Insects, humans, and other animals
(horses, sheep and dogs) 142 12 This work

2.2. Large Number of New P450s Found in C. coronatus

C. coronatus P450s can be grouped into 12 P450 families and 21 P450 subfamilies (Table 1).
Except for CYP51, the most conserved family in fungi [43], the remaining P450 families are new.
It is quite interesting that C. coronatus, apart from CYP51, does not share a P450 family with other
entomopathogenic fungi listed in Table 2. Interestingly, C. coronatus lacks CYP61, the P450 involved in
fungal membrane ergosterol synthesis [44], compared with pathogenic fungi listed in Table 2. Among
142 P450s, one P450 (protein ID: 71373) is not assigned to a P450 family because of a short amino
acid sequence and low sequence identity to other P450s. In addition, one P450 (protein ID: 2292)
belonging to the CYP5854 family has not been assigned to a subfamily because of a short amino acid
sequence and low identity to other subfamilies. P450s that are not full-length (<300 amino acids) were
indicated with word “fragments” after their P450 subfamily (Figure 1 and Tables S1 and S2). The new
P450 families identified in C. coronatus include CYP5854-CYP5864 (Table 1). Despite having a large
number of P450s, C. coronatus has the lowest number of P450 families compared to entomopathogenic
and animal (including human) pathogenic fungi (Table 2), suggesting P450 blooms (a few families
with many genes) in C. coronatus. Phylogenetic analysis revealed that CYP5859 P450s show a close
relationship with CYP5855 P450s and seem to have evolved from CYP5855 P450s (Figure 1).



Int. J. Mol. Sci. 2018, 19, 1711 5 of 14

2.3. P450 Signature Motifs EXXR and CXG Are Conserved in C. coronatus P450s

Among different motifs that are characteristic of P450s, two motifs, namely EXXR in the K-helix
and FXXGXRXCXG (also known as CXG) in the heme-binding domain, are found to be conserved
in P450s, with few exceptions [45–48]. These two motifs are largely explored in the identification
of P450s across biological kingdoms [48]. Analysis of EXXR and CXG motifs in C. coronatus P450s
revealed that all P450s have both signature motifs (Table S3). Only a few P450s that are named as
fragments (as mentioned in Section 2.2) did not have one of these motifs (Table S3). Thus, these P450s
named as fragments represent pseudo-P450s. Analysis revealed that C. coronatus P450s have highly
conserved amino acids, such as glutamic acid (E) and cysteine (C), in the motifs EXXR and CXG,
with the exception of CYP5857A4, which has glycine instead of glutamic acid in the EXXR motif
(Table S3). Non-conservation of glutamic acid in EXXR motifs is not new and has been reported for
other P450s as well [48]. Analysis of amino acid patterns for the P450 families, CYP5854-CYP5856,
revealed family-specific amino acid patterns at the EXXR and CXG motifs (Figure 2). CYP5854
and CYP5855 have the same E-S-M-R amino acid pattern, whereas CYP5856 has an E-T/V-M-R
amino acid pattern in the EXXR motif (Figure 2). Comparative analysis with P450s across biological
kingdoms [48,49] revealed that the CYP5854 and CYP5855 families’ EXXR amino acid pattern matched
that of the CYP94 family, whereas the CYP5856 family EXXR amino acid patterns partially matched
those of the CYP53, CYP92, and CYP176 P450 families, indicating a possible evolutionary relation
between the families. Contrary to the EXXR motifs, the amino acid patterns at the CXG motifs of the
CYP5854-CYP5856 families did not match any P450s [48,49]. This strongly supports the hypothesis
that each P450 family has its unique signature amino acid patterns at the EXXR and CXG motifs [48].
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CYP5854-CYP5856. P450 protein sequences used to deduce EXXR and CXG signature sequences
were presented in Table S4.

2.4. P450 Blooming in C. coronatus

Comparative analysis of P450s revealed that among 11 P450 families, five P450 families
contributed 88% of P450s to the total number of P450s in C. coronatus (Figure 2 and Table 1).
This indicates that the five P450 families, namely CYP5854, CYP5855, CYP5856, CYP5858, and CYP5857,
are highly bloomed in C. coronatus. The highest number of member P450s were found in CYP5854
(48 P450s) followed by CYP5855 (36 P450s), CYP5856 (20 P450s), CYP5858 (11 P450s), and CYP5857
(10 P450s) (Figure 3). Blooming of certain P450 families in an organism indicates that these family
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members play a key role in an organism’s physiology and thus they are expanded [4,50]. In some
Basidiomycetes, P450 families were found to be expanded in order to help those organisms to colonize
on wood and wood-derived materials [4]. At present the reason or need for blooming of these five
P450 families in C. coronatus is not clear. It is noteworthy that none of the P450 families is expanded in
other entomopathogenic fungi listed in Table 2.
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2.5. Extensive Tandem Duplications Led to P450 Blooming in C. coronatus

P450 blooming is only possible when certain P450s belong to the same P450 family duplicated in
large numbers in an organism [50]. The duplicated P450s (paralogs) can be identified by observing their
location in the genome, intron-exon organization, and percentage identity at protein level, as described
elsewhere [4,6,13]. Tandem arrangement of P450s (P450s located one behind the other) belonging to
the same family is a good indication of P450 duplications. Analysis of the C. coronatus genome revealed
that 79% of P450s (112 P450s) belonging to the same P450 family are tandemly located (Figure 4 and
Table S5).

As shown in Figure 4, the five P450 families bloomed in C. coronatus were found to have the
highest number of tandemly duplicated P450s. This indicates that P450 tandem duplications led to the
blooming of these five P450 families in C. coronatus. The CYP5855 family was found to have the highest
number of tandemly duplicated P450s (33 P450s), followed by the CYP5844 family with 32 P450s,
the CYP5856 family with 17 P450s, the CYP5858 family with 11 P450s, and the CYP5857 family with
10 P450s. The number of tandemly duplicated P450s in the respective families was shown in Figure 4.
In addition to the five P450 families bloomed in C. coronatus, three P450 families were found to have
P450s that are tandemly duplicated, namely CYP5861 (2 P450s), CYP5859 (5 P450s) and CYP5860
(2 P450s) (Figure 4 and Table S5). It is interesting to note that P450s that are tandemly located on
different scaffolds (portion of the genome sequence reconstructed from end-sequenced whole-genome
shotgun clones) belong to the same subfamily (Table S5). This strongly indicates that these P450s
indeed evolved by tandem duplications.
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2.6. C. coronatus P450s Have Same Gene Structure

Another characteristic of tandemly duplicated genes is that they have the same gene structure;
i.e., the same number and size of introns and exons. Fungal P450s with the same gene structure
have previously been reported and the authors suggested that this is a typical characteristic of gene
duplications [4,6,13]. In this study, gene structure analysis was carried out for P450 families such as
CYP5854, CYP5857, and CYP5860 (Figures 5 and 6), since most of the members in these families are
full-length P450s.
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Figure 6. Gene structure analysis of P450s in CYP5857 and CYP5860 family. Each P450 gene structure
is presented with the P450 name, exons (red color bars) and introns (gap between bars). The size of
exons (number at the top of the red bars) and introns (number in the gaps) is shown in the figure.
Some P450s’ evolution was deduced from other P450s and their origin is indicated with dotted lines.
The location of the respective P450s is indicated with their scaffold number.

As shown in Figure 5, the size of the exons in CYP5854 P450s is conserved. The number of introns and
exons in some P450s is also highly conserved. P450s that are short contain the same size exons as full-length
P450s, indicating their origin from full-length P450s. This was clearly observed for some CYP5854 P450s
such as CYP5854-fragment2, which originated from CYP5854A2, CYP5854A2-fragment4, which originated
from CYP5854-fragment3 and CYP5854E1, which originated from CYP5854E2 (Figure 5).

The phenomenon of the same gene structure was also observed in CYP5857 and CYP5860
P450s (Figure 6). The origin of P450s from other P450s in the CYP5857 family was observed as
well, where CYP5857A5 P450s seem to have originated from CYP5857A1 (Figure 6). The two members
of the CYP5860 family have the same gene structure (Figure 6).

2.7. C. coronatus Has the Lowest P450 Diversity among Entomopathogenic Fungi

Another characteristic of tandem duplication of P450s is that organisms have the lowest P450
diversity percentage [7,49,51]. The P450 diversity percentage is a good indication of P450 family
blooming. The lowest P450 diversity means that certain P450 families are bloomed in an organism.
Analysis of the P450 diversity percentage revealed that C. coronatus has only 8% P450 diversity,
despite having a large number of P450s in its genome (Figure 7).

Comparative analysis of the P450 diversity percentage with other entomopathogenic fungi
revealed that C. coronatus has the lowest diversity (Figure 7). This further indicates that extensive P450
duplication led to blooming of certain P450 families and thus the lowest P450 diversity percentage.
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2.8. Functional Prediction of C. coronatus P450s

Except for CYP51 P450, all P450s in C. coronatus are new, implying that functional analysis based
on characterized homologs is not possible. However, as indicated earlier, CYP51 of C. coronatus can
be predicted to be involved in ergosterol biosynthesis based on the characterized homolog P450 [43].
It is interesting to see the role of bloomed P450s in C. coronatus, as these families are unique to this
fungus compared to other entomopathogenic fungi. It is interesting to note that another P450, CYP61,
involved in fungal membrane ergosterol synthesis [44] is not present in C. coronatus.

3. Materials and Methods

3.1. Genome Data Mining for P450s

The genome sequence of C. coronatus NRRL28638 v1.0 has been published [35] and is available at
the JGI MycoCosm database (Available online: https://genome.jgi.doe.gov/Conco1/Conco1.home.
html), which was data-mined for P450s. The data mining of P450s was carried out as described
elsewhere [4,6,52], with slight modifications. Briefly, the C. coronatus genome was mined for P450s
using InterPro code “IPR001128”. The hit protein sequences were downloaded and subjected to the
NCBI Batch Web CD-Search Tool [53]. Proteins that grouped under the P450 superfamily were selected
for further analysis.

3.2. Annotation of P450s

The above selected P450 proteins were subjected to BLAST analysis against all named fungal
P450s at the Cytochrome P450 Homepage [54] to identify a homolog P450. The name of the homolog
P450 and percentage of identity to the homolog P450 were recorded (Table S1). Based on the percentage
identity to homologous P450s, a family and subfamily were assigned to C. coronatus P450s. This was
done by following the rules set by the International P450 Nomenclature Committee [55–57]; i.e., >40%
identity for a family and >55% identity for a subfamily. C. coronatus P450s that had <40% and <55%
identity to the named fungal P450s were assigned to new families and new subfamilies, respectively
(Table S1). Percentage identity among C. coronatus P450s was also used to assign P450 families and
subfamilies. Information on homolog P450s that are used in the naming of C. coronatus P450s was
listed in Table S1 along with the C. coronatus P450s identified and annotated in this study. C. coronatus
P450 protein sequences along with their amino acid length are presented in Table S2.

https://genome.jgi.doe.gov/Conco1/Conco1.home.html
https://genome.jgi.doe.gov/Conco1/Conco1.home.html
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3.3. Phylogenetic Analysis of P450s

The phylogenetic tree of C. coronatus P450s was constructed as described previously [51],
with slight modifications. Briefly, the protein sequences were aligned by MUSCLE embedded in
MEGA 7 [58]. Then, the best-fit substitution model for alignment was determined by the IQ-TREE
web server (Available online: http://iqtree.cibiv.univie.ac.at/) [59]. Finally, the tree was constructed
in MEGA7 by the maximum likelihood method, along with the best-fit substitution model and 100
bootstrap replications [60]. iTOL was used to view and highlight the tree [61].

3.4. Analysis of EXXR and CXG Motifs

An analysis of EXXR and CXG motifs in C. coronatus P450s was carried out as described
elsewhere [48]. Briefly, a multiple sequence alignment of P450s was carried out using Clustal
Omega [62] and then a manual search was performed for the presence of EXXR and CXG motifs
(Table S3). The WebLogo for EXXR and CXG motifs for the P450 families, CYP5854-CYP5856,
was deduced as described elsewhere [48] following the WebLogo program [63]. WebLogos were
deduced using the default parameter with the amino acid sequence type. The criteria for the selection
of P450 families for EXXR and CXG amino acid pattern analysis are based on the number of P450s
in a P450 family [49]. Three P450 families, CYP5854-CYP5856, have more than 15 P450s for analysis
(Table S4) compared to other new P450 families, thus they qualify for EXXR and CXG motif analysis.

3.5. Identification of Tandemly Duplicated P450s

Tandem P450 gene duplications were assessed as described elsewhere [4,6]. Briefly, the physical
location of P450 genes, such as scaffold number, start and end point of the P450 gene on the DNA strand,
was recorded by scanning the C. coronatus genome using the P450 protein ID (Table S5). P450s that are
tandemly arranged and belong to the same family are regarded as duplicated P450s. The percentage
P450 duplications are calculated as the percentage of P450s duplicated in the total number of P450s.

3.6. Gene Structure Analysis

Gene structure analysis of P450s was carried out as described elsewhere [4,6,7,13]. Briefly,
the C. coronatus genome was mined using P450 protein ID. P450 gene structure graphics downloaded
from the C. coronatus genome database were aligned in such a way that exons with the same size would
align together. The length of exons was noted as an indication of possible gene duplication, if P450s
showed conservation in the size of exons. P450s whose gene structures contained the same sizes of
exons or introns were presented in the figures.

3.7. P450 Diversity Percentage Analysis

P450 diversity percentage analysis was carried out as described elsewhere [7,49,51]. Briefly,
the P450 diversity percentage in C. coronatus was measured as a percentage contribution of the number
of P450 families in the total number of P450s.

3.8. Comparative Analysis of P450s

Entomopathogenic and animal (including human) pathogenic fungi P450s were retrieved from
published articles [7,39–42] and used for comparative analysis with C. coronatus P450s.

4. Conclusions

This study is the first of its kind on an in silico analysis of P450s in C. coronatus. Except for CYP51
P450, a conserved P450 in fungi and a primary target of azole drugs, all P450s were found to be new in
C. coronatus. Unprecedented blooming of novel P450s in C. coronatus compared to other fungal species
was observed. It would be interesting to observe the role of bloomed P450s in C. coronatus physiology,

http://iqtree.cibiv.univie.ac.at/
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considering this fungus has a broad host range and is capable of infecting humans and other animals,
in addition to insects.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/6/1711/
s1.
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