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Abstract: Tillering is a crucial agronomic trait of wheat; it determines yield and plant architecture.
Strigolactones (SLs) have been reported to inhibit plant branching. D14, a receptor of SLs, has
been described to affect tillering in rice, yet it has seldomly been studied in wheat. In this study,
three TaD14 homoeologous genes, TaD14-4A, TaD14-4B, and TaD14-4D, were identified. TaD14-4A,
TaD14-4B, and TaD14-4D were constitutively expressed, and TaD14-4D had a higher expression
level in most tissues. TaD14 proteins were localized in both cytoplasm and nucleus. An SNP and
a 22 bp insertion/deletion (Indel) at the exon regions of TaD14-4D were detected, forming three
haplotypes, namely 4D-HapI, 4D-HapII, and 4D-HapIII. Due to the frameshift mutation in the coding
region of 4D-HapII, the interaction of 4D-HapII with TaMAX2 and TaD53 was blocked, which led
to the blocking of SL signal transduction. Based on the two variation sites, two molecular markers,
namely dCAPS-250 and Indel-747, were developed. Association analysis suggested that haplotypes
of TaD14-4D were associated with effective tillering number (ETN) and thousand kernel weight
(TKW) simultaneously in four environments. The favorable haplotype 4D-HapIII underwent positive
selection in global wheat breeding. This study provides insights into understanding the function of
natural variations of TaD14-4D and develops two useful molecular markers for wheat breeding.

Keywords: TaD14; strigolactone signaling; haplotype; effective tillering number; thousand kernel
weight; molecular marker; wheat

1. Introduction

Plant architecture, an important index determined in great part by shoot branching
(tillering in crops), is one of the key factors of the yield component [1]. Shoot branching is
under integrated regulation by hormonal, developmental, and environmental factors [2,3].
Strigolactones (SLs) are a group of carotenoid-derived plant hormones, which were demon-
strated for the first time in 2008 as regulators that can inhibit the outgrowth of axillary buds,
whose function is highly conserved in both monocots and dicots [4,5]. Other functions
have been proposed for SLs in the regulation of plant growth and development, including
accelerating leaf senescence [6,7], promoting secondary growth of stems [8], regulating
plant root development [9], mediating plant tolerance to nutrient deficiency [10], and
enhancing plant response to drought and high salt stress [11,12].

The biosynthesis of SLs begins from β-carotene. D27/AtD27 encodes a β-carotene iso-
merase, which converts all-trans-β-carotene to 9-cis-β-carotene in the initial steps [13–15].
Then, the catalysis of carotenoid cleavage dioxygenase 7 (CCD7) and CCD8 (encoded by
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HTD1/D17/MAX3 [16–18] and D10/MAX4 [19] in rice (Oryza sativa) and Arabidopsis (Ara-
bidopsis thaliana), respectively) produces carlactone (CL) [13], the last common precursor
for all SLs [20]. Recent studies have shown that MAX1 and other enzymes can catalyze
the biosynthesis of both canonical and noncanonical SLs from CL, whereas this process is
different in rice and Arabidopsis [21–23].

Studies on a series of SL-insensitive mutants indicated that the SLs signaling mecha-
nism involves targeted degradation of hormone-activated proteins, similar to auxin, jas-
monic acid (JA), and gibberellic acid (GA) [20,24]. The perception and signal transduction
of SLs in rice and Arabidopsis are coordinated by three highly conserved components [25]:
DWARF14 (D14)/AtD14 [26,27], D3/MAX2 [28–30], and D53/SMXL6/7/8 [3,31,32]. D14,
an α/β-hydrolase protein with a strictly conserved Ser–His–Asp catalytic triad, has been
identified as an SL receptor [33–35]. Compared with other plant hormone receptors, D14 is
unique in that it is a novel type of hormone receptor with dual functions of enzyme and re-
ceptor [36]. D3/MAX2 encodes an F-box protein with a leucine-rich repeat (LRR) sequence,
which is involved in the formation of the SCF protein complex [25,28]. In 2013, there was a
significant breakthrough in the study of SL signaling transduction. D53, a repressor of SL
signaling, was identified as a substrate of the SCFD3 ubiquitination complex [3,31].

Wheat is one of the most important staple crops in the world. It is estimated that by
2050, wheat production needs to be increased by 70% from the current level in order to
meet the needs of the growing world population [37]. Tillering is a crucial agronomic trait
of wheat; it determines yield and plant architecture [38]. The proper number of tillers is
of great significance to wheat production. The functions of SLs as plant hormones mainly
affect plant branches [4,5]. However, to date, few studies on the genes involved in SL
biosynthesis and signal transduction have been reported in wheat, and the roles of these
genes in influencing wheat tillering and other agronomic traits remain unclear.

Association analysis based on gene polymorphism has been proved to be an effective
method to reveal the relationship between genes and traits and has been widely per-
formed in many plant species, such as for OsLG3b in rice [39], ZmVPP1 in maize [40], and
TaDA1 [41] and TaBT1 [42] in wheat. A series of key haplotypes that can be distinguished
by effective molecular markers and which are associated with important traits have been
identified using this method [43]. Moreover, the use of marker-assisted selection (MAS) to
accumulate favorable alleles or haplotypes is considered a potential way to accelerate the
process of wheat breeding [44]. Hence, the discovery of excellent gene allelic variations and
the development of molecular markers have practical value for the breeding and genetic
improvement of wheat.

In this study, the major objectives were to (1) isolate and characterize three homeologs
of TaD14 from wheat, (2) explore expression patterns of TaD14 genes in various tissues and
periods, (3) identify sequence diversity and elucidate the possible molecular mechanism of
a natural mutation of TaD14-4D, (4) develop functional markers to distinguish haplotypes
and associate them with agronomic traits, and (5) evaluate the value of the newly developed
molecular markers and assess whether different haplotypes were selected by analyzing
the geographic distribution and frequency of favorable allelic variation. This study aimed
to identify potentially important genes and provide a valuable functional marker for
molecular marker-assisted wheat breeding.

2. Results
2.1. Identification and Structural Analysis of TaD14 Genes

Dwarf 14 (D14) encodes an α/β-fold hydrolase superfamily protein. Loss of function
mutants exhibit dwarf and high tillering phenotype in rice [26]. To investigate the function
of D14 in wheat, the coding sequence (CDS) of OsD14 (Os03g0203200) was used as a query
to search in the Chinese Spring RefSeq v1.0 genome database [45]. Three D14 homeologs
located in chromosomes 4AS (TraesCS4A02G046700), 4BL (TraesCS4B02G258200), and 4DL
(TraesCS4D02G258000) were obtained and named TaD14-4A, TaD14-4B, and TaD14-4D.
Primers were designed based on specific regions for each sequence (Table S1) to clone the



Int. J. Mol. Sci. 2021, 22, 3748 3 of 16

genomic sequence and CDS of TaD14 genes using genomic DNA and cDNA samples of
Chinese Spring. All three homoeologous genes of TaD14 were composed of two exons
and one intron (Figure 1A). The genomic sequence lengths of TaD14-4A, TaD14-4B, and
TaD14-4D were 1013, 1039, and 1027 bp, respectively, encoding putative products of 302,
297, and 300 amino acids, respectively (Figure S1). In addition, these proteins had a high
identity of 98.01% and all contained an α/β-hydrolase fold domain (Figure 1B), indicating
that they could perform a similar function in wheat.
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number above represents the number of bases. (B) The amino acid sequence alignment of TaD14 proteins in Chinese Spring.
The predicted α/β-hydrolase fold domain is indicated by the red line.

The phylogenetic analysis revealed that the TaD14 protein had the closest homology
relationship with D14 of Triticum turgidum, Aegilops tauschii, Hordeum vulgare, Brachypodium
distachyon, and Oryza sativa subsp. Japonica (Figure 2A). Interestingly, except for four
cruciferous plants, the D14 genes of the other species all contained two exons and one
intron (Figure 2B), indicating that they were highly conserved in both dicots and monocots
during the evolutionary process.

2.2. Expression Patterns of TaD14 Genes and Subcellular Localization of TaD14 Proteins

qRT-PCR was performed to explore expression patterns of TaD14 genes using genome-
specific primers (Table S1) so as to clarify the expression of TaD14 genes in different tissues
and growth periods of wheat and to better grasp its dynamic patterns. The expression
patterns of TaD14 genes were similar. They were ubiquitously expressed in all the detected
tissues at different stages. The expression levels of TaD14 genes in leaves were significantly
higher than those in other organs, followed by the expression levels in roots. In general, the
expression levels of TaD14-4B and TaD14-4D in all the detected tissues were significantly
higher than those of TaD14-4A (Figure 3A).
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pattern of TaD14 genes in different tissues and growth periods of Chinese Spring. SR, seedling roots; SS, seedling stems;
SL, seedling leaves; ESR, roots at elongation stage; ESS, stems at elongation stage; ESL, leaves at elongation stage; HR,
roots at heading stage; HS, stems at heading stage; HFL, flag leaves at heading stage; HSL, top second leaves at heading
stage; HLS, leaf sheaths at heading stage; YS, young spikes; HN, nodes at heading stage; DAP, days after pollination, grains
at different developmental stages, namely 5, 10, 15, 20, 25, and 30 DAP. The normalized value of TaD14 gene expression
relative to TaActin is derived from the mean ± SD of three technical repeated experiments. (B) Subcellular localization of
TaD14 proteins in wheat leaf protoplasts. The free GFP and TaD14–GFP fusions under the control of the cauliflower mosaic
virus 35S promoter were transiently expressed in wheat leaf protoplasts. The fluorescence signal of GFP was observed
under a confocal laser scanning microscope after transfection for 16 h. Scale bars, 10 µm.
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To examine the subcellular localization of TaD14 proteins, we transiently expressed
the p35S–TaD14–GFP (green fluorescent protein) fusion construct in wheat leaf protoplasts.
After overnight incubation (16 h), the protoplasts were analyzed using a confocal micro-
scope. As shown in Figure 3B, TaD14–GFP constructs were localized in both cytoplasm and
nucleus, which was consistent with the localization of D14 in Arabidopsis and rice [27,46].

2.3. Variations of TaD14-4D among Wheat Accessions

Since the identity of TaD14 homoeologs was extremely high and TaD14-4D had a
higher expression level in most tissues, we speculated that it may have a greater impact
on related agronomic traits. To clarify nucleotide natural polymorphisms in TaD14-4D,
we detected its natural variations in the coding and promoter regions of TaD14-4D in
32 wheat accessions (Table S2) with high genetic diversities. No mutation site was present
in the promoter region, yet a single nucleotide polymorphism (SNP) in the first exon and a
22 bp insertion/deletion (Indel) in the second exon were detected, which constituted three
haplotypes, 4D-HapI, 4D-HapII, and 4D-HapIII (Figure 4).
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The SNP at position 250 in the first exon of 4D-HapIII led to an amino acid change
(GAC → AAC, Asp → Asn). The 22 bp Indel in the coding region of 4D-HapII caused
frameshift mutations, which added 93 extra amino acids (Figure 4). The α/β-hydrolase fold
domain of 4D-HapII was destroyed, which led to the abnormal catalytic triad composed of
the Ser–His–Asp that recognizes and hydrolyzes SLs (Figure 4A). When comparing the
amino acid sequences of the three haplotypes (Figure 4B) with the secondary structure of
OsD14 [33], the alignment suggests that the mutation sites of 4D-HapII cause large changes
in the secondary structure, which may lead to changes in function.

2.4. The SL Signaling Pathway Is Blocked in 4D-HapII

In order to explore the functional defect of D14 in 4D-HapII, subcellular localization
of the 4D-HapII was investigated first. The 4D-HapII and TaD14 had the same subcellular
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localization pattern, both localized in cytoplasm and nucleus (Figures S2 and Figure 3B),
which indicates that frameshift mutations did not disturb localization. In rice, OsD14
could perceive SL signal and form a complex with signaling pathway molecules OsD3 and
OsD53 to mediate SL signal transduction as a bifunctional protein [3,31]. The subcellular
localization patterns of TaMAX2 and TaD53 (ortholog of OsD3 and OsD53 in wheat), two
other members of the SL signaling pathway in wheat, were both localized in the nucleus
(Figure S2). The subcellular localization of GFP-4D-HapII overlapped with TaMAX2 and
TaD53. Therefore, we investigated whether 4D-HapII could interact with them.

To test the interaction of 4D-HapII with TaMAX2, a firefly luciferase complementation
imaging (LCI) assay was employed in tobacco (Nicotiana benthamiana) leaves. As shown in
Figure 5A, TaD14-4D directly interacted with TaMAX2, while 4D-HapII could not interact.
We further investigated the interaction using the bimolecular fluorescence complementation
(BiFC) assays. For this experiment, TaD14-4D and 4D-HapII were fused with the split
amino-terminus of yellow fluorescent protein (YFP) protein and TaMAX2 was fused with
the split carboxy-terminus of YFP protein to generate nYFP-TaD14-4D, nYFP-4D-HapII,
and cYFP-TaMAX2. Consistently, BiFC assays also demonstrated that TaD14-4D could
directly interact with TaMAX2 in the nucleus, while 4D-HapII could not (Figure 5B).
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Figure 5. The interactions between TaD14-4D haplotypes and strigolactone pathway members TaMAX2 and TaD53. (A) LCI
assay showed TaMAX2 interacts with TaD14-4D instead of 4D-HapII. nLUC, N-terminal of LUC; cLUC, C-terminal of
LUC. (B) BiFC assay showed TaMAX2 interacts with TaD14-4D instead of 4D-HapII. YFP, yellow fluorescent protein. nYFP
and cYFP represent the N-terminal and C-terminal of YFP, respectively. BF, bright-field. Scale bars, 20 µm. (C) Yeast
two-hybrid assay showed TaD53 interacts with TaD14-4D instead of 4D-HapII. AD, activating domain; BD, binding domain;
SD, synthetic dropout medium. Yeast transformants were spotted on the control medium (SD/Trp/Leu, SD lacking Trp and
Leu) and selective medium (SD/Trp/Leu/His/Ade, SD lacking Trp, Leu, His, and Ade). The yeast transformants were
10-fold serially diluted and spotted onto the selected medium. (D) BiFC assay showed TaD53 interacts with TaD14-4D
instead of 4D-HapII. Scale bars, 20 µm. Three independent tobacco leaves were used for LUC and YFP signal detection.

A yeast two-hybrid (Y2H) assay was set up to detect the differences in TaD14-4D
and 4D-HapII interaction with TaD53. The results suggested that neither TaD14-4D nor
4D-HapII could physically interact with TaD53 in the absence of GR24, an artificial SL
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analog (Figure 5C). When the final concentration of 5 µm GR24 was added to the yeast
selective medium, TaD14-4D could interact with TaD53 protein in the presence of GR24,
but 4D-HapII could not (Figure 5C). Simultaneously, BiFC assays also confirmed that
4D-HapII could not interact with TaD53 (Figure 5D). The above results indicate that the
MAX2–D14–D53 protein complex with D14 as the center could not form in 4D-HapII. As a
consequence, the ubiquitin ligase TaMAX2 was unable to physically approach the substrate
TaD53, resulting in blocked SL signaling transduction.

2.5. Molecular Marker Development of TaD14-4D Haplotypes and Association Analysis with
Agronomic Traits

Based on the polymorphic sites, two molecular markers were developed to distinguish
the three haplotypes, named dCAPS-250 and Indel-747. Based on the SNP(G/A) at base pair
250 (Figure 6A), a derived cleaved amplified polymorphic sequence (dCAPS) marker was
developed to distinguish 4D-HapIII from 4D-HapI and 4D-HapII (Figure 6B). The marker
contained two mismatches in the downstream primer that produced a recognition site for
the restriction enzyme EcoRI at 4D-HapI and 4D-HapII, but not at 4D-HapIII (Figure 6B,
Table S1). After two-step PCR amplification and enzyme digestion, the amplified fragments
of 4D-HapIII could be separated (Figure 6B). The Indel marker was developed based on
a deletion of 22 bp at base pair 747 to discriminate 4D-HapII (Figure 6C). After two-step
amplification, the PCR products could be distinguished by 4% agarose gel (Figure 6C).
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panel shows the polymorphic sites of TaD14-4D. (B) A dCAPS marker named dCAPS-250 was developed based on the
250 bp single-nucleotide polymorphism (G/A). Digestion of the amplified 247 bp fragment with EcoRI produced fragments
of 226 bp and 21 bp for accessions with the haplotype 4D-HapI/II (G), whereas this fragment was not digested in accessions
with the haplotype 4D-HapIII (A). The blue base represents the reverse complementarity of the mutation site, the red base
represents the introduced mismatch bases, the black line represents the base recognized by the restriction enzyme, and the
blue arrow represents the restriction enzyme site. (C) An Indel marker named Indel-747 was developed based on a deletion
of 22 bp.
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The association between haplotypes and agronomic traits was analyzed in a mini-core
collection (MCC) of 262 wheat accessions [47]. After scanning 262 MCC members by the
two molecular markers dCAPS-250 and Indel-747, we associated the three haplotypes with
11 agronomic traits collected from MCC members grown under various environments in
different years. According to the results, TaD14-4D haplotypes were significantly correlated
with effective tillering number (ETN) (Figure 7A, Table 1). The mean ETN of 4D-HapII was
significantly higher than that of 4D-HapI/III plants by 1.45–2.56 in 2002, 2.07–2.55 in 2005,
1.89–2.47 in 2006, and 2.14–3.08 in 2010 (Figure 7A, Table 1). Significant differences were also
detected in thousand kernel weight (TKW) (Figure 7B). Interestingly, the TKW of 4D-HapII
was significantly lower than that of 4D-HapI/III. These results showed that 4D-HapII had
phenotypes of ETN and TKW similar to those of a series of SL signal transduction mutants
dwarf14 in rice, including d14, d88 [48], htd2 [49], and htd4 [50]. Furthermore, accessions
with 4D-HapIII had a lower mean ETN and higher TKW (not reaching a significant level),
and 4D-HapI was an intermediate haplotype. In summary, these results indicate that
4D-HapIII was the favorable haplotype.
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Table 1. TaD14-4D haplotypes associated with agronomic traits in MCC in four environments.

Environment Haplotype PH (cm) ETN TKW (g)

2002LY
4D-HapI 108.10±1.35a 7.93±0.19ab 37.54±0.54a
4D-HapII 107.50±4.67a 9.38±0.80a 33.14±1.32b
4D-HapIII 107.96±4.33a 6.82±0.71b 39.07±1.40a

2005LY
4D-HapI 103.93±1.04a 8.91±0.21a 34.86±0.46ab
4D-HapII 104.18±5.84a 10.98±1.25b 31.19±1.19a
4D-HapIII 105.72±3.34a 8.43±0.58a 36.48±1.20b

2006XX
4D-HapI 116.35±1.21a 9.24±0.19a 36.08±0.42a
4D-HapII 114.90±6.28a 11.13±0.58b 32.05±1.12b
4D-HapIII 112.27±3.68a 8.66±0.72a 37.79±1.28a

2010SY
4D-HapI 103.98±1.10a 12.60±0.24a(AB) 35.73±0.44A
4D-HapII 102.72±5.19a 14.74±1.14b(A) 28.85±1.26B
4D-HapIII 102.05±3.01a 11.66±0.84a(B) 38.26±1.36A

PH, plant height; ETN, effective tiller number; TKW, thousand kernel weight; 2002 LY, Luoyang (2002); 2005 LY,
Luoyang (2005); 2006 XX, Xinxiang (2006); 2010 SY, Shunyi (2010). Uppercase letters and lowercase letters indicate
extremely significant (p < 0.01) and significant differences (p < 0.05) between haplotypes, respectively.
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2.6. Global Distribution of TaD14-4D Haplotypes

To determine the distributions of different haplotypes of TaD14-4D and whether they
were selected, 157 landraces from the MCC and 348 cultivars from the modern cultivars
(MC) covering 10 different wheat production zones of China were genotyped by the two
markers dCAPS-250 and Indel-747. From landraces to modern cultivars, the proportions of
4D-HapIII were higher in seven ecological wheat zones, especially in the major production
zones (I–IV) and this was consistent with the aforementioned preferred haplotype 4D-
HapIII (Figure 8A,B). By contrast, the frequency of 4D-HapII declined during the transition
from landraces to modern cultivars. These results showed that the 4D-HapIII underwent
positive selection in the process of wheat breeding in China.
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Chinese ecological regions (I, northern winter wheat region; II, Yellow and Huai River valley winter wheat region; III,
low and middle Yangtze River valley winter wheat region; IV, southwestern winter wheat region; V, southern winter
wheat region; VI, northeastern spring wheat region; VII, northern spring wheat region; VIII, northwestern spring wheat
region; IX, Qinghai–Tibet spring–winter wheat region; X, Xinjiang winter–spring wheat region). (A) Representation of
157 landraces from ten Chinese ecological regions. (B) Representation of 348 modern cultivars from ten Chinese ecological
regions. (C) The changes in the frequency of TaD14-4D haplotypes in Chinese wheat breeding history (from the 1940s to the
2000s). (D) Distribution of TaD14-4D haplotypes in major global wheat ecological regions (I, North America; II, CIMMYT;
III, Europe; IV, former USSR; V, China; VI, Australia).

Next, the frequency change of the TaD14-4D haplotypes during Chinese wheat breed-
ing since the 1940s was surveyed. The frequencies of favorable 4D-HapIII haplotype
increased from 12.5% to 25.7%, but those of 4D-HapII were gradually eliminated after 1990
(Figure 8C). The proportions of intermediate 4D-HapI were at a relatively high level, and
the favored 4D-HapIII had large selection potential.

Finally, we performed genotyping analysis of modern cultivars from Australia, the
International Maize and Wheat Improvement Center (CIMMYT), Europe, the former USSR,
and North America to assess the global geographic distribution pattern of the TaD14-4D
haplotypes (Figure 8D). Similar to the selection trend in China, the proportion of 4D-HapIII
was also high in the other five regions, especially in North America, Mexico, and the
former USSR. In these regions, the proportion of 4D-HapIII was higher than that of 4D-HapI,
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and the proportion of 4D-HapII was very low. These results provide strong evidence that
4D-HapIII underwent positive selection in global wheat breeding.

3. Discussion
3.1. Functional Conservation of D14 between Wheat and Other Plants

Strigolactones are a new class of plant hormones. SLs, as carotenoid derivatives, are
involved in regulating the growth and development process in a variety of plants [51].
Plant branching is an important agronomic trait that affects plant spatial structure and
determines crop yield. Therefore, the study of SL hormones is of great significance to
the improvement of plant architecture. The previous studies used forward genetics to
screen mutants and confirmed that AtD14 and D14 inhibit plant branching (tillering),
and the d14 mutant also showed a dwarfed phenotype [26,48,49]. In rice, a series of D14
allelic mutants had different degrees of decrease in plant height and increase in tillering
number, but in general, the degree of change in tillering number was much greater than
that of plant height [26,48,49]. For example, htd4 [50] is a mild phenotypic allelic mutant
due to the smaller differences in plant height and tillering number compared with the
corresponding wild type. In addition, d27/Atd27 displayed obviously reduced height
and increased tillering (branching) [14,15], but in TaD27-RNAi, tillering was increased
yet plant height was not significantly changed [52]. In this study, the TaD14 genes were
cloned and identified in common wheat. Through the analysis of the natural variation
types of the TaD14-4D, three haplotypes were detected (Figures 4 and 6). The haplotypes
were significantly associated with effective tillering number (ETN) but not significantly
associated with the plant height (PH) (Figure 7A, Table 1). Although the 4D-HapII haplotype
has amino acid changes due to frameshift mutations (Figure 4), we cannot rule out the
possibility that mutations are insufficient to affect plant height. This suggests that SL
pathway genes may have nuanced functions in wheat.

3.2. Natural Variation of 4D-HapII Influences Protein Function

D14 encodes a member of α/β-hydrolase superfamily [26]. Studies have shown that
D14 is a bifunctional protein functioning as both hydrolase and SL receptor [36]. The crystal
structures of DAD2, D14, and AtD14 display that they all have the canonical α/β-hydrolase
domain formed by the substrate-binding pocket and the Ser–His–Asp catalytic triad which
is necessary for hydrolase activity [27,34]. It is reported that a cap that is crucial is formed
by four helices surrounding the entrance to the active site pocket [34,53,54]. In our study, a
22 bp Indel was detected in 4D-HapII, which was a rare mutation, and this haplotype was
found to be gradually eliminated during the global breeding process (Figures 6A and 8).
Regarding this, there are two possible reasons. Firstly, natural mutations in 4D-HapII led to
missense mutations, and the hydrolase domain of the protein was destroyed, especially
the highly conserved Ser–His–Asp catalytic triad domain (Figures 4 and 6A). Secondly,
our results show that the D14 cap structure is formed by α4–α7, as seen in Figure 4B. In
4D-HapII, α6 and α7 cannot form correctly, so we speculate that the cap structure, which is
important for D14 to recognize and hydrolyze SLs, cannot function normally. Therefore,
SLs cannot be hydrolyzed in 4D-HapII, which may lead to a lack of interaction between
D14-MAX2 and D14-D53 (Figure 5).

3.3. Effective Molecular Markers for Wheat Breeding

In recent years, the use of molecular markers, as an effective means to link phenotypic
with genotypic variations, has become a powerful tool for the analysis of genetic variation
in the agronomic sector [55,56]. Markers also allow for a more accurate evaluation of
genetic resources to identify new and original alleles [44]. Wheat germplasm resources
include very rich allelic variations. Thus, designing a functional molecular marker is an
important prerequisite for marker-assisted breeding. In this study, we developed two
molecular markers, dCAPS-250 and Indel-747, to distinguish haplotypes, and they were
associated with ETN and TKW (Figures 6 and 7, Table 1). The 4D-HapIII was associated
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with a higher mean TKW, and its proportion was higher in five wheat production regions
than in China (Figures 7 and 8D), so the favorable haplotype 4D-HapIII could be useful for
further selection in China. Thus, the newly developed molecular markers can be used for
marker-assisted selection breeding in wheat.

4. Materials and Methods
4.1. Plant Materials and Growing Conditions

The correlation analysis of field agronomic traits and haplotypes was conducted by
using a population composed of 262 MCC members [47]. Field agronomic traits included
heading date (HD), maturity date (MD), panicle length (PL), spikelet number per spike (SN),
grain number per spike (GN), plant height (PH), effective tiller number (ETN), thousand
kernel weight (TKW), kernel length (KL), kernel width (KW), and kernel thickness (KT) [57].
Another population of 348 Chinese modern cultivars was used to analyze the temporal and
spatial distribution of different haplotypes. A population of 157 Chinese landraces from
the MCC was adopted to study the geographic distribution of different haplotypes. These
two groups were planted at Luoyang in 2002 and 2005, Xinxiang (only MCC) in Henan
Province in 2006, and Shunyi in Beijing in 2010 [58].

A population consisting of 348 Chinese cultivars, 490 North American cultivars, 384 Eu-
ropean cultivars, 51 Australian cultivars, 83 Russian cultivars, and 53 CIMMYT cultivars [59]
was utilized to investigate the global geographic distribution of TaD14-4D haplotypes.

For tissue expression analysis of the TaD14 homoeologous genes, Chinese Spring
cultivated under long-day greenhouse conditions (16 h light/8 h dark, 22 ◦C, relative
humidity 70%, light intensity 150 µmol m−2 s−1) was used. Tissue samples of roots, stems,
and leaves were taken at seedling stage, jointing stage, and heading stage, respectively, and
grain samples were taken at different times after flowering. Meanwhile, Chinese Spring
was used for genomic cloning and cDNA cloning of TaD14 homoeologous genes.

4.2. Cloning and Characterization of TaD14 Genes

The CDS sequence of the rice OsD14 (Os03g0203200) gene published in the China Rice
Data Center (http://www.ricedata.cn/gene/index.htm (accessed on 3 January 2020)) was
used for a BLAST against IWGSC Survey Sequence Assemblies (https://urgi.versailles.
inra.fr/blast/blast.php (accessed on 3 January 2020)). Three homoeologous gene sequences
with high similarity to OsD14 sequence were obtained. According to sequence differences
between the three homoeologous genes, specific primers were designed by the Primer
Premier 5.0 software and NCBI Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/
primerblast/index.cgi?LINK_LOC=BlastHome (accessed on 5 January 2020)). All primers
(Table S1) used in this study were synthesized by the BGI Tech (Shenzhen, China).

The cDNA and genomic DNA of Chinese Spring were used as PCR templates. PCR
amplification was performed in a total volume of 10 µL, including 50 ng templates, 1 µL
forward and reverse primers (10 µM), 0.096 µL dNTPs (25 mM), 2 µL 5× TransStart FastPfu
Buffer, and 0.2 µL (2.5 U/µL) TransStart FastPfu DNA Polymerase (TransGen Biotech,
Beijing, China). PCR was performed with the following procedure: denaturing at 95 ◦C
for 3 min; followed by 35 cycles of denaturing at 95 ◦C for 45 s, annealing at 55–60 ◦C for
45 s, and 72 ◦C for extension (1 kb/min); with a final extension at 72 ◦C for 10 min. The
PCR products were separated by electrophoresis in 1.5% agarose gel. The PCR products
were purified by an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Hangzhou,
China), cloned into pEASY-Blunt cloning vector (TransGen Biotech, Beijing, China), and
then transformed to Trans1-T1 Phage Resistant Chemically Competent Cells (TransGen
Biotech, Beijing, China) by the heat shock method.

4.3. RNA Extraction and Gene Expression Analysis

Total RNA from different tissues was extracted with an RNAprep Pure Plant Kit
(Tiangen, Beijing, China), and the cDNA was synthesized using the FastKing RT Kit
(Tiangen, Beijing, China). The quantitative PCR (qRT-PCR) was adopted to analyze TaD14

http://www.ricedata.cn/gene/index.htm
https://urgi.versailles.inra.fr/blast/blast.php
https://urgi.versailles.inra.fr/blast/blast.php
https://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?LINK_LOC=BlastHome
https://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?LINK_LOC=BlastHome
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gene expression levels with Roche Light Cycler 96 using the SYBR Premix Ex Taq (Takara,
Dalian, China), as previously described [57]. The 20 µL reaction system of qRT-PCR was
composed of 2 µL of cDNA, 0.4 µL of each primer (2 µM), 0.4 µL of ROX Reference Dye
(50×), and 10 µL of 2× SYBR Premix Ex Taq (Takara, Dalian, China). The qRT-PCR results
were obtained for two biological replications, and similar results were observed. Gene
expression was calculated from three technical replicates using the ∆∆Ct method with
TaActin as the endogenous control.

4.4. Phylogenetic Analysis

In order to investigate the evolutionary relationship of TaD14 genes, a BLAST search
was performed in the UniProt database (https://www.uniprot.org/blast/ (accessed on
24 October 2020)) based on the conserved amino acid sequences of TaD14. According to
the comparison results, we downloaded the amino acid sequences of D14 proteins of these
species and then constructed a phylogenetic tree of D14s from a complete alignment of
47 D27 protein sequences by the neighbor-joining method with 1000 bootstrap replicates
and p-distance substitution model using MEGA 7.0. The numbers and positions of exons
and introns of each D14 of these species were determined by the comparison of the CDS
sequences and the corresponding genomic DNA sequences via GSDS2.0 (Gene Structure
Display Server) website (http://gsds.cbi.pku.edu.cn/ (accessed on 3 November 2020)).

4.5. Subcellular Localization

For subcellular localization, we amplified the full-length CDS of TaD14/4D-HapII/
TaMAX2/TaD53 without the termination codon with corresponding primers containing
5′ HindIII and 3′ BamHI sites from cDNA by PCR. Then, the purified PCR products were
fused with the green fluorescent protein (GFP) in the pJIT163-GFP vector to construct the
recombinant vectors. The procedure to obtain wheat leaf protoplasts was according to
Yoo et al. (2007) [60]. Four fusion plasmids and free GFP plasmids were transfected into
wheat leaf protoplasts for transient expression. The protoplasts were incubated overnight
in the dark at 22 ◦C, and the green fluorescence signal was observed with a confocal
microscope (LSM880; Carl Zeiss, Oberkochen, Germany).

4.6. Yeast Two-Hybrid Assay (Y2H)

The coding region of TaD53 was cloned into the Y2H “prey” vector pGADT7, and the
coding regions of TaD14-4D and 4D-HapII were cloned into the Y2H “bait” vector pGBKT7.
All constructs were confirmed by sequencing and transformed into the yeast strain Y2H
Gold, and the transformants were grown on SD/Trp/Leu plates for 3 days at 30 ◦C. Yeast
strains transformed by TaD53, TaD14-4D, and 4D-HapII in combination with empty vector
pGADT7 and pGBKT7 were used as negative control. The yeast transformants were 10-fold
serially diluted and spotted onto the selected medium. The interactions between the two
proteins were determined on the control medium LT (SD/Trp/Leu) and selective medium
LTHA (SD/Trp/Leu/His/Ade) in the presence or absence of 5 µM GR24 [3]. Plates were
incubated at 30 ◦C for 3 days.

4.7. Luciferase Complementation Imaging (LCI) and Bimolecular Fluorescence Complementation
(BiFC) Assay

For the LCI assay, the CDSs of TaD14-4D and 4D-HapII were cloned into n-LUC vectors
and the CDS of TaMAX2 was cloned into c-LUC vector to generate the TaD14-4D–n-LUC,
4D-HapII–nLUC, and TaMAX2–c-LUC constructs.

For the BiFC assay, the CDSs of the TaD14-4D and 4D-HapII were fused with N-
terminal YFP, and TaMAX2 and TaD53 were fused with C-terminal YFP.

Different combinations of the above recombinant constructs were coinfiltrated into
Nicotiana benthamiana leaves by Agrobacterium tumefaciens mediated transformation. The
corresponding empty vectors were used as negative controls. The LUC and YFP signals
were observed 48 72 h after infiltration by the Night SHADE LB 985 Plant Imaging System

https://www.uniprot.org/blast/
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(Berthold Technologies, Bad Wildbad, Germany) and confocal microscope (LSM880; Carl
Zeiss, Oberkochen, Germany).

4.8. SNP Detection and Molecular Marker Development

Natural variations in the presence of TaD14 genes were detected in 32 common wheat
cultivars (Table S2) with high genetic diversity. The genomic and the promoter sequences
of TaD14 genes were amplified from 32 common wheat cultivars by PCR. After sequencing,
the sequences were aligned by DNAMAN software to identify polymorphism.

Two molecular markers were developed based on polymorphism sites of TaD14-
4D. Named dCAPS-250 and Indel-747, these markers were used to distinguish the three
haplotypes of TaD14-4D. According to the difference in polymorphism, these molecular
markers were classified into two types: dCAPS marker and Indel marker. The dCAPS
marker was developed by dCAPS Finder 2.0 (http://helix.wustl.edu/dcaps/dcaps.html
(accessed on 23 July 2020)). Genotyping was performed by two rounds of PCR and one
enzyme digestion. In the first round, the genome- or promoter-specific primer was used
to amplify fragments, and the reaction system was the same as gene cloning. Then, the
PCR product was diluted 10 times, and 1 µL was taken as a template for the second round
of PCR with dCAPS primers. The second round of PCR was performed in a volume of
10 µL, which contained 5 µL 2× Es Taq Master Mix (CWBIO), 3.5 µL ddH2O, 0.5 µL primer,
and 1 µL template. After the two-step PCR and enzyme digestion, the amplified product
containing the restriction enzyme site could be cleaved by the corresponding enzyme.
However, the Indel marker required only two rounds of PCR. Finally, the fragments were
separated by electrophoresis in 4% agarose gel.

4.9. Statistical Analysis

One-way analysis of variance was performed using IBM SPSS Statistics for Windows
version 20.0 (IBM, Armonk, NY, USA) to determine the significance of differences in
phenotypic traits among the three haplotypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ijms22073748/s1: Figure S1: Protein structures of TaD14-4A, TaD14-4B and TaD14-4D. Figure S2:
Subcellular localization of 4D-HapII, TaMAX2 and TaD53 in wheat leaf protoplasts. Table S1: Primers
used in this study. Table S2: The 32 wheat accessions used for polymorphism discovery.
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