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Abstract 
Antidepressant medications yield unsatisfactory treatment outcomes in patients with major 
depressive disorder (MDD) with modest advantages over the placebo. This modest efficacy is 
partly due to the elusive mechanisms of antidepressant responses and unexplained 
heterogeneity in patient’s response to treatment — the approved antidepressants only benefit a 
portion of patients, calling for personalized psychiatry based on individual-level prediction of 
treatment responses. Normative modeling, a framework that quantifies individual deviations in 
psychopathological dimensions, offers a promising avenue for the personalized treatment for 
psychiatric disorders. In this study, we built a normative model with resting-state 
electroencephalography (EEG) connectivity data from healthy controls of three independent 
cohorts. We characterized the individual deviation of MDD patients from the healthy norms, 
based on which we trained sparse predictive models for treatment responses of MDD patients. 
We successfully predicted treatment outcomes for patients receiving sertraline (r = 0.43, p < 
0.001) and placebo (r = 0.33, p < 0.001). We also showed that the normative modeling framework 
successfully distinguished subclinical and diagnostic variabilities among subjects. From the 
predictive models, we identified key connectivity signatures in resting-state EEG for 
antidepressant treatment, suggesting differences in neural circuit involvement between 
treatment responses. Our findings and highly generalizable framework advance the 
neurobiological understanding in the potential pathways of antidepressant responses, enabling 
more targeted and effective MDD treatment.   
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Introduction 
 
Major depressive disorder (MDD) is one of the most common psychiatric disorders and the 
leading cause of ill health and disability worldwide, with an over 20% lifetime prevalence 
(1). Despite the high incidence, neuropathological mechanisms underlying MDD are still in 
debate (2-5), hampering the development of antidepressants and yielding unsatisfactory 
treatment outcomes and low life quality of MDD patients. In fact, although numerous medications 
have been approved for MDD treatment, their effects over placebo are modest at best, with only 
a few newly approved medications showing equivocal efficacy (6-11). This unsatisfactory 
response rate is partly because MDD patients have varied responses to antidepressants due to 
underlying heterogeneity (12, 13). Additionally, an antidepressant may take at least 4 weeks to 
take effect and MDD patients may spend months to years searching through options before 
responding (14) while experiencing the side effects (15). Thus, knowing sooner whether a 
treatment will be effective for a particular patient would help psychiatrists move much more 
quickly through clinical decision trees. Therefore, one key step toward improved treatment 
outcome and life quality for MDD patients is to achieve precision medicine by employing pre-
treatment measures to quantify the response-predictive individual deviations in 
psychopathological dimensions, as suggested by Research Domain Criteria (16) (RDoC). 
 In the journey towards precision medicine for psychiatric disorders, neuroimaging 
techniques have demonstrated their exceptional capabilities to identify neurobiological 
alterations predictive of disorder diagnosis (17-23). However, previous neuroimaging studies 
mainly focused on the group-level brain feature differences between patients and healthy 
controls, neglecting the heterogeneity within the patient group. To this end, a collection of 
studies have made efforts to identify subtypes within each disorder (24-28), aiming to achieve 
precision medicine by providing different treatments based on subtypes. However, these 
subtype findings have not yet been translated to improved clinical practice, partly because they 
still failed to construct a continuous spectrum of psychopathological dimensions to address the 
heterogeneity within subtypes, as well as the dissociation between the identified subtypes and 
treatment responses (29). To address these challenges, normative modeling is a promising 
framework to dissect patient heterogeneity and conceptualize psychopathological dimensions 
by quantifying individual deviations from a healthy norm (30). While a number of neuroimaging 
analyses have already employed the normative modeling framework, such as the development 
of continuous disease spectrums (31) and the quantification of heterogeneity within psychiatric 
disorders (32), they are mostly limited to the implementation using structural magnetic resonance 
imaging (MRI) (31, 32). Nevertheless, the underexplored functional connectivity (FC) features may 
be more advantageous as they capture the brain characteristics associated with general 
cognitive functioning that not necessarily lead to structural changes. Indeed, our prior work with 
resting-state functional MRI (rsfMRI) has shown the potential of FC-based normative modeling 
to quantify individual brain dysfunction and parse neurobiological heterogeneity in PTSD (33). 
Meanwhile, electroencephalography (EEG) provides another non-invasive neuroimaging 
technique, which in contrast to rsfMRI is cost-effective and easy-to-operate in clinical practice. 
Recent studies demonstrated that resting-state EEG (rsEEG) connectivity also facilitated MDD 
diagnosis (34) and revealed MDD subtypes (28). Taken together, these latest research efforts 
suggested the capability of FC-based individual deviations to provide essential information of 
the psychopathological dimensions, thus paving the way toward precision medicine for MDD.                      
 In this study, we developed a rsEEG FC-based normative modeling framework to identify 
clinically translatable pre-treatment biomarkers for antidepressant responses. To this end, we 
constructed an EEG FC-based normative modeling framework that quantified individual 
deviations in psychopathological dimensions (Fig. 1) by leveraging three independent cohorts. 
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We took sertraline as a representative of antidepressants for its widespread usage and abundant 
pathological studies. First, with an autoencoder-based reconstruction model, we developed a 
healthy norm of rsEEG connectivity which quantitatively measures the individual deviations of 
MDD patients in the psychopathological dimensions. Second, to tailor the individual deviations 
to antidepressant responses, we employed a predictive modeling framework that captures 
treatment response-correlated individual deviations under supervision, taking advantage of 
machine learning techniques as they have shown promising capability in precision psychiatry 
(35). Predictive modeling with the quantified FC deviations was implemented to achieve 
individual-level prediction of antidepressant responses. Afterward, we confirmed the unique 
advantage of the individual FC deviation-driven signatures by comparing the results with the 
predictions yielded by commonly-used clinical measures or raw EEG FCs. We also compared 
the performance derived from our autoencoder-based individual deviations with other normative 
modeling strategies, including principal component analysis (PCA)-based and regression-based 
(36) individual deviations. Moreover, to investigate whether sertraline and placebo treatment 
responses involve distinct neural circuits, we compared the importance of individual deviations 
in rsEEG connectivity across treatment arms and brain networks. Finally, we interpreted the 
autoencoder-based individual deviations using commonly-used clinical measures. Our work 
aimed to generate translatable antidepressant response prediction models using a novel 
interpretable normative modeling framework, thus achieving applicable treatment outcome 
prediction and realizing precision psychiatry for MDD patients. 
 
Subjects and Methods 
 
Participants 
 
Overall, we included healthy controls from three independent cohorts and MDD patients from 
one clinical cohort with antidepressant treatment response data. We integrated three cohorts of 
healthy controls to ensure our healthy norms represent inter-cohort variability and improve the 
generalizability of our findings. We focused antidepressant response predictive modeling on one 
cohort because of the availability of treatment outcome data. A brief summary of subjects 
included in our study can be found in Supplementary Table 1. 
 
Healthy controls 
 
The first cohort consists of 39 healthy subjects from the Establishing Moderators and 
Biosignatures of Antidepressant Response for Clinical Care (EMBARC) study (37). Subjects were 
recruited at four study sites (University of Texas Southwestern Medical Center, Massachusetts 
General Hospital, Columbia University and University of Michigan) with ages between 18 and 65. 
8 of these 39 subjects were under 25 (needed to match the demographics with other cohorts). 
Healthy subjects are defined as both psychiatrically and medically healthy individuals.  
 The second cohort consists of 75 healthy subjects from the Depression-EEG cohort (38), 
which was published with an EEG-based analysis of depression and anxiety. These recruited 
subjects have ages between 18 and 25 with no history of head trauma/seizures and no current 
use of psychoactive medication. Additionally, healthy subjects are defined by three aspects: (1) 
consistent low Beck Depression Inventory score (39, 40) (<7) between mass survey and 
preliminary assessment (2) no self-reported history of MDD, and (3) no self-reported symptoms 
indicating the possibility of an Axis 1 disorder (41). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.24.23290434doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.24.23290434
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5 

 The third cohort consists of 153 young healthy subjects (25.1±3.1 years, range 20–35 
years, 45 female) from the Leipzig Study for Mind-Body-Emotion Interactions (LEMON) cohort 
(42, 43) (http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html). Excluding subjects 
without available rsEEG resulted in 138 valid subjects, among which 71 were under age 25. 
Eligibility for recruitment was determined by two rounds of verification, including a prescreen of 
prospective participants via telephone and a second individual screening by clinicians. Exclusion 
criteria included: (1) hypertension diagnosis without intake of antihypertensive medication (2) 
current and/or previous heart attack or congenital heart defect (3) history (within 10 years) of 
psychiatric disorders (psychosis, attempted suicide, post-traumatic stress disorder) that 
required inpatient treatment for longer than 2 weeks (4) history of neurological disorders (multiple 
sclerosis, stroke, epilepsy, brain tumor, meningoencephalitis, severe concussion) (5) history of 
malignant diseases (6) consumption of one of the following medications (centrally active 
medication, beta- and alpha-blocker, cortisol, any chemotherapeutic or psychopharmacological 
medication) (7) positive drug anamnesis (extensive alcohol, MDMA, amphetamines, cocaine, 
opiates, benzodiazepine, cannabis) (8) previous participation in scientific study within the last 10 
years (9) previous or current enrollment in psychology studies (42). 
 
MDD patients 
 
For our study purpose, we only included the 287 MDD patients in the EMBARC study (37), aged 
between 18 and 65. 21 patients have missing baseline EEG data 45 patients did not return at the 
end of treatment, resulting in 221 MDD patients available for our study. These valid 221 patients 
were randomly assigned to a sertraline treatment arm (n = 102) and a placebo treatment arm (n 
= 119). Inclusion criteria included: (1) having MDD as a primary diagnosis by the Structured 
Clinical Interview for DSM-IV Axis I Disorders (41) (2) Quick Inventory of Depressive 
Symptomatology score ≥ 14 (3) a MDD episode beginning before age 30, either a chronic 
recurrent episode (duration ≥ 2 years) or recurrent major depressive disorder (at least two lifetime 
episodes) (4) no antidepressant failure during the current episode. Exclusion criteria included: (1) 
ongoing pregnancy or breastfeeding (2) no use of contraception (3) lifetime history of psychosis 
or bipolar disorder (4) substance dependence in the past 6 months or substance abuse in the 
past 2 months (5) unstable psychiatric or general medical conditions requiring hospitalization (6) 
study medication contraindication (7) clinically significant laboratory abnormalities (8) history of 
epilepsy or condition requiring an anticonvulsant (9) electroconvulsive therapy, vagal nerve 
stimulation, TMS or other somatic treatments in the current episode (10) taking medications 
(including but not limited to antipsychotics and mood stabilizers) (11) ongoing psychotherapy 
(12) significant suicide risk (13) failure to respond to any antidepressant at adequate dose and 
duration in the current episode.  
 For subjects in either treatment arm, an eight-week course of sertraline or placebo was 
enforced. The random assignment to treatment arms was stratified by site, depression severity, 
and chronicity. The dosing of medications began at 50mg and was increased to a maximum of 
200mg if patients could tolerate and did not respond to lower dosing. The treatment response 
was evaluated using HAMD17. Subjects lacking endpoint HAMD17 were excluded from the study 
for data quality control. 
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EEG Data Acquisition and Preprocessing 
 
Data acquisition 
 
For the EMBARC cohort, rsEEG was recorded from each of the four study sites, including 
Columbia University, University of Texas Southwestern Medical Center, University of Michigan, 
and Massachusetts General Hospital, with varying EEG amplifier settings (37, 44). Specifically, 
Columbia University collected rsEEG with 72-channels using a 24-bit BioSemi system (sampling 
rate: 256 Hz, bandpass: DC-251.3 Hz) and a Lycra stretch electrode cap (Electro-Cap 
International Inc., Ohio). PPO1 and PPO2 were used as the active reference of electrodes. At 
McLean Hospital, EEG data were collected with 129 channels using a Geodesic Net system 
(sampling rate: 250 Hz, bandpass: 0.01–100 Hz). Cz was used as the reference (Electrical 
Geodesics Inc., Oregon). University of Michigan collected EEG data with 60 channels using a  
32-bit NeuroScan Synamp (Compumedics, TX) system (sampling rate: 250 Hz, bandpass: 0.5–
100 Hz) and a Lycra stretch electrode cap, with a nose reference. At the University of Texas 
Southwestern Medical Center, EEG data were collected with 62 channels using the 32-bit 
NeuroScan Synamp system (sampling rate: 250 Hz, bandpass: DC-100 Hz) and a Lycra stretch 
electrode cap, with a nose reference. Finally, we used 54 common channels across these four 
study sites to perform analyses. All four study sites performed amplifier calibrations. rsEEG was 
recorded in the format of four 2-min blocks (two blocks for eyes-closed and two blocks for eyes 
open) in a counterbalanced order. During the eyes-open condition, subjects were instructed to 
remain still, minimize blinks/ eye movements, and fixate on a centrally presented mark on the 
screen. 
 For the Depression-EEG cohort (38, 43), participants were instructed to stay relaxed for 
five minutes during the EEG recording. Signals were collected using 64 Ag/AgCl EEG electrodes 
(Synamps system) positioned in the standard 10–20 system montage. Signals were sampled at 
500 Hz and electrode impedances were kept below 10 kΩ. 
 For the LEMON cohort (43), participants were asked to be awake during the EEG 
recording. They were instructed to have their eyes open and fixate on a low-contrast fixation 
cross on grey background during the eyes-open recording session. For each subject, 16-min 
resting state EEG was recorded with a ‘BrainAmp plus ’amplifier EEG using 62-channel (with one 
channel for eye movement) and active ActiCAP electrodes (Brain Products GmbH, Gilching, 
Germany) positioned in the international standard 10–20 extended localization system. FCz was 
used as the potential reference of electrodes and the ground was located at the sternum. 
Electrode impedance was kept below 5 KΩ. Signals were sampled at 2500 Hz. 
 
EEG preprocessing 
 
The recorded rsEEG data were cleaned offline with a fully automated artifact rejection pipeline 
utilized in a previous EEG-based antidepressant response prediction study (44), which aimed to 
minimize the biases due to subjective manual rejection of artifacts. The entire procedure included 
the following steps: (1) The resampling of EEG to 250 Hz. (2) The removal of 60 Hz a.c. line noise 
artifact (45). (3) The removal of non-physiological low frequency in the EEG signals using a 0.01 
Hz high-pass filter. (4) The rejection of bad epochs by thresholding the magnitude of each epoch. 
(5) The rejection of bad channels by thresholding the spatial correlations among channels. (6) 
The exclusion of subjects with more than 20% bad channels. (7) The estimate of EEG signals 
from bad channels from the adjacent channels via the spherical spline interpolation (46). (8) An 
independent component analysis to remove remaining artifacts, including scalp muscle artifact, 
ocular artifact, and ECG artifact (47). (9) Re-referencing EEG signals to the common average. 
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(10) The filtering of EEG signals to four canonical frequency ranges: theta (4–7 Hz), alpha (8–12 
Hz), beta (13–30 Hz), and low gamma (31–50 Hz).  
 
Source-Space Connectivity Calculation 
 
With the Brainstorm toolbox (48), we first implemented source localization using the minimum-
norm estimation approach (49) to convert the channel-space EEG into the source-space signals 
of 3,003 vertices. A three-layer (scalp, skull, and cortical surface) boundary element head model 
was computed with the OpenMEEG plugin (50) based on the FreeSurfer average brain template 
(51). A total of 3,003 dipoles with unconstrained orientations were generated on the cortical 
surface. The lead-field matrix relating the dipole activities to the EEG was obtained by projecting 
the standard electrode positions onto the scalp. For each subject, an imaging kernel that maps 
from the channel space EEG to the source space current density was then estimated by the 
minimum norm estimation approach with depth weighting and regularization. Principal 
component analysis was then employed to reduce the three-dimensional estimated source 
signal at each vertex to the one-dimensional time series of the principal component. 
 To capture the brain functional architecture, we extracted connectomic features by 
calculating power envelope connectivity (PEC)(28) since it has demonstrated strength in 
mitigating spurious correlations resulting from volume conduction (52). Hilbert transform was 
first applied to convert source estimates into analytical time series. The analytical time series of 
each pair of brain signals were then orthogonalized to remove the zero-phase-lag correlation 
(52). Afterward, the power envelopes were measured by calculating the square of the 
orthogonalized analytical signals. A logarithmic transform was subsequently conducted to 
enhance normality. PEC was then calculated as the Pearson’s correlation coefficient between 
the log-transformed power envelopes of each pair of brain regions. Finally, a Fisher’s r-to-z 
transformation was performed to enhance normality (43, 52). The regional pairwise PEC features 
were further extracted based on the Schaefer atlas with 100 brain regions (53). For each pair of 
regions, connectivity was calculated by averaging PEC values over all possible vertex pairs. 
 To ensure the individual deviation of each subject was independent of other subjects, the 
normalization of EEG FC data was conducted on each subject. For each subject, we first 
performed an inverse hyperbolic tangent transformation on the EEG FC data to better 
accommodate deviated values of EEG FC. The transformed strengths of 4950 FCs were then z-
scored to have a zero mean and unit standard deviation. Notably, this procedure also guaranteed 
that all the three cohorts had the same FC mean and standard deviation. This normalization 
strategy endowed the EEG FC of each subject with the independence of other subjects and 
emphasized the distinguishability between brain regions with high and low FCs. 
 
Data Harmonization 
 
The utilization of multiple independent cohorts requires data harmonization to eliminate potential 
site effects due to different data acquisition protocols across studies. The data harmonization 
was realized with a MATLAB package built on empirical Bayesian methods (ComBat, see 
references for details) (54-56), which applied a unique transformation on the data from each 
independent cohorts to project them to a common space. Specifically, the data transformation 
matrices were first trained using healthy controls and then applied to MDD patients. Therefore, 
the transformation for MDD patients was independent of the patient population, thus preventing 
the data leakage issue for the subsequent cross-validation procedure in predictive modeling. 
Above all, the normalized EEG FC data of healthy controls from the three cohorts (Depression-
EEG, EMBARC, LEMON) were combined and used as the input data matrix. The batch labels 
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were assigned based on the cohort origin of each subject, without considering the specific study 
site within each of the cohorts. Notably, as cohorts had different age ranges, we incorporated 
age as a covariate in the data harmonization to ensure the eliminated differences were indeed 
site effects. Eventually, the procedure directly generated the harmonized data of healthy 
controls, which were subsequently used for normative modeling. For the MDD patients used for 
treatment response prediction, the same transformation for data harmonization was applied 
based on their cohort origins without further training or tuning. To demonstrate the importance 
of data harmonization, we developed prediction models for antidepressant responses using 
unharmonized EEG data, which showed inferior prediction performance to the model developed 
with harmonized data (Supplementary Table 2,3). For data harmonization and all subsequent 
analyses, each EEG condition was processed individually, including all the four frequency bands 
in either eyes-open or eyes-closed paradigms (totally eight conditions). 
 
Normative Modeling of Functional Connectivity 
 
Above all, to calibrate demographics across the independent cohorts, thus to improve the 
reliability and prediction performance of normative modeling, we developed healthy norms of 
154 young adults (age 18-25), which consist of 8 subjects from the EMBARC cohort, 75 subjects 
from the depression-EEG cohort, and 71 subjects from the LEMON cohort. The age threshold of 
25 was chosen because the Depression-EEG cohort only had subjects younger than 22, and the 
LEMON cohort only recorded subjects’ age with a resolution of 5 years. Therefore, including 
healthy controls with age between 18 and 25 was the best way to match demographics of the 
three independent cohorts. Healthy norms were derived using three strategies as discussed 
below. 
 
Principal Component Analysis (PCA)-based Modeling 
 
PCA is one of the simplest approach to reconstruct data with lower dimensionality. Here we 
established the PCA-based reconstruction error to demonstrate that a linear unsupervised 
reconstruction might be too simple to capture individual deviation information. Specifically, we 
applied a PCA on the 4950 EEG FCs of healthy subjects and empirically selected the first 100 
principal components (explained > 90% variance) to reduce dimensionality. The reconstructed 
FCs were calculated as the matrix product of kept principal components and transposed 
eigenvectors. The reconstruction error, which was subsequently used to develop antidepressant 
response prediction models, was calculated as the difference between original FCs and 
reconstructed FCs. 
 
Regression-based Modeling 
 
Afterward, we calculated individual deviations using an existing normative modeling framework. 
A recent study developed a comprehensive and user-friendly workflow for realizing normative 
modeling in precision psychiatry (36). We employed this standardized framework to derive 
regression-based individual deviations of rsEEG FCs. Briefly, the framework requires users to 
pre-select a set of covariates and then regress out those covariates based on regression models 
for FCs. Specifically, we included age and gender as covariates (they were the only two 
demographic variables shared by all three independent cohorts) and calculated individual 
deviations in FCs with reference to the age and gender-based FC prediction, which was trained 
on healthy subjects and applied on MDD patients. The resulting individual deviations were then 
used to develop antidepressant response prediction models, which unfortunately yielded 
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unsatisfactory prediction performance. Notably, the unsatisfactory performance of regression-
based individual deviations in antidepressant response prediction might be due to the lack of 
common variables that were usable as covariates. It might be also because the regression 
models were not accurate enough to robustly estimate individual deviations in FCs. But in either 
case, it demonstrated the approach’s over-reliance on pre-selected covariates and regression 
performance, calling for an unsupervised normative modeling strategy that is more flexible and 
accommodating. 
 
Autoencoder-based Modeling 
 
The autoencoder has been employed by numerous neuroimaging studies as the normative 
modeling framework (57-60) for its independence of supervision and high flexibility. The 
autoencoder we employed for the healthy norm development consists of three layers, including 
an input layer, a hidden layer, and an output layer. The input and output layers have a 
dimensionality of 4950, which is the total number of FCs with a 100-ROI brain atlas (53). The 
hidden layer has a reduced dimensionality to allow the autoencoder to find representative 
dimensions for the healthy controls (Fig. 1). We empirically selected a dimensionality of 500 for 
the hidden layer to reduce the dimensionality magnitude while keeping adequate complexity of 
autoencoders. 
 The autoencoder training iteratively optimized the parameters for the encoder and the 
decoder. In practice, we used the MATLAB function “trainAutoencoder” to realize the training 
process. Specifically, a collection of healthy controls’ EEG FC data was fed into the input layer 
of the autoencoder. A L2-norm constraint was implemented in the autoencoder training to 
reduce the collinearity between FCs. Additionally, both encoder and decoder utilize a sigmoid 
activation function to introduce nonlinearity. The resultant output layer represented the 
reconstructed EEG FC for each individual subject. Finally, the difference between the original 
EEG FC and the reconstructed one, termed reconstruction error, was utilized as the 
quantification of individual deviation from the healthy norm. 
 As the individual deviations used for sertraline and placebo response prediction were 
derived from a healthy norm of young adults, we examined whether the prediction performance 
was dependent on age. Correlation analyses revealed no correlation between sertraline response 
and age (r = 0.04, p = 0.67, Supplementary Figure 1a), and absolute prediction residuals were 
also independent of age (EO-alpha: r = -0.09, p = 0.36; EO-gamma: r = -0.09, p = 0.37, 
Supplementary Figure 1c,d). A further analysis confirmed that the individual deviation dimensions 
of sertraline response and age were orthogonal (Inner products of age dimension and sertraline 
response dimension: EO-alpha: -0.007; EO-gamma: -0.028), justifying that the normative 
modeling based on healthy young adults was capable of predicting sertraline responses of elder 
MDD patients. 
 Overall, autoencoder-based individual deviation differed from the previous normative 
modeling frameworks (31, 32, 61) in three aspects. First, contrary to that previous framework 
generated predictions for each of the brain regions and then combine them to a data matrix, our 
framework processed all pairs of ROI-ROI level EEG connectivity together and produces the 
matrix of individual deviations as a single entity, thus taking interactions between brain regions 
into account. Second, our framework essentially quantified individual deviations of patients 
based on a distance mapping of EEG connectivity relative to healthy controls, hence the 
individual deviation only relies on actual neuroimaging data without dependence on prediction 
models. Third, autoencoder-based normative modeling is unsupervised, thus not requiring pre-
defined covariates and capable of dissecting dimensions not yet discovered by previous studies. 
Equipped with these features, our normative modeling framework for rsEEG data held the 
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potential to produce a more translatable, objective, generalizable, and robust quantification of 
individual deviations in psychopathological dimensions. 
 
Treatment Response prediction 
 
The treatment response prediction was respectively generated for the sertraline and placebo 
arms, where the treatment outcome was quantified as the pre- minus post-treatment change in 
HAMD17 score. The general workflow included two steps: feature calculation and predictive 
modeling. For input features, we compared the performances of raw EEG FCs and normative 
modeling-quantified individual deviations (Supplementary Tables 4,5). For the predictive 
modeling, we first applied the connectome-based predictive modeling framework (62) to select 
connectivity features that were significantly correlated with the outcome. Afterward, as individual 
deviations in many EEG conditions could predict age (Supplementary Table 6), and age showed 
modest correlation with placebo response (Supplementary Figure 1), we regressed out age from 
individual deviation features to ensure that the brain signatures we identified were not 
confounded by age. Finally, LASSO regression (63, 64)was implemented to further reduce the 
complexity of final models. 
 
Cross-validation for performance evaluation 
 
The performances of prediction models were then evaluated using 10-fold cross-validation. 
Specifically, the data to be fitted were randomly divided to ten subsets while each subset 
contained approximately the same subject numbers. One of ten subsets was iteratively held out 
as the test set while the remaining nine subsets were the training set, such that each subject had 
a predicted outcome. For LASSO regression, the sparsity parameter λ was determined using an 
inner loop of tenfold cross-validation on the training data. To enhance the stability and reliability 
of model performance evaluation, the data were randomized ten times and the median of the 
resulting ten predicted outcomes was used as the final predicted value of each subject. The 
prediction performance was then quantified as the Pearson’s correlation coefficient and R-
squared value between actual and predicted outcomes. The P value was calculated against the 
two-tailed null hypothesis that the Pearson’s correlation coefficient was equal to zero. 
 
Connectome-based predictive modeling (CPM) 
 
CPM identifies input features that significantly correlate to the prediction outcome (62), thus 
reducing the feature dimensionality (65-68). Specifically, we correlated the HAMD17 score change 
with each of the input features (EEG FCs/individual deviations) across all MDD patients in the 
training set using Pearson’s correlation. Only the input features with significant correlation 
(threshold P-value = 0.05) to HAMD17 score change were retained for the subsequent sparse 
predictive modeling. To prevent data leakage issues, the CPM procedure was performed inside 
each fold of cross-validation. 
 
Relative Importance of Functional Connectivity 
 
To quantify the importance of each FC, we took the absolute values of FC weights in each of the 
prediction models as both positive and negative weights reflected significant contributions. The 
absolute feature weights showed different magnitudes for sertraline and placebo response 
prediction models (Wilcoxon’s rank-sum test: p = 0.0017), with the distribution not following a 
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normal distribution (Kolmogorov-Smirnov test. Sertraline: p = 1.49x 10-80; Placebo: p = 7.40x 10-

79). Thus, we sorted FCs according to their absolute feature weights in each prediction model 
and used their order indices as the quantification of FC importance to perform non-parametric 
statistical tests. To remove FCs with very small feature weights, we only incorporated the top 
400 FCs in each prediction model, which were approximately the top 50% FCs in each prediction 
model, corresponding to a z-score threshold of 0.25. Specifically, the FC with the 
largest/smallest absolute feature weight was assigned with the greatest/lowest importance, 
which was respectively 400 and 1. Other FCs were assigned with importance by an increment 
of 1. 
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Results 
 
Individual Deviations of Functional Connectivity Predict Antidepressant Responses. 
With functional connectivity extracted from pretreatment rsEEG, we built individual deviation-
based prediction models of antidepressant responses for each of the eight conditions (frequency 
bands: theta, alpha, beta, gamma; eye status: open, closed), where individual deviations were 
derived from an autoencoder-based normative modeling framework (Fig. 1, see Methods for 
details) and the antidepressant responses were quantified as the pre- minus post-treatment 
changes in the 17-item Hamilton Depression Rating Scale (69) (HAMD17). The prediction analysis 
with cross-validation found that connectivity deviations in the eyes-open-gamma (EO-gamma) 
condition significantly predicted treatment responses to sertraline (n = 102, r = 0.43, R-squared 
= 0.15, pFDR = 4.74 x 10-5, Fig. 2a), which significantly outperformed the prediction derived from 
raw EEG FC (r = 0.17, Fisher’s z = 2.03, pone-tailed = 0.021). The performance yielded by our 
autoencoder-based individual deviations also outperformed PCA- and regression-based (36) 
individual deviations for sertraline response prediction using the same predictive modeling 
framework (PCA-based: r = 0.15, Fisher’s z = 2.17, pone-tailed = 0.015; regression-based: r = 0.20, 
Fisher’s z = 1.85, pone-tailed = 0.032. Supplementary Figure 2a,b). Individual deviations of 
connectivity in the EO-alpha condition were also significantly predictive of the sertraline 
responses (r = 0.33, pFDR = 0.0076, Supplementary Figure 3). However, individual deviations in 
other EEG conditions were not predictive of sertraline responses (Supplementary Table 7). 
Remarkably, the best performing sertraline prediction model (EO-gamma) did not predict 
placebo response (r = 0.03, p = 0.74. Fig. 2b), suggesting the model’s specificity to sertraline 
response.  
 For the placebo arm (n = 119), connectivity deviations showed significant predictability 
of treatment responses in eyes-close-beta (EC-beta) condition (r = 0.33, pFDR = 0.0019, Fig. 2d), 
which outperformed the raw EEG-FC based model (r = -0.03, Fisher’s z = 2.84, p = 0.002) and 
the prediction yielded by PCA- and regression-based (36) individual deviations (PCA-based: r = 
0.15, Fisher’s z = 1.43, pone-tailed = 0.076; regression-based: r = 0.07, Fisher’s z = 2.07, pone-tailed = 
0.019. Supplementary Figure 2c,d). Individual deviations of connectivity in the EC-theta band 
were also significantly predictive of the placebo response (r = 0.26, pFDR = 0.015) but not in other 
EEG conditions (Supplementary Table 8). The best placebo-predicting model (EC-beta) could 
not predict sertraline response (r = 0.10, p = 0.32, Fig. 2e), suggesting the model’s specificity to 
placebo response. 
 Subsequently, we examined which FCs were essential to antidepressant response 
predictions. The top significant connections were identified based on the feature weights derived 
from the prediction models for sertraline and placebo responses. For sertraline response (as 
elucidated by EO-gamma condition), the connections between precuneus and superior occipital 
gyrus, postcentral gyrus and inferior temporal gyrus, precuneus and angular gyrus were the most 
important connections (Fig. 2c). For placebo response (as elucidated by EC-beta condition), the 
connections between middle frontal gyrus and calcarine sulcus, orbitofrontal cortex and 
calcarine sulcus, superior temporal gyrus and precuneus were the most important connections 
(Fig. 2f). Additionally, we also quantified the importance of network-level connections by 
averaging the feature weights of non-zero FCs between a particular pair of brain networks. 
Interestingly, we found a significant and large-scale of involvement of visual and somatomotor 
networks for placebo response, whereas the involvement of these two networks were sparse 
and less intense for sertraline response (Fig. 3a,b), implying distinct neural circuits involved in 
sertraline and placebo responses. 
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Sertraline and Placebo Responses Mediated by Different Hierarchies of Brain Networks. 
As both sertraline and placebo response prediction models showed specificity to treatment 
arms, one intriguing question was whether sertraline and placebo responses were achieved via 
different neurobiological pathways. First, we confirmed the independence between sertraline 
and placebo responses by performing a correlational analysis on predicted sertraline and 
placebo responses. Specifically, we acquired predicted antidepressant responses of both 
sertraline and placebo treatment for all MDD patients — notably, although we could not predict 
placebo/sertraline response using sertraline/placebo response predictive models, we could 
predict hypothetical responses should the patients be assigned to the other arm. Afterward, we 
correlated the predicted sertraline and placebo responses, which yielded no significant 
correlation (r = 0.05, p = 0.46, Fig. 3c). Additionally, we found that the treatment-predictive 
phenotype derived from EEG connectivity deviations for sertraline and placebo responses were 
orthogonal (inner product = -5.23 x 10-4). Together, these results suggested that sertraline and 
placebo responses were independent and might be via distinct pathways.  
 Next, we investigated the FC signature that predicted sertraline and placebo responses. 
Inspired by the theory of so-called brain gradients (70, 71), which suggested a hierarchy in brain 
networks, we classified all FCs into two groups: the transmodal FCs across transmodal regions 
(e.g., default mode network and frontoparietal networks), and the non-transmodal FCs across 
the unimodal regions (visual and somatomotor networks) and between the unimodal and 
transmodal regions. Wilcoxon’s rank-sum tests were performed to identify significant differences 
of FC importance across treatment arms and the two FC groups (non-transmodal vs. transmodal) 
(Fig. 3d). As results, non-transmodal FCs showed significantly higher importance than 
transmodal FCs for predicting placebo response (p = 0.009), and transmodal FCs showed 
significantly higher importance for predicting sertraline response than placebo response (p = 
0.035). These results indicated that placebo response relied heavier on non-transmodal FCs, 
whereas sertraline response might rely heavier on transmodal FCs, suggesting that placebo 
response was via more superficial pathways, echoing with the findings that placebo response 
tends to have earlier onset yet is more prone to relapse and recurrence (72-74).  
 
Treatment-Predictive Phenotypes Provide Supplementary Information to Commonly-Used 
Clinical Measures. 
Neuroimaging-based prediction models may not be practically useful if lower-cost measures 
(e.g., demographic variables, clinical scores, or historical factors) can yield comparable 
predictability of antidepressant responses. Therefore, we developed clinical measure-based 
prediction models for antidepressant responses to confirm the advantages of neuroimaging-
based prediction models. We used totally 134 item-level scores in State-Trait Anxiety Inventory 
(75), Childhood Trauma Questionnaire (76, 77), Quick Inventory of Depressive Symptomatology 
(78), Mood and Anxiety Symptom Questionnaire (79), and age and education years. These item-
level scores yielded no to modest predictability of treatment responses (sertraline response: r = 
0.22, p = 0.018; placebo response: r = 0.03, p = 0.75), confirming the advantage of rsEEG-based 
treatment-predictive phenotypes in indicating antidepressant responses over lower-cost 
measures (sertraline response: Fisher’s z = 1.84, p = 0.033; placebo response: Fisher’s z = 2.38, 
p = 0.009). 
 
Normative Modeling Distinguishes Subclinical and Diagnostic Variabilities. 
Lastly, as autoencoders reduce feature dimensionality in an unsupervised way, we tested 
whether indeed the reconstructed rsEEG FC captured the variability in healthy controls and the 
reconstruction error reflected deviations in psychopathological dimensions. To this end, we 
correlated 9 clinical measures (five sub-scales of Childhood Trauma Questionnaire (76, 77): 
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emotional abuse, emotional neglect, physical abuse, physical neglect, sexual abuse; total 
evaluation score of Quick Inventory of Depressive Symptomatology (QIDS) (78); tripartite scales 
of Mood and Anxiety Symptom Questionnaire (79, 80): general distress, anhedonic depression, 
anxious arousal) with either reconstructed rsEEG FC or individual deviations of each FC (as 
elucidated by EO-gamma condition). We compared whether each clinical measure had stronger 
correlation with reconstructed FCs or individual deviations using paired Wilcoxon’s rank-sum 
tests, with the absolute correlation coefficients between a particular clinical measure and each 
FC served as data points (Table 1). To establish the ground truth of whether a clinical measure 
reflected the variability shared across both healthy controls and patients or the variability specific 
to patients, we categorized the clinical measures as subclinical or diagnostic depending on 
whether they significantly distinguish patients from healthy controls (Table 1). Although all clinical 
measures showed significant distinction between healthy subjects and MDD patients at the 
significance level of 0.05, two of them (history of physical abuse and sexual abuse) showed a 
significance level much higher than others (p > 0.0001), thus were categorized as subclinical 
measures. The other five clinical measures were categorized as diagnostic measures. 
Interestingly, both subclinical measures showed stronger correlation with reconstructed FCs 
than individual deviations. Meanwhile, 5 of the 7 diagnostic measures (except the history of 
emotional abuse and score of anxious arousal) showed stronger correlation with individual 
deviations than reconstructed FCs. This result suggested that the reconstruction error derived 
from the autoencoder model indeed distinguished subclinical and diagnostic variabilities, thus 
verifying the hypothesis that the reconstruction error from normative modeling captures 
individual deviations in psychopathological dimensions. 
 
 
Discussion 
 
In this study, we developed prediction models for antidepressant responses based on individual 
deviations from normative rsEEG FC. The prediction models yielded promising performance for 
both sertraline and placebo responses, demonstrating the potential generalizability of this 
normative modeling-based prediction framework to other treatment responses. The models 
outperformed the predictions yielded by rsEEG FC and individual deviations derived from other 
existing normative modeling strategies (36). Based on the prediction models, we identified 
distinct connectivity signatures for sertraline and placebo responses, which further suggested 
differences in involved neural circuits between sertraline and placebo., We showed that the 
individual deviations indeed provide supplementary information to commonly-used clinical MDD 
measures for depression, anxiety, childhood history questionnaires, thus unveiling additional 
information to improve treatment outcome prediction. Finally, we interpreted the autoencoder-
based individual deviations using commonly-used clinical measures and verified the hypothesis 
that the individual deviations indeed distinguish the subclinical and diagnostic variabilities among 
subjects. Together, these achievements deepened our understanding of how brain FC 
alterations are associated with antidepressant treatment and a new avenue for improving 
antidepressant treatment outcomes. Lastly and importantly, this framework is highly 
generalizable and adaptable to the treatment response prediction studies of other 
antidepressant medications, and even other psychiatric disorders.  
 Recently, a number of studies have made efforts in identifying neurobiological biomarkers 
for antidepressant responses using pretreatment EEG connectivity (81-83). In their reports, 
connectivity in alpha and gamma bands provided essential information to both antidepressant 
and placebo responses, among them the parietal regions were the most important (83). Our 
prediction models also revealed alpha and gamma bands as the most significant conditions for 
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sertraline response, whereas the beta band was the most informative condition for placebo 
response. More specifically, we found the precuneus region, which is a functional core of the 
default-mode network (84), of particular importance to the sertraline response. For depression, 
abnormal activities in precuneus were reported to be associated with low self-esteem (85), 
recurrence after treatment (86), incidence (87), suicide risk (88), and symptom severity (89). Our 
predictive modeling results provide additional evidence that precuneus is the key region for 
antidepressant response, strengthening the finding that precuneus is an important indicator for 
depression dimensions and verifying the perfect alignment of our study with previous 
neuroscience studies.  
 As for placebo response, we found the calcarine sulcus is of particular importance, where 
the primary visual cortex is concentrated (90), aligning with previous studies that placebo 
treatment may induce alterations in primary visual cortex (91, 92). We also found that the 
connections within limbic network were highly involved for placebo response. Interestingly, the 
alterations in cortical and limbic connectivities we identified for placebo response precisely 
echoed with neuroimaging biomarkers for psychotherapy (93). Together with our findings, it 
might imply that the placebo treatment is essentially a special case of psychotherapy, where 
patients perceive the stimuli of clinicians providing medications to them, as well as clinician’s 
hint that they would get improvement from the medications.  
 Notably, in our prediction models, it is the deviations in FC from the healthy norm that 
contribute to the antidepressant response prediction. In principle, raw EEG FC and individual 
deviation from normative EEG FC reflect different aspects — raw EEG FC describes the coupling 
between brain regions, whereas individual deviations in EEG FC represents how the coupling of 
patients is deviated from healthy conditions. Actually, changes in EEG FC may not lead to 
alterations in individual deviations as long as the changes are not in the psychopathological 
dimensions. Therefore, individual deviations eliminate the variance irrelevant to 
psychopathology, conceptualizing psychopathological dimensions of each individual FC. The 
significant feature weights in our models essentially indicate the individual deviations from 
normative connectivity of identified connections are important for predicting treatment 
responses. As a result, the neurobiological biomarkers we identified from normative modeling 
provide unique and supplementary information to previous treatment response biomarker 
studies. 
 Debates have existed for long about how antidepressant medications take effect on MDD 
patients (3, 4), as well as the essence of placebo effect and response (11). Our prediction models 
provided novel insights into their response pathways from the aspect of functional connections. 
As shown in Results, non-transmodal FCs contribute more to the placebo response than 
transmodal FCs whereas transmodal FCs contribute more to the sertraline response than 
placebo response. These comparisons suggest that the more profound effects of sertraline may 
be because of its higher level of modulation (transmodal regions) than placebo (unimodal 
regions). It may also explain why sertraline response is only modestly higher than placebo 
response: they both introduce alterations in brain connectivity, just in different aspects; because 
the actual behaviors, as measured by clinical scales for MDD, are accomplished by the entire 
neural pathway including connections involving unimodal and transmodal regions, the overall 
outcomes are similar. Namely, sertraline and placebo might achieve similar outcomes via distinct 
neural circuits, which aligned with the results from our simulation analysis that sertraline and 
placebo response may be independent. Taken together, these observations suggested that 
placebo may possess a distinct mechanism in releasing depression symptoms, not just being a 
proportion of drug effects (11). 
 Although our results were preliminarily verified with aforementioned analyses, replication 
studies with additional independent cohorts are important to confirm our findings of rsEEG 
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connectivity-based individual deviations and predictive modeling for sertraline and placebo 
responses. Future studies are also needed to validate the generalizability of our proposed 
framework to other antidepressants, psychotherapy, neurostimulation therapy, as well as these 
treatment strategies for other psychiatric disorders. Furthermore, as the original protocol of 
EMBARC study (37) did not collect neuroimaging data at the end of treatment, we were unable 
to confirm the brain connectivity alterations mediated by the medications. Therefore, future 
studies are required to confirm the differences in involved neural circuits between sertraline and 
placebo responses. 
 In summary, we developed a novel EEG-based framework that combines normative 
connectivity modeling and predictive modeling to identify biomarkers of individual 
antidepressant responses, which yielded promising prediction performance and specificity to 
treatment arms. Specifically, we quantified individual deviations from the established normative 
EEG connectivity, which provide supplementary information to existing commonly-used clinical 
measures. Importantly, the constructed individual deviations were highly interpretable as they 
showed capability of distinguishing subclinical and diagnostic variabilities across healthy 
controls and MDD patients. We also identified significant functional connections contributing to 
antidepressant responses, which showed distinct patterns of sertraline and placebo responses, 
suggesting distinguishable mechanisms between these two treatments. Together, our work 
expands the knowledge about the response pathways of antidepressant medications, provides 
a new avenue toward precision medicine and higher treatment outcomes of MDD, and 
conceptualizes a highly generalizable framework that may be adapted to studies into other types 
of antidepressant treatments and a broad range of psychiatric disorders. 
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Fig. 1 Flowchart of antidepressant response prediction based on individual deviations from normative 
electroencephalographic (EEG) functional connectivity (FC) a Normative modeling framework. First, a 
healthy norm was developed with healthy EEG FC using an autoencoder. Second, patient EEG FC were 
fed into the autoencoder, generating reconstructed EEG FC for each patient. The subject-level individual 
deviations from normative EEG FC were then quantified as the reconstruction error (raw FC - reconstructed 
FC) yielded by the autoencoder. b Distribution of individual deviations. The autoencoder captures common 
dimensions shared by healthy controls. The reconstruction errors, namely the individual deviations, reflect 
unseen dimensions in healthy controls. Those unseen dimensions were hypothesized to be associated 
with diseases, including MDD and other psychopathological dimensions. Thus, the individual deviations 
amplify the disease dimensions to yield FC features that are more predictive of treatment responses. c 
Predictive modeling framework. The individual deviations from normative EEG FC were utilized as the 
input features of the predictive modeling framework. First, correlation analyses were conducted on all 
individual deviations to identify statistically significant features of antidepressant responses. Second, 
insignificant features were masked out to reduce the feature dimensionality. Lastly, sparse learning 
techniques were implemented on selected features to develop cross-validated models and generate 
individual-level predictions of antidepressant responses. Response-predictive biomarkers were identified 
as feature weights of FC-based individual deviations. 
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Fig. 2 Antidepressant response prediction a Performance of the sertraline response model. The model 
was trained and 10x ten-fold cross-validated on the subjects in the sertraline arm (n = 102). b Sertraline 
response model failed to predict placebo response, demonstrating the model’s specificity for sertraline 
response prediction. c Top 20 significant functional connections for sertraline response prediction d 
Performance of the placebo response model. The model was trained and 10x ten-fold cross-validated on 
the subjects in the placebo arm (n = 119). e Placebo response model failed to predict sertraline response, 
demonstrating the model’s specificity for placebo response prediction. f Top 20 significant functional 
connections for placebo response prediction. Here, r-values indicate Pearson’s correlation coefficient 
between actual and predicted antidepressant responses. P-values are calculated based on the two-sided 
test against the alternative hypothesis of r ≠ 0. Error bars show standard deviation. VN: visual network; 
SMN: somatomotor network; DAN: dorsal attention network; VAN: ventral attention network; FPCN: 
frontoparietal control network; DMN: default-mode network.  
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Fig. 3 Different pathways underlying sertraline and placebo responses a-b Importance of network-level 
connections for sertraline and placebo responses. Network-level connections were quantified as the mean 
of non-zero FCs between a particular pair of brain networks. FCs were classified into two groups: the 
transmodal FCs across transmodal regions (e.g., DMN and FPCN), and the non-transmodal FCs across 
the unimodal regions (VN and SMN) and between the unimodal regions and transmodal regions. The 
regions inside the red lines at the bottom-right show the transmodal FCs. The regions outside the red lines 
show the non-transmodal FCs. c Predicted sertraline and placebo responses showed no significant 
correlation, suggesting the independence between predicted sertraline and placebo responses. The 
predicted antidepressant responses were acquired for all subjects in the EMMARC cohort (n = 221). d 
Sertraline and placebo responses showed different characteristics in FC weights. The feature weights of 
transmodal FCs were significantly different between sertraline and placebo responses, whereas no 
significant difference was identified for the features weights of non-transmodal FCs between sertraline 
and placebo responses. Moreover, non-transmodal FCs showed significantly higher importance to 
placebo response prediction than transmodal FCs. These comparisons suggested the relatively higher 
importance of transmodal FCs to the sertraline response and relatively higher importance of non-
transmodal FCs to the placebo response, suggesting different levels of brain networks involved in 
sertraline and placebo responses. To directly compare the feature weights between two different models, 
absolute feature weights were ordered for each model, such that the order reflected the relative 
importance for each of the antidepressant responses. The differences in importance across FC groups 
were then identified by Wilcoxon's rank-sum tests.  
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The clinical measures used for interpreting autoencoder-based individual deviations include scores from 
Childhood Trauma Questionnaire (CTQ), Quick Inventory of Depressive Symptomatology (QIDS) and Mood 
and Anxiety Symptom Questionnaire (MASQ). For absolute correlation difference between reconstructed 
FC and individual deviation, z-values are calculated by paired Wilcoxon’s rank-sum test for the absolute 
correlation coefficients between each clinical measure and either reconstructed FCs or individual 
deviations in FCs. Negative values indicate stronger correlations with reconstructed FCs than individual 
deviations, whereas positive values indicate stronger correlations with individual deviations than 
reconstructed FCs. Positive values hypothetically correspond to the variability in psychopathological 
dimensions (because individual deviations are supposed to capture it).  
        For measure difference between healthy subjects and MDD patients, z-values are calculated by 
unpaired Wilcoxon’s rank-sum test for the measure difference between diagnosis groups. We defined 
clinical measures p >0.0001 as subclinical, while measures with p-values smaller than 0.0001 as 
diagnostic. Both subclinical measures, showed stronger correlations with reconstructed FCs than 
individual deviations, while five of the seven diagnostic measures except (emotional abuse history and 
anxious arousal) showed stronger correlations with individual deviations than reconstructed FCs, 
suggesting the healthy norm derived from the autoencoder model indeed distinguished subclinical and 
diagnostic variabilities, which in turn validated the hypothesis that the reconstruction error from normative 
modeling captures individual deviations in psychopathological dimensions. P-values are uncorrected. 
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