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Abstract: Copoly(phthalazinone biphenyl ether sulfone) (PPBES) as a commercially available
polyarylether is a promising orthopaedic implant material because its mechanical properties are
similar to bone. However, the bioinert surface of polyarylether causes some clinical problems
after implantation, which limits its application as an implant material. In this study, the surface
of PPBES was modified by a biomineralization method of polydopamine-assisted hydroxyapatite
formation (pHAF) to enhance its cytocompatibility. Polydopamine (PDA) coating, inspired by the
adhesion mechanism of mussels, can readily endow PPBES with high hydrophilicity and the ability
to integrate via the bone-like apatite coating. PPBES and PDA-coated PPBES were evaluated by
scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle
measurement. The water contact angles were reduced significantly after coating with PDA. PDA
was successfully synthesized on PPBES and more PDA was obtained by increasing the temperature.
Bone-like apatite on PPBES (apatite-coated PPBES) was confirmed by SEM and transmission electron
microscopy (TEM). The cytotoxicity of pristine PPBES and apatite-coated PPBES were characterized
by culturing of NIH-3T3 cells. Bone-like apatite synthesized by pHAF could further enhance
cytocompatibility in vitro. This study provides a promising alternative for biofunctionalized PPBES
with improved cytocompatibility for bone implant application.
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1. Introduction

Polyarylethers have been widely applied for biomedical application due to their chemical
resistance, mechanical properties similar to bone, radiolucency, and their structures. Poly(aryl ether
ether ketone) (PEEK), as a commercially-used biomaterial, has become a leading thermoplastic
candidate for medical implant materials in orthopedics [1]. Bioactive materials as the surface coating
or composite filler are used to improve its osteointegration [2–6]. Although composites can promote
bioactivity, the drawbacks, including low implant strength and high roughness, retard its application
as a biomaterial.

The modification of polymer surfaces is another area of academic research to improve
bone–implant interfaces. Ti and hydroxyapatite (HA) have been coated on PEEK to improve the
bone–implant interface [7–10]. The authors reported that Ti-coated polyarylether implants improve
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osteogenesis compared to uncoated implants. HA coating on PEEK typically exhibits excellent
biocompatibility and bioactivity in vitro and in vivo [11,12]. HA (chemical formula Ca10(PO4)6(OH)2)
is most widely used to coat PEEK to enhance biocompatibility and osteogenesis because it is similar to
bone mineral. HA coating can be fabricated on PEEK or PEEK composite using a thermal plasma spray
coating [8], a cold spray technique [13], a spin coating technique [14], RF magnetron sputtering [15,16],
aerosol deposition (AD) [17], and biomimetic mineralization [18,19]. Among the existing approaches,
biomimetic mineralization is attractive due to its simplicity.

Biomimetic mineralization is to fabricate mimetic materials similar to nature’s sophisticated
structures or their biologic functions [20]. A simple way to induce apatite coating called
polydopamine-assisted hydroxyapatite formation (pHAF) has been found by a mussel-inspired
strategy [21,22]. Dopamine polymerization is carried out in an aqueous solution to produce adhesive
polydopamine (PDA) on various substrates. Catechol groups of PDA exhibit high calcium-ion
coordination ability in simulated body fluid (SBF) and enhance hydroxyapatite formation on various
substrates. In addition, the hydrophobic surface constrains the biomimetic mineralization. PDA,
as a hydrophilic modifier, improves the wettability of the chitosan-based substrates to enhance its
biomineralization capacity [23,24]. The effective and simple pHAF approach could be promising for
the surface modification of PEEK.

Copoly(phthalazinone biphenyl ether sulfone) (PPBES), a commercially-used polyarylether, has a
structure similar to PEEK. Furthermore, the twisted and non-coplanar heterocyclic phthalazinone
moiety is introduced into the main chain of PPBES (Figure 1), which results in PPBES with superior
solubility in a variety of solvents (such as NMP, DMF, DMAc, and CHCl3) [25]. Moreover, the wholly
aromatic and heterocyclic structure imparts PPBES with excellent mechanical properties. Moreover,
it has better solubility, higher Tg and lower cost than PEEK [26]. The bioinert surface of PPBES also
inhibits its biomedical application.

Molecules 2018, 23, x 2 of 11 

 

is most widely used to coat PEEK to enhance biocompatibility and osteogenesis because it is similar 
to bone mineral. HA coating can be fabricated on PEEK or PEEK composite using a thermal plasma 
spray coating [8], a cold spray technique [13], a spin coating technique [14], RF magnetron 
sputtering [15,16], aerosol deposition (AD) [17], and biomimetic mineralization [18,19]. Among the 
existing approaches, biomimetic mineralization is attractive due to its simplicity. 

Biomimetic mineralization is to fabricate mimetic materials similar to nature’s sophisticated 
structures or their biologic functions [20]. A simple way to induce apatite coating called 
polydopamine-assisted hydroxyapatite formation (pHAF) has been found by a mussel-inspired 
strategy [21,22]. Dopamine polymerization is carried out in an aqueous solution to produce 
adhesive polydopamine (PDA) on various substrates. Catechol groups of PDA exhibit high 
calcium-ion coordination ability in simulated body fluid (SBF) and enhance hydroxyapatite 
formation on various substrates. In addition, the hydrophobic surface constrains the biomimetic 
mineralization. PDA, as a hydrophilic modifier, improves the wettability of the chitosan-based 
substrates to enhance its biomineralization capacity [23,24]. The effective and simple pHAF 
approach could be promising for the surface modification of PEEK. 

Copoly(phthalazinone biphenyl ether sulfone) (PPBES), a commercially-used polyarylether, 
has a structure similar to PEEK. Furthermore, the twisted and non-coplanar heterocyclic 
phthalazinone moiety is introduced into the main chain of PPBES (Figure 1), which results in PPBES 
with superior solubility in a variety of solvents (such as NMP, DMF, DMAc, and CHCl3) [25]. 
Moreover, the wholly aromatic and heterocyclic structure imparts PPBES with excellent mechanical 
properties. Moreover, it has better solubility, higher Tg and lower cost than PEEK [26]. The bioinert 
surface of PPBES also inhibits its biomedical application.  

 
Figure 1. Chemical structure of Copoly(phthalazinone biphenyl ether sulfone) (PPBES) and 
schematic illustration of dopamine polymerisation and apatite biomineralisation on PPBES. 

In this work, the pHAF approach combining mussel-inspired polydopamine coating and 
biomimetic mineralization in SBF was used to improve the cytocompatibility of PPBES (Figure 1). 
The polydopamine layer was first employed to modify the surface of PPBES. Then, the apatite 
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Figure 1. Chemical structure of Copoly(phthalazinone biphenyl ether sulfone) (PPBES) and schematic
illustration of dopamine polymerisation and apatite biomineralisation on PPBES.

In this work, the pHAF approach combining mussel-inspired polydopamine coating and
biomimetic mineralization in SBF was used to improve the cytocompatibility of PPBES (Figure 1).
The polydopamine layer was first employed to modify the surface of PPBES. Then, the apatite
coating was created by the PDA layer using a biomineralization process. Finally, the apatite that
formed on PPBES was examined and its cytocompatibility was then investigated in vitro. The results
described herein demonstrate that PPBES with a bone-like apatite coating holds promising potential
for biomedical applications.
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2. Results and Discussion

2.1. Mussel-Inspired Hydrophilization

Polydopamine, as a bio-inspired polymer, has similar properties to the proteins secreted
from mussels. Polydopamine, with the ability to adhere to most surfaces, has been used to
increase the hydrophilicity of a surface in membrane science and biomedical application [27–29].
However, the detailed mechanism of PDA formation is still elusive [30]. In the proposed
mechanisms, 5,6-dihydroxindole of polydopamine can adsorb onto the surface of various materials by
hydrogen bonding [31]. The hydrophilicity of PDA coating enhances the performance of functional
materials [29,30]. The effects of deposition conditions, including time and dopamine concentration,
on the hydrophilicity of substrates have been investigated systematically in this study. While dopamine
concentration was increased from 2 to 8 mg/mL, the PDA coating became unstable (data not shown).
After dopamine was dissolved in Tris-HCl buffer, the colorless solution gradually turned black. PDA
formed particles and aggregates in the aqueous solution during the oxidative polymerization process
and adsorbed on the substrate. PDA particles adsorbed after a thin PDA coating was formed [32].

PPBES plates were produced by hot pressing. The surface morphology changes were observed
by SEM [33]. Pristine PPBES is smooth, while the roughness of PPBES was increased by the PDA
nanoparticles after PDA coating (Figure 2). To obtain a stable and uniform PDA layer on PPBES,
the dopamine solution was exchanged every 12 h. The growth of deposited PDA is influenced by
reaction time and temperature [32]. PDA particles and aggregates on the PPBES plate were obtained
after reacting for 72 h. It has been reported that the reaction rate for dopamine is highly elevated
by reaction temperature. More PDA particles were observed on the PPBES plate when the reaction
temperature was increased from room temperature to 60 ◦C. However, the coating became unstable
and could be scratched easily.
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Figure 2. Surface morphology of the polydopamine (PDA)-coated PPBES.

XPS has been used to determine the elemental composition [34]. The XPS spectra acquired from
PDA, pristine PPBES, and PDA-coated PPBES show the signals of O, N, and C, as shown in Figure 3.
In detail, the nitrogen-to-carbon signal ratios (N/C) of PDA, pristine PPBES, and PDA-coated PPBES
are 0.11, 0.06, and 0.08, respectively. The increase in the atomic composition of PDA-coated PPBES
was observed compared to pristine PPBES, suggesting that PDA was coated on PPBES successfully.
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The difference of N/C between PDA and PDA-coated PPBES indicates that the XPS signals of PPBES
was detected after PDA coating.
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PDA coating is a simple and versatile method for surface modification towards functional
materials. The hydrophilic-hydrophobic balance can be influenced by PDA deposition [35].
Contact angle measurement is a useful method of determining the surface hydrophilicity. The contact
angles of these resultant samples are shown in Figure 4. After PPBES was modified by PDA coating,
the static contact angles decreased obviously, which means improved hydrophilicity due to the
formation of PDA layer on the PPBES plate. Moreover, the contact angle is also affected by the
reaction time and temperature when preparing the PDA layer. As shown in Figure 4, PDA-coated
PPBES(RT48) prepared at room temperature (RT) for 48 h demonstrated a smaller contact angle
compared to PDA-coated PPBES(RT24) prepared at RT for 24 h. However, further extension of reaction
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time did not reduce the contact angle, as shown for PDA-coated PPBES(RT72). Another important
factor of dopamine polymerization is reaction temperature. The contact angle decreased slightly as the
reaction temperature was increased from RT to 45 ◦C. A little increase was observed from 45 to 60 ◦C,
due to the rougher surface of the PDA layer that can increase the contact area with water.

The surface energy (SE) data of PDA coating on PPBES versus reaction temperature and time
are tabulated in Table 1. The SE value of the PPBES plate was apparently increased from 38.3 to
43.1 mN/m by the PDA coating, owing to the strong polar interactions in the PDA coating. The total
SE increased from 43.1 to 43.9 mN/m by increased reaction time from 24 to 48 h and then slightly
decreased with longer reaction time. Temperature influences the dopamine polymerization to a certain
extent. The roughness of PDA-coated PPBES increased with elevating reaction temperature from 45 to
60 ◦C, which decreased the total SE slightly. Therefore, stable PDA coating was efficiently obtained at
room temperature for 48 h and PDA-coated PPBES(RT48) was used for biomineralization.

Table 1. Effect of Reaction Time and Temperature on the SE of PDA-coated PPBES.

Sample a Contact Angle (deg) Surface-Energy Components (mN/m)

Water Diiodomethane σs
a σs

b σs
c

Pristine PPBES 73.2 ± 2.7 48 ± 1.2 38.3 28.4 9.9
PDA-coated PPBES(RT24) 64.3 ± 1.0 44.7 ± 0.8 43.1 28.1 15.0
PDA-coated PPBES(RT48) 59.0 ± 1.3 52.9 ± 1.4 43.9 22.4 21.5
PDA-coated PPBES(RT72) 58.9 ± 1.5 53.9 ± 1.8 43.8 22.9 17.8
PDA-coated PPBES(4548) 56.0 ± 0.5 52.7 ± 1.6 45.9 22.0 23.9
PDA-coated PPBES(6048) 56.7 ± 0.7 60.0 ± 0.6 44.2 18.1 26.1

σs
a: total SE; σs

b: disperse part of SE; σs
c: polar part of SE.

2.2. Characterization of Apatite-Coated PPBES

Catecholamine moieties in the PDA coating can induce formation of hydroxyapatite crystals
similar to natural hydroxyapatite in mineralized tissues on various materials [21]. Pristine PPBES did
not facilitate apatite formation (data not shown). Quantities of small spherical particles were seen on
PDA-coated PPBES after PDA coating (Figure 2). The hemispherical apatite particles adhered to the
PDA coating and some clusters of apatite particles appeared on PDA-coated PPBES after biomimetic
mineralization for 6 days (Figure 5). The apatite coating has a typical form for hydroxyapatite as
reported by Ref. [36]. Moreover, the SEM images of the cross-sections of the PPBES plate modified
with apatite coating are presented in Figure 5b. The thickness of the apatite coating is less than 1 µm.
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The morphology of the apatite layer was evaluated by TEM (Figure 6). Apatite coating on
PPBES displayed characteristic particles similar to synthesized HA [37] and HA in bone tissue [38].
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The bone-like apatite layer formed on PPBES was also confirmed by SEM data. Selected area electron
diffraction (SAED) patterns were utilized to further verify the chemical composition of the apatite
coating. The concentric ring patterns could be assigned to the (211) plane which corresponds to
HA (Figure 6).Molecules 2018, 23, x 6 of 11 
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Figure 6. TEM and SEAD images of the bone-like apatite layer.

2.3. Cell Viability and Adhesion

The cytotoxicity of pristine PPBES and apatite-coated PPBES was characterized by culturing
NIH-3T3 cells with the sample extracts. Phenol was used as positive control. It was observed that
phenol elicited a cytotoxic response against NIH-3T3 cells when its concentration was increased to
1 mg/mL (Figure 7a). The aim of the extraction procedure based on the ISO 10993 protocol is to
determine the cytotoxicity of the samples without affecting the mechanical properties of chemical
compositions of the samples. MTT assay was used to quantify the toxicological hazard of the samples.
Aqueous extracts of pristine PPBES and apatite-coated PPBES do not elicit a significant cytotoxic
response against NIH-3T3 cells. The cell viability was increased slightly after the extracts were
diluted with fresh cell culture medium. The apatite-coated PPBES is expected to be biosafe as an
implant biomaterial.
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Cell adhesion is responsible for cell functions and formation of new tissues [39]. Cell-adhesion
properties were characterized by culturing NIH-3T3 cells with the two samples. The surface roughness
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and wettability of polymer substrates influence cell adhesion behavior significantly [40]. The water
contact angle of apatite-coated PPBES (30.4 ± 2.9◦) was decreased by the bone-like apatite
coating compared to the pristine PPBES. The roughness was increased by the bone-like apatite
coating (Figure 5). In addition, cell adherence to substrates can be facilitated by Ca2+ ions from
apatite-coated substrates. After cell culture for 48 h, the samples with adhered cells were washed
with PBS solution to remove the loosely attached cells. Figure 8 shows the representative SEM images
of NIH-3T3 cells adhering to pristine PPBES and apatite-coated PPBES surfaces. The NIH-3T3 cells
attached and proliferate to some extent on pristine PPBES surface. However, the cell-adhesion property
of pristine PPBES is not good. Polymer substrates can be surface-modified to enhance cell-adhesion
properties [41]. Cells on apatite-coated PPBES spread better than those on pristine PPBES and the cell
area was high. Cells exhibited a more flattened morphology. Attached cells were increased significantly
after pristine PPBES was coated with apatite. The relative cell-adhesion density on both of the two
samples is shown in Figure 8. The density change is consistent with the result drawn from SEM images
of attached cells. In conclusion, cell-adhesion property of PPBES is improved by apatite coating.
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3. Materials and Methods

3.1. Materials

PPBES was supplied by Dalian Polymer New Material Co. Ltd. (Dalian, China). Dopamine
hydrochloride and tris(hydroxymethyl)aminomethane (Tris) were purchased from Aladdin Corp.
(Shanghai, China). MTT reagents were purchased from Sangon Biotech (Shanghai, China).
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3.2. Dopamine Polymerization and Biomineralization

PPBES plates were prepared by hot pressing and cleaned ultrasonically in acetone, ethanol, and
deionized water successively. A series of PDA-coated PPBES samples were prepared by creating a
polydopamine coating through dopamine polymerization on PPBES plates in 10 mM Tris buffer at
pH 8.5. PDA-coated PPBES was extensively rinsed with deionized water and dried in a stream of
N2 gas. PPBES coated by PDA at room temperature for 48 h (PDA-coated PPBES(RT48)) was chosen
for biomineralization. It was transferred into 1.5× SBF and incubated at 37 ◦C. The composition
of the 1.5× SBF was as follows (mM): Ca2+, 3.8; Na+, 213.0; K+, 7.5; Mg2+, 2.3; Cl−, 221.7; HCO3−,
6.3; HPO4

2−, 1.5; SO4
2−, 0.8. The 1.5× SBF was renewed every 24 h in order to preserve its ion

concentration. After immersion for 6 days, apatite-coated PPBES was rinsed with deionized water and
dried by N2 gas.

3.3. Structural and Morphological Characterizations

The morphological changes after dopamine polymerization and biomineralization were
investigated by scanning electron microscopy (SEM, QUANTA 450, FEI Company, Hillsborough,
OR, USA) [42]. The samples were coated with platinum using a sputter coater (Quorum Technologies
Ltd., East Sussex, UK).

Surface chemical compositions were analyzed using an X-ray photoelectron spectroscopy (XPS,
ESCALABTM 250Xi, Thermo Fisher Scientific Inc., Waltham, MA, USA). AlKα X-ray was used as
source. All binding energies were referenced to the C 1s component set to 285 eV.

The surface hydrophilicity and SE of the PPBESK layer and the coatings were characterized
by a contact angle analyzer (JC2000D2W, Shanghai Zhongchen Digital Technic Apparatus Co. Ltd.,
Shanghai, China). Five measurements were performed for each sample at 25 ◦C and 55% relative
humidity. The SE value was determined according to the Owens, Wendt, Rabel, and Kaelble (OWRK)
method by using water and diiodomethane.

The apatite coating was confirmed by a Tecnai F30 transmission electron microscopy (TEM,
FEI Company, Hillsborough, OR, USA) at an acceleration voltage of 300 kV. For TEM and selected-area
electron diffraction (SAED) analyses, apatite coating was dispersed into ethanol by scraping and the
suspension was dropped onto carbon-coated copper grids and dried by N2 gas before observation.

3.4. In Vitro Cell Culture

NIH-3T3 cells were seeded in Dulbecco’s modified eagle medium (DMEM) supplemented
with 10% fetal bovine serum and penicillin/streptomycin at 37 ◦C under a humidified 5% CO2

atmosphere. The cell viability was determined using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl
tetrazolium bromide (MTT) assay [43,44]. Sterile pristine PPBES and apatite-coated PPBES were
incubated with the complete culture medium in the ratio of 3 cm2 mL−1 between the surface area of the
sample and the volume of cell culture medium according to the protocol ISO10993. The extract from the
sample was aseptically diluted at volume ratios of 1:0, 1:1, 1:3, 1:7, and 1:15 using fresh culture medium.
Cells were seeded at a density of 5 × 104 cells mL−1 into wells in 96-well plates containing 100 µL
of culture medium for 1 day. Then, the medium was exchanged with the respective extracts. Phenol
solution and fresh culture medium were used as positive control and negative control, respectively.

The cell-adhesion characteristics were assessed by cell culture on pristine and apatite-coated
PPBES. The surfaces after incubation were washed with PBS solution to remove the loosely attached
cells. Fixation with 4% glutaraldehyde for 2 h and dehydration in a series of ethanol solutions (50–100%)
were carried out for cell imaging. The cell immobilized PPBES and HA-coated PPBES were imaged
using a scanning electron microscope. Prior to the SEM measurements, specimens were fixed on the
holders and sputtered with a thin Pt layer. For cell number determination, the surfaces were incubated
with 0.25% trypsin solution for 5 min at 37 ◦C to detach the cells. The detached cells were collected
and counted using a hemocytometer.
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3.5. Statistical Analysis

The data were shown as the means ± standard deviation for each group. A one-way analysis of
variance (ANOVA) was utilized to perform the statistical analysis among the groups. p-value < 0.05
was regarded as statistically significant.

4. Conclusions

The low bioactivity of current synthetic polyarylethers, such as PEEK, has limited the choice of
materials, slowing down the development of bone implant materials. PPBES is a kind of commercial
polyarylether which has the potential to replace PEEK as an implant material. In this study, it was
demonstrated that the pHAF method was a feasible method to produce a novel apatite coating
on synthetic PPBES. The hydrophilic modification and catecholamine moieties are beneficial for
biomineralization. In vitro studies, including MTT assay and cell adhesion tests, indicated that the
apatite coating on PPBES did not elicit cytotoxicity against NIH-3T3 cells and promoted cell adhesion
significantly. As the pHAF approach can be used to integrate hydroxyapatites onto virtually any
material morphology, it is an attractive approach to prepare functional coatings on polyarylether
medical implants.
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