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Aim: Heart failure (HF) post-acute myocardial infarction (AMI) leads to a large number of
hospitalizations and deaths worldwide. Danqi pill (DQP) is included in the 2015 national
pharmacopoeia and widely applied in the treatment of HF in clinics in China. We examined
whether DQP acted on glucose metabolism to protect against HF post-AMI via hypoxia
inducible factor-1 alpha (HIF-1a)/peroxisome proliferator-activated receptor a co-
activator (PGC-1a) pathway.

Methods and Results: In this study, left anterior descending (LAD) artery ligation induced
HF post-AMI rats and oxygen-glucose deprivation-reperfusion (OGD/R)-induced H9C2
cell model were structured to explore the efficacy and mechanism of DQP. Here we
showed that DQP protected the heart against ischemic damage as evidenced by
improved cardiac functions and attenuated inflammatory infiltration. The expressions of
critical proteins involved in glucose intake and transportation such as GLUT4 and PKM2
were up-regulated, while negative regulatory proteins involved in oxidative
phosphorylation were attenuated in the treatment of DQP. Moreover, DQP up-
regulated NRF1 and TFAM, promoted mitochondrial biogenesis and increased
myocardial adenosine triphosphate (ATP) level. The protection effects of DQP were
significantly compromised by HIF-1a siRNA, suggesting that HIF-1a signaling pathway
was the potential target of DQP on HF post-AMI.

Conclusions: DQP exhibits the efficacy to improve myocardial glucose metabolism,
mitochondrial oxidative phosphorylation and biogenesis by regulating HIF-1a/PGC-1a
signaling pathway in HF post-AMI rats.

Keywords: Danqi Pill (DQP), heart failure (HF), acute myocardial infarction (AMI), glucose metabolism, HIF-1a/PGC-
1a pathway
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INTRODUCTION

Heart failure (HF) post-acute myocardial infarction (AMI) leads
to a large number of hospitalizations and deaths worldwide
(Ponikowski et al., 2016). Although the understanding of the
mechanism of heart failure is deepening, new and different
strategies for the treatment of HF are urgently needed.

Currently, one attractive approach for HF post-AMI
treatment is to optimize myocardial substrate utilization
(Torsten et al., 2013). Emerging evidence indicates that
cardiomyocytes predominantly rely on glucose metabolism to
produce ATP after AMI, which has higher energetic efficiency
under ischemia (Nickel et al., 2013; Fillmore et al., 2014). Hence,
focusing on glucose metabolism including glucose intake,
transportation, and mitochondrial oxidation are extensively
investigated (Diakos et al., 2016; Tuomainen and Tavi, 2017).

Due to hypoxia and ischemia after AMI, myocardial glucose
intake and transportation were increased for compensatory ATP
production (Brenner, 2018). Glucose transporter protein 4
(GLUT4), and pyruvate kinase M2 (PKM2) related to the
myocardial glucose intake and metabolism pathway were
activated (Szablewski, 2017; Williams et al . , 2018).
Furthermore, mitochondrial dysfunctions occur in the failing
heart. The dysfunctions include impaired mitochondrial
structure and electron transport chain components, inhibited
oxidative phosphorylation, altered substrate utilization,
increased ROS, and so on (Mori et al., 2012; Sang-Bing et al.,
2013; Brown et al., 2017). Cardiac pyruvate dehydrogenase
kinase 1 and 4 (PDK1 and PDK4) are downstream targets of
peroxisome proliferator-activated receptor alpha (PPARa)
(Czarnowska et al., 2016), which can phosphorylate and inhibit
pyruvate dehydrogenase (PDH), the crucial enzyme catalyzing
pyruvate to acetyl CoA to fuel mitochondrial TCA cycle
(Fillmore and Lopaschuk, 2013). Uncoupling protein 2 (UCP2)
is a mitochondrial proton carrier and functions in energy
homeostasis (Akhmedov et al., 2015). Increased UCP2
provided channels for proton to transport into mitochondrial
matrix, and then inhibited the ATP synthesis (Yang et al., 2018).
Pecqueur C et al. show that UCP2 knocking-out cells
preferentially utilize glucose metabolism instead of fatty acid
oxidation (Pecqueur et al., 2008). Peroxisome proliferator-
activated receptor co-activator a (PGC-1a) is a cofactor of
PPARa transcription factors and their interaction regulates the
expression of mitochondrial oxidation related genes (Scarpulla,
2011). PGC-1a also activates transcription factors nuclear
respiratory factor 1 (NRF1) and mitochondrial transcription
factor A (TFAM) to promote mitochondrial biogenesis and
oxidation phosphorylation.

HIF-1a regulates the hypoxic response during an ischemic event
(Sousa Fialho et al., 2018). HIF-1a is hydroxylated by prolyl
hydroxylase 2 (PHD2) and the hydroxylated HIF-1a is easy to be
degraded by ubiquitination proteasome pathway under normoxia
(Wong et al., 2013). In hypoxia, accumulated HIF-1a is transported
into the nucleus and form dimers with HIF-1b to regulated genes
associated with glucose metabolism (Krishnan et al., 2009; Abud
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et al., 2012; Ambrose et al., 2014). This serves to increase
intracellular glucose intake, augment glucose transportation,
mitochondrial oxidative phosphorylation, and biogenesis (Hashmi
and Al-Salam, 2012).

Danqi Pill (DQP) is a well-known Chinese patent medicine
and used in treating coronary heart disease (Wang et al., 2016).
However, the potential pharmacological mechanism of DQP on
glucose metabolism remains unknown. Therefore, we examined
whether DQP acted on glucose metabolism to protect against HF
post-AMI via HIF-1a/PGC-1a pathway.
MATERIALS AND METHODS

Drugs
Danqi Pill (DQP) is composed of two Chinese herbs at a
composition of 1:1 (Salvia miltiorrhiza and Panax
notoginseng). And the manufacturer is Beijing Tongrentang
Pharmacy Co., Ltd. (Z11020471). The fingerprint of DQP was
performed by high-performance liquid chromatography (HPLC)
(Figure S1). Trimetazidine dihydrochloride Tablets (TMZ) were
purchased from Servier Pharmaceutical Co., Ltd. (Tianjin, China,
No. 2008344)

Animals
Male Sprague-Dawley (SD) rats (220 g) were obtained from
Beijing Vital River Laboratory Animal Technology Co., Ltd.
Animal housing and experiments were under the guidelines for
the Care and Use of laboratory animals (NIH), and the study
ethically was approved by the Animal Care and Use Committee
of Beijing University of Chinese Medicine. The acute myocardial
infarction rat model was induced by left coronary artery anterior
descending branch ligation as previously described (Wang et al.,
2014). After the surgery, rats were randomly divided as sham,
model, DQP-L (0.75 g/kg/day), DQP (1.5 g/kg/day), DQP-H (3.0
g/kg/day), and TMZ (6.3 mg/kg/day) group. Rats were treated
with different drugs for 4 weeks.

Echocardiography
All rats were anaesthetized using 1% pentobarbital sodium and
subjected to echocardiographic examination. Echocardiography
(Vevo 2100, Visual Sonics, Canada) was performed to assess the
cardiac function. Parasternal short-axis M-mode frames were
recorded and related parameters included left ventricular
internal dimension-systole (LVID;s), left ventricular internal
dimension-diastole (LVID;d), ejection fraction (EF), and
fractional shortening (FS).

Histological Examination
After 48 h fixing in the 4% paraformaldehyde, the myocardial
tissues were embedded in paraffin and were sectioned at 5 mm
thickness. Cardiac paraffin sections were stained with Hematoxylin-
Eosin (HE) to evaluate the degree of inflammatory infiltration.
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Measurement of Myocardial ATP Levels
The fresh cardiac samples and cell lysates were prepared
following the manufacture’s insturction of ATP assay kit
(A095, Nanjing Jiancheng, China). ATP levels were detected
and calculated in reference to the corresponding standard curves
and were expressed as mmol/gprot.

PET/CT Examination
Rats were in abrosia for 12 h before PET/CT scan. An amount of
~1 mCi of 18F-FDG was injected via the tail vein. After 20 min,
PET-CT images were acquired (Inveon, Siemens Medical
Solutions Knoxville, TN, United States). In our study, after
being anesthetized with 1–1.5% isoflurane, the rats were placed
in the supine position during PET/CT scanning and the
acquisition time was 2~3 min per rats. Non-contrast-enhanced
low-dose CT progressed by 30–80 kVp X-ray source.

Standardized uptake value (SUV) was calculated as follows:
SUV=C/(D/M). C means activity concentration in the heart, D
means injected dose, and M means body weight.

Immunostaining Assay
Deparaffinized myocardial tissues sections (5 mm) were blocked
with 5% sheep serum for 1 h and incubated with anti-GLUT4
(1:500) overnight at 4°C. After incubated with a secondary
antibody, the samples were stained with diaminobenzidine
(DAB) and re-stained with hematoxylin.

Western Blotting Analysis of Protein
Expressions
The proteins of heart tissues samples or H9C2 cells were
extracted using RIPA lysis buffer containing a protease
inhibitor. Protein samples were separated with 8%-10% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
blots and then transferred to the PVDF membranes. These
membranes were blocked with 5% non-fat milk for 1 h and
then incubated with primary antibodies: anti-GLUT4 (#2213,
CST, 1:2,000), anti-PKM2 (60268, Proteintech, 1:500), anti-
NRF1 (12482-1, Proteintech, 1:500), anti-TFAM (22586-1,
Proteintech, 1:500), anti-UCP2 (#89326s, CST, 1:200), anti-
PDK4 (ab89295, Abcam, 1:1,000), anti-PDK1 (ab110025,
Abcam, 1:1000), anti-PPARa (ab24509, Abcam, 1:2,000), anti-
RXRa (#3085, CST, 1:1,000), anti-PGC-1a (ab54481, Abcam,
1:1,000), anti-HIF-1a (sc-10790, SANTA CRUZ, 1:500), anti-
PHD2 (ab26058, Abcam, 1:1,000), anti-GAPDH (ab8245,
Abcam, 1:5,000) at 4°C overnight. After three washes, the
membranes were incubated with the secondary antibodies
(goat anti-rabbit IgG 1:12,000 and goat anti-mouse IgG
1:5,000) for 1h. Proteins were detected using enhanced
chemiluminescent (ECL) Plus Western blotting detection
reagent (GE Healthcare, UK) by UVP BioImaging Systems
(Bio-Rad, Hercules, CA, USA).

Cell Culture and OGD/R Model
H9C2 cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% FBS and 1% penicillin/
Frontiers in Pharmacology | www.frontiersin.org 3
streptomycin under 5% CO2. In OGD/R model, cells were
incubated using earle’s balanced salt solution and plated in a
controlled hypoxic plastic chamber at 37°C for 8 h and then the
cells were cultured in the normal medium and normoxia for 12 h.
Cell viability was performed as previously described by CCK8
assay (Chang et al., 2017).

Small Interfering RNA (siRNA) Transfection
H9C2 cells were transfected HIF-1a siRNA (50 nmol/L) using
lipofectamine 2000TM (Invitrogen). The sequences of HIF-1a
siRNA were 5′GCAUUGAAGUUAGAGUCAAdTd3′, 3′
UUGACUCUAACUUCAAUGCdTd5′, which were synthetized
by Hanbio Biotechnology Co., Ltd. (Shanghai, China). After
transfection, cells were randomly divided into control group,
OGD/R group, OGD/R+DQP, OGD/R+HIF-1a siRNA+DQP,
and OGD/R+HIF-1a siRNA treated group. The concentration of
DQP on H9C2 cell was 400 mg/ml as described previously
(Zhang et al., 2018).

Mitochondrial Membrane Potential (△Ym)
DYm was assessed using the JC-1 staining kit (Beyotime
Biotechnology, Shanghai, China). H9C2 cells were incubated
with JC-1 probe for 20 min at 37°C. Cells were washed for three
times with PBS and observed by a laser confocal microscopy
(Leica Microsystems GmbH). The green fluorescence (Ex = 514
nm, Em = 529 nm) was used for monomers detection and the red
fluorescence (Ex = 585 nm, Em = 590 nm) was used for J-
aggregates detection. Five randomly chosen fields were
photographed. The fluorescence intensity was analysed using
Image ProPlus software and the ratio of aggregates/monomers
fluorescence intensity was calculated.

Statistical Analysis
Data was presented as mean ± SD. Analyses were performed by
Graphpad 6 and SPSS 20.0 statistical software. One-way
ANOVA were used to compare values between groups. P-value
less than 0.05 was assumed to be statistical significance.
RESULTS

DQP Reduced Cardiac Dysfunctions and
Increased the ATP Level in HF Post-AMI
Rats
Rat cardiac functions were evaluated by echocardiography
(Figure 1A). Compared with model group, DQP with different
doses could up-regulate EF and FS values significantly. LVID;d in
DQP with different doses and TMZ group were decreased
significantly while LVID;s in the four groups had no statistical
differences, suggesting that DQP with different doses and TMZ
improved cardiac function mainly through decreasing end-
diastolic ventricular dilatation (Figure 1B). Histological
evaluation of HE staining exhibited that treatment with DQP
in three doses and TMZ attenuated inflammatory cell infiltration
April 2020 | Volume 11 | Article 458
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and edema of cardiomyocytes caused by ischemia (Figure 1C).
Energy in the form of ATP is needed for the heart to fuel its
contractile machinery and the ionic pumps that serve to regulate
its function (Kadkhodayan et al., 2013). DQP and TMZ
treatment increased myocardial ATP levels significantly
(Figure 1D). These data implicate that DQP could rescue heart
function in HF post-AMI rats.

DQP Promoted Cardiac Glucose
Metabolism in HF Post-AMI Rats
It has been widely reported that substrate utilization change in
the heart failure and metabolic therapy has attracted widespread
attention (Stanley et al., 2005). Fatty acid oxidation is the main
fuel source for normal cardiomyocytes, however it shifts to
glucose metabolism in the process of HF (Brown et al., 2017).
To elucidate the effects of DQP on glucose metabolism, PET/CT
Frontiers in Pharmacology | www.frontiersin.org 4
was firstly applied to assess the uptake of glucose located in
myocardial tissue. PET/CT images exhibited that abnomal
accumulation of 18F-FDG in the heart of HF post-AMI rat,
which may be caused by increased inflammatory response and
glucose metabolism disorders (Aoyama et al., 2017; Wisenberg
et al., 2019). DQP and TMZ could significantly reduce the
accumulation of glucose in the rat heart (Figure 2A). GLUT4
is the main protein to assist glucose transport (Vargas et al.,
2019), while PKM2 is the key enzyme involved in the glucose
metabolism (Zhang et al., 2019). Therefore, we explored whether
DQP influenced the expression of pivotal proteins involved in
the glucose intake and metabolism. DQP treatment could
promote GLUT4 and PKM2 expressions compared with HF
post-AMI rats determined by Western blots (Figure 2B).
Histological results also revealed that DQP and TMZ both
increased the GLUT4 expression (Figure 2C).
A

B

C D

FIGURE 1 | Danqi Pill (DQP) in different doses reduced cardiac dysfunctions, inhibited inflammatory cell infiltration and increased adenosine triphosphate (ATP)
production. (A) Representative echocardiograms in heart sections. (B) Echocardiography analyses of ejection fraction (EF), fractional shortening (FS), left ventricular
internal dimension-diastole (LVID;d), and left ventricular internal dimension-systole (LVID;s). (C) Histological analyses of H&E staining. The scale bar is 50 mm.
(D) Myocardial ATP levels in different groups. #P < 0.05, ##P < 0.01, ###P<0.001 compared with sham; *P < 0.05, **P < 0.01, ***P < 0.001 compared with model. N
= 6 per group.
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DQP Promoted Glucose Metabolism by
Activating Myocardial Mitochondrial
Oxidation Pathway in HF Post-AMI Rats
The heart is a high energy consuming organ, which needs to
consume a lot of ATP to maintain its contraction. In addition to
fatty acid oxidation, glucose aerobic oxidation is another
important energy source for the heart (van Bilsen et al., 2004).
UCP2 and two subtypes of PDKs named as PDK4 and PDK1
were chosen to assess the ability of mitochondrial oxidative
phosphorylation. As shown in Figure 3A, the expressions of
Frontiers in Pharmacology | www.frontiersin.org 5
PDK4, PDK1, and UCP2 in model group were significantly
increased by 37.25%, 56.53% and 46.83% compared with the
sham group. In DQP treated group compared with model group,
expressions of PDK4, PDK1, and UCP2 were decreased
respectively by 29.92%, 35.61%, and 30.34%. Then, we detected
the proteins involved in the mitochondrial biogenesis including
NRF1 and TFAM. DQP and TMZ treatment significantly
promoted the protein production of NRF1 and TFAM
(Figure 3B).
A

B

C

FIGURE 2 | Danqi Pill (DQP) promoted cardiac glucose metabolism in heart failure (HF) post-acute myocardial infarction (AMI) rats. (A) 18F-FDG uptake detected by
PET/CT in four groups. Quantitative analyses of mean, max, and min standardized uptake value (SUV). (B) Cardiac protein expressions of GLUT4 and PKM2 and
densitometric analyses. (C) Immunostaining of GLUT4 in cardiac sections and quantification of GLUT4. Region of interest (ROI) = 12 per rat. #P < 0.05, ###P < 0.001
compared with sham; *P < 0.05, **P < 0.01, ***P < 0.001 compared with model. N = 3 per group for western blotting. N = 6 per group for IHC.
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DQP Activated HIF-1a/PGC-1a Signaling
Pathway in HF Post-AMI Rats
Extensive research indicates that PGC-1a interacts with other
transcription factors, such as RXRa and PPARa to regulate the
mitochondrial biogenesis and oxidative phosphorylation
(Duncan, 2011; Wang et al., 2013). DQP treatment could
increase PPARa, RXRa, and PGC-1a protein levels by 77.02%,
107.64%, and 90.53% compared with model rats, respectively
(P<0.001). TMZ had similar effects as DQP, but the promotion
effects of TMZ were milder than DQP (P<0.05, Figure 4A). HIF-
1a plays a key role in hypoxia adaptation by promoting the
expression of hypoxia inducible genes and participating in the
specific response of tissue cells to hypoxia (Suzuki et al., 2017).
DQP and TMZ treatment dramatically increased HIF-1a protein
level in the heart of HF post-AMI rats, as determined by western
blots. PHD2 acts as the primary rate-limiting HIF prolyl
hydroxlase which affects transcriptional stability of HIF-1a
(Flashman et al., 2010). DQP and TMZ could markedly
Frontiers in Pharmacology | www.frontiersin.org 6
downregulated the expressions of PHD2 respectively
(Figure 4B).

DQP Protected Against OGD/R-Induced
H9C2 Cells Injury via Regulating HIF-1a
To determine the role of HIF-1a on the protection of DQP in
OGD/R-induced H9C2 cells, HIF-1a siRNA was applied.
Immunoblots showed that OGD/R could induce HIF-1a
production, whereas DQP treatment further promoted the
increase of HIF-1a. In our study, siRNA was applied to
interfere in HIF-1a expression, while DQP could increase HIF-
1a level in H9C2 transfected with siRNA (Figure 5A). CCK-8
assay results demonstrated HIF-1a siRNA could suppress the
facilitation of DQP in the proliferation of OGD/R H9C2 cells
(Figure 5B). The assessment of mitochondrial transmembrane
potential was performed by JC-1 probe. The findings showed
that the ratio of aggregates/monomers increased in response to
DQP, suggesting the △Ym returned to normal. However, the
A

B

FIGURE 3 | Danqi Pill (DQP) promoted glucose metabolism by activating myocardial mitochondrial oxidation pathway in heart failure (HF) post-acute myocardial
infarction (AMI) rats. (A) Western blot analysis the expressions of PDK4, PDK1, and UCP2 in all groups. (B) Western blot analysis the expressions of NRF1 and
mitochondrial transcription factor A (TFAM) in all groups. Densitometric analysis was shown in the graph. GADPH was used as internal reference. ##P < 0.01, ###P <
0.001 compared with sham; *P < 0.05, **P < 0.01,***P < 0.001 compared with model. N = 3 per group.
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ratio decreased when using HIF-1a siRNA (Figure 5C).
Intracellular ATP concentration also was examined in OGD/R-
induced H9C2 cells. ATP level was up-regulated in response to
DQP, while it was neutralized by using HIF-1a siRNA (Figure
5D). Overall, the protective mechanism of DQP was related to
HIF-1a pathway.

DISCUSSION

In the current study, we investigated the pharmacological
mechanisms of DQP on glucose metabolism via the HIF-1a/
PGC-1a signaling pathway. The results indicated that: (1) DQP
inhibited cardiac dysfunction and inflammatory infiltration,
increased ATP levels in the HF post-AMI rats. (2) DQP
improved glucose metabolism through myocardial glucose
intake and transportation pathway in HF post-AMI rats. (3)
DQP treatment promoted mitochondria l oxidat ion
phosphorylation and mitochondrial biogenesis. (4) The
protective effects of DQP were associated with HIF-1a/PGC-
1a pathway.
Frontiers in Pharmacology | www.frontiersin.org 7
Heart contractions require a great deal of ATP, which is
mainly from myocardial fatty acid oxidation and glucose
metabolism (Niemann et al., 2018). However, the failing heart
predominantly relies on anaerobic glycolysis to produce ATP
after AMI, and decreases the use of glucose oxidation
metabolism (Karwi et al., 2018). In our previous study, DQP
treatment increased local oxygen supply by inhibiting the
damage of cardiomyocytes and promoting angiogenesis (Jiao
et al., 2018), accompanying with the increasing lipid metabolism
(Zhang et al., 2018). Increased angiogenesis and oxygen supply
also promote glucose oxidation. The essential process of glucose
aerobic oxidation is the glycolytic pathway in which GLUT4 and
PKM2 play essential roles. The expressions of GLUT4 and PKM2
in ischemic myocardial tissue were promoted to ensure the
energy supply after the intervention of DQP.

HIF-1a could increase myocardial glucose intake and
transportation in order to continuously provide the
compensatory energy supply by regulating myocardial GLUT4
and PKM2 genes expressions (Rees et al., 2015). HIF-1a also
facilitates activation of PDK1 and PDK4 as well as UCP2 to
A

B

FIGURE 4 | Danqi Pill (DQP) activated HIF1a/PGC1a signaling pathway in heart failure (HF) post-acute myocardial infarction (AMI) rats. (A) Western blot analysis the
expressions of PPARa, RXRa, and PGC-1a in the four groups. Densitometric analysis was showed. (B) Effects of DQP on expressions of HIF-1a and PHD2 in HF
post-AMI Rats; WB bands and protein quantitative results of HIF-1a and PHD2 in heart tissues of rats. #p < 0.05, ##p < 0.01, ###P < 0.001 compared with sham; *P
< 0.05, **P < 0.01, ***P < 0.001 compared with model. N =3 per group.
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enhance the mitochondrial oxidative phosphorylation (Cunha-
Oliveira et al., 2018). Moreover, NRF1 and TFAM play distinct
roles in mitochondrial biogenesis (Yao et al., 2016) and the
upregulation of NRF1 and TFAM promotes mitochondrial DNA
synthesis in infarcted cardiac muscle (Sheeran and Pepe, 2017).
Therefore, HIF-1a signaling pathway is activated in
cardiomyocytes to produce continuous ATP in adaption to
hypoxia, by shifting myocardial metabolism substrate to
glucose intake and transportation (Karwi et al., 2018). The
levels of PDK1, PDK4, and UCP2 were weakened in the failing
heart with DQP treatment, suggesting that DQP functioned by
promoting glucose intake, transportation and oxidative
phosphorylation to produce more ATP. Moreover, DQP could
upregulate NRF1 and TFAM to promote the mitochondrial
biogenesis. The up-stream pathways involved in regulating
myocardial mitochondrial oxidation, glucose intake and
transportation were further investigated. DQP could promote
the expressions of PPARa, RXRa, PGC-1a, and HIF-1a. To
Frontiers in Pharmacology | www.frontiersin.org 8
further identify the effect of DQP on HIF-1a, the oxygen-
dependent regulatory hydroxylases PHD2, which manifested
affinity and specificity for each HIF-1a forming a feedback
loop suffered ischemia (He et al., 2018), was investigated.
Consistently, DQP promoted HIF-1a expression and weakened
PHD2 expression. Moreover, HIF-1a siRNA abolished the
protective effect of DQP on energy metabolism demonstrating
that DQP could partly activate the HIF-1a and exert myocardial
protection through HIF-1a signaling pathway.

As the limitations of our study, the active components of
DQP participated in regulating HIF-1a/PGC-1a mediated
glucose metabolism pathway are still unknown. We will further
explore the combination of active components and HIF-1 a
targets in DQP, so as to explain the regulatory mechanism of
DQP more systematically and comprehensively. Besides, we
found that different ligation sites might lead to different effects
on the cardiac function and more experiments need to be
conducted to confirm it in the future study.
A B

C D

FIGURE 5 | Danqi Pill (DQP) protected against oxygen-glucose deprivation-reperfusion (OGD/R)-induced H9C2 cells injury via up-regulating HIF-1a. (A) Immunoblot
of HIF-1a in H9C2 Cells. (B) HIF-1a small interfering RNA (siRNA) suppressed the facilitation of DQP in the proliferation of OGD/R H9C2 cells. (C) HIF-1a siRNA
decreased mitochondrial membrane potential (△Ym) with/without DQP treatment in OGD/R-induced H9C2 cells. △Ym was measured by JC-1 probe (400 ×,
Scale bar 100 mm). (D) Intracellular adenosine triphosphate (ATP) levels in H9C2 Cells. *P < 0.05, **P < 0.01, ***P < 0.01 compared with model; ###P < 0.001
compared with DQP. N = 3 per group for WB and N=6 for the other experiments.
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CONCLUSION

DQP has the efficacy to improve myocardial glucose intake,
transportation and mitochondrial biogenesis and oxidative
phosphorylation both in vivo and in vitro. The effects may be
mediated by regulation of HIF-1a/PGC-1a signaling pathway
(Figure 6).
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