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A novel defined pyroptosis-related gene signature
for predicting the prognosis of ovarian cancer
Ying Ye1,2, Qinjin Dai3 and Hongbo Qi 1,2

Abstract
Ovarian cancer (OC) is a highly malignant gynaecological tumour that has a very poor prognosis. Pyroptosis has been
demonstrated in recent years to be an inflammatory form of programmed cell death. However, the expression of
pyroptosis-related genes in OC and their correlations with prognosis remain unclear. In this study, we identified 31
pyroptosis regulators that were differentially expressed between OC and normal ovarian tissues. Based on these
differentially expressed genes (DEGs), all OC cases could be divided into two subtypes. The prognostic value of each
pyroptosis-related gene for survival was evaluated to construct a multigene signature using The Cancer Genome Atlas
(TCGA) cohort. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 7-
gene signature was built and classified all OC patients in the TCGA cohort into a low- or high-risk group. OC patients in
the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P < 0.001).
Utilizing the median risk score from the TCGA cohort, OC patients from a Gene Expression Omnibus (GEO) cohort were
divided into two risk subgroups, and the low-risk group had increased overall survival (OS) time (P= 0.014). Combined
with the clinical characteristics, the risk score was found to be an independent factor for predicting the OS of OC
patients. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses indicated that immune-
related genes were enriched and that the immune status was decreased in the high-risk group. In conclusion,
pyroptosis-related genes play important roles in tumour immunity and can be used to predict the prognosis of OCs.

Introduction
Ovarian cancer (OC) is a common malignancy of the

female reproductive system, second only to cervical cancer
and uterine corpus cancer in terms of incidence. OC has
extremely high recurrence and mortality rates, which ser-
iously threaten women’s health. In the United States,
~22,530 new OC cases were diagnosed, and OC caused
13,980 deaths in 20191. Due to the lack of effective screening
tools and difficulties in early diagnosis, 80% of OC patients
are already at an advanced stage when diagnosed, and
50–70% of patients will experience recurrence within 2 years
after treatment, with a poor 5-year survival rate of 30%2,3.

The current main treatments for OC are surgery and
platinum-based chemotherapies. Despite recent improve-
ments in treatments, the 5-year survival rate has been slow
to improve4. Considering the limitations of OC treatments,
new therapeutic targets are needed to improve the clinical
outcome of OC; thus, reliable novel prognostic models are
urgently required to make targeted therapies more feasible.
Pyroptosis, also known as cellular inflammatory necro-

sis, is a novel form of programmed cell death5. Pyroptotic
cells are characterized by cellular swelling and many
bubble-like protrusions. Under an electron microscope,
pyroptotic cells can be seen to first form a large number of
vesicles. After these vesicles form, pores form on the cell
membrane, which ruptures and the contents flow out6.
The gasdermin family is the main executor of pyroptosis
and includes gasdermin-A to gasdermin-E and pejvakin
(PJVK or DFNB59)7. Gasdermin family proteins can be
sheared and multimerized, which leads to cleavage of the
N-terminal and C-terminal junctional structural domains
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and release of activated N-terminal regions; these regions
bind to membrane lipids, phosphatidylinositol, and car-
diolipin and localize into the pores in the cell mem-
brane8,9. Cellular gasdermin family proteins form 10 to
20 nm pores in the cell membrane, and cell contents are
slowly released through the membrane pores and trigger
amplified inflammatory responses. Cells gradually flatten,
producing 1–5 μm apoptotic vesicle-like protrusions
(scorched vesicles), and cells gradually swell until the
plasma membrane ruptures, with features such as nuclear
condensation and chromatin DNA breakage10,11. Pyr-
optosis was initially found to be a key mechanism for
combating infection, and a growing number of studies
suggest that it also plays an important role in the devel-
opment of tumours. It has been reported that inflamma-
tory vesicles, gasdermin proteins, and proinflammatory
cytokines, which are key components of pyroptosis, are
associated with tumourigenesis, invasion, and metas-
tasis12. Dupaul-Chicoine et al.13 knocked out inflamma-
tory vesicle-related genes (NLRP3 and CASP1) in
transgenic mice and found that they were more likely to
develop colon cancers than mice with wild-type versions
of the genes. In addition, unlike apoptosis, when pyr-
optosis occurs, a variety of danger-associated signalling
molecules and cytokines are activated and released,
accompanied by a strong inflammatory response and
activation of the immune system14. A few studies have
suggested that the potent proinflammatory effect of pyr-
optosis is connected to the regulation of the tumour
immune microenvironment. Defective GSDMD expres-
sion was found to be accompanied by a significant
decrease in the number and activity of CD8+ T lympho-
cytes15. A recent study also confirmed the critical role of
pyroptosis in the antitumour function of NK cells16.
Given the existing findings, we know that pyroptosis

plays an important role in the development of tumours
and antitumour processes; however, its specific functions
in OC have been less studied. Thus, we performed a
systematic study to determine the expression levels of
pyroptosis-related genes between normal ovarian and OC
tissues, explore the prognostic value of these genes, and
study the correlations between pyroptosis and the tumour
immune microenvironment.

Results
Identification of DEGs between normal and tumour tissues
The 33 pyroptosis-related gene expression levels were

compared in the pooled Genotype-Tissue Expression
(GTEx) and The Cancer Genome Atlas (TCGA) data
from 88 normal and 379 tumour tissues, and we identified
31 differentially expressed genes (DEGs) (all P < 0.01).
Among them, 13 genes (PRKACA, GSDMB, SCAF11,
PJVK, CASP9, NOD1, PLCG1, NLRP1, GSDME, ELANE,
TIRAP, CASP4, and GSDMD) were downregulated while

18 other genes (GPX4, NLRP7, NLRP2, CASP3, CASP6,
TNF, IL1B, IL18, CASP8, NLRP6, GSDMA, GSDMC,
PYCARD, CASP5, AIM2, NOD2, NLRC4, and NLRP3)
were enriched in the tumour group. The RNA levels of
these genes are presented as heatmaps in Fig. 1A (green:
low expression level; red: high expression level). To fur-
ther explore the interactions of these pyroptosis-related
genes, we conducted a protein–protein interaction (PPI)
analysis, and the results are shown in Fig. 1B. The mini-
mum required interaction score for the PPI analysis was
set at 0.9 (the highest confidence), and we determined that
CASP1, PYCARD, NLRC4, NLRP1, CASP5, NLRP3,
CASP8, and AIM2 were hub genes. Among them, except
for CASP1, other genes were all the DEGs between nor-
mal and tumour tissues. The correlation network con-
taining all pyroptosis-related genes is presented in Fig. 1C
(red: positive correlations; blue: negative correlations).

Tumour classification based on the DEGs
To explore the connections between the expression of

the 31 pyroptosis-related DEGs and OC subtypes, we
performed a consensus clustering analysis with all 379 OC
patients in the TCGA cohort. By increasing the clustering
variable (k) from 2 to 10, we found that when k= 2, the
intragroup correlations were the highest and the inter-
group correlations were low, indicating that the 379 OC
patients could be well divided into two clusters based on
the 31 DEGs (Fig. 2A). The gene expression profile and
the clinical features including the degree of tumour dif-
ferentiation (G1-G3), age (≤60 or >60 years) and survival
status (alive or dead) are presented in a heatmap, but we
found there’s little differences in clinical features between
the two clusters (Fig. 2B). The overall survival (OS) time
was also compared between the two clusters, but no
obvious differences were found (P= 0.841, Fig. 2C).

Development of a prognostic gene model in the TCGA
cohort
A total of 374 OC samples were matched with the

corresponding patients who had complete survival infor-
mation. Univariate Cox regression analysis was used for
primary screening of the survival-related genes. The 7
genes (AIM2, PLCG1, ELANE, PJVK, CASP3, CASP6, and
GSDMA) that met the criteria of P < 0.2 were retained for
further analysis, and among them, 3 genes (PLCG1,
ELANE, and GSDMA) were associated with increased risk
with HRs >1, while the other 4 genes (AIM2, PJVK,
CASP3, and CASP6) were protective genes with HRs <1
(Fig. 3A). By performing the least absolute shrinkage and
selection operator (LASSO) Cox regression analysis, a 7-
gene signature was constructed according to the optimum
λ value (Fig. 3B, C). The risk score was calculated as
follows: risk score= (−0.187*AIM2 exp.) + (0.068*PLCG1
exp.) + (0.097*ELANE exp.) + (−0.143*PJVK exp.) +
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(−0.086*CASP3 exp.) + (−0.033*CASP6 exp.) +
(0.130*GSDMA exp.). Based on the median score calcu-
lated by the risk score formula, 374 patients were equally
divided into low- and high-risk subgroups (Fig. 3D). The
principal component analysis (PCA) showed that patients
with different risks were well separated into two clusters
(Fig. 3E). Patients in the high-risk group had more deaths
and a shorter survival time than those in the low-risk
group (Fig. 3F, on the right side of the dotted line). A
notable difference in OS time was detected between the
low- and high-risk groups (P < 0.001, Fig. 3G). Time-
dependent receiver operating characteristic (ROC) ana-
lysis was applied to evaluate the sensitivity and specificity
of the prognostic model, and we found that the area under
the ROC curve (AUC) was 0.628 for 1-year, 0.662 for 2-
year, and 0.607 for 3-year survival (Fig. 3H).

External validation of the risk signature
A total of 380 OC patients from a Gene Expression

Omnibus (GEO) cohort (GSE140082) were utilized as the
validation set. Before further analysis, the gene expression
data were normalized by the “Scale” function. Based on
the median risk score in the TCGA cohort, 203 patients in
the GEO cohort were classified into the low-risk group,

while the other 177 patients were classified into the high-
risk group (Fig. 4A). The PCA showed satisfactory
separation between the two subgroups (Fig. 4B). Patients
in the low-risk subgroup (Fig. 4C, on the left side of the
dotted line) were found to have longer survival times and
lower death rates than those in the high-risk subgroup. In
addition, Kaplan–Meier analysis also indicated a sig-
nificant difference in the survival rate between the low-
and high-risk groups (P= 0.014, Fig. 4D). ROC curve
analysis of the GEO cohort showed that our model had
good predictive efficacy (AUC= 0.766 for 1-year, 0.655
for 2-year, and 0.584 for 3-year survival) (Fig. 4E).

Independent prognostic value of the risk model
We used univariate and multivariable Cox regression

analyses to evaluate whether the risk score derived from
the gene signature model could serve as an independent
prognostic factor. The univariate Cox regression analysis
indicated that the risk score was an independent factor
predicting poor survival in both the TCGA and GEO
cohorts (HR= 3.285, 95% CI: 1.973–5.467 and HR: 2.613,
95% CI: 1.319–5.175, Fig. 5A, C). The multivariate analysis
also implied that, after adjusting for other confounding
factors, the risk score was a prognostic factor (HR= 3.059,

Fig. 1 Expressions of the 33 pyroptosis-related genes and the interactions among them. A Heatmap (green: low expression level; red: high
expression level) of the pyroptosis-related genes between the normal (N, brilliant blue) and the tumour tissues (T, red). P values were showed as: **P
< 0.01; ***P < 0.001. B PPI network showing the interactions of the pyroptosis-related genes (interaction score= 0.9). C The correlation network of the
pyroptosis-related genes (red line: positive correlation; blue line: negative correlation. The depth of the colours reflects the strength of the relevance).
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95% CI: 1.836–5.095 and HR: 2.770, 95% CI: 1.374–5.583,
Fig. 5B, D) for patients with OC in both cohorts. In
addition, we generated a heatmap of clinical features for
the TCGA cohort (Fig. 5E) and found that the age of
patients and the survival status were diversely distributed
between the low- and high-risk subgroups (P < 0.05).

Functional analyses based on the risk model
To further explore the differences in the gene functions

and pathways between the subgroups categorized by the
risk model, we utilized the “limma” R package to extract the
DEGs by applying the criteria FDR < 0.05 and |log2FC | ≥ 1.
In total, 115 DEGs between the low- and high-risk groups
in the TCGA cohort were identified. Among them, 66 genes
were upregulated in the high-risk group, while the other 49
genes were downregulated (the data are shown in Table S3).
Gene ontology (GO) enrichment analysis and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathway
analysis were then performed based on these DEGs. The
results indicated that the DEGs were mainly correlated with
the immune response, chemokine-mediated signalling
pathways, and inflammatory cell chemotaxis (Fig. 6A, B).

Comparison of the immune activity between subgroups
Based on the functional analyses, we further compared

the enrichment scores of 16 types of immune cells and the

activity of 13 immune-related pathways between the low-
and high-risk groups in both the TCGA and GEO cohorts
by employing the single-sample gene set enrichment
analysis (ssGSEA). In the TCGA cohort (Fig. 7A), the
high-risk subgroup generally had lower levels of infiltra-
tion of immune cells, especially of CD8+ T cells, neu-
trophils, natural killer (NK) cells, T helper (Th) cells (Tfh,
Th1, and Th2 cells), tumour-infiltrating lymphocytes
(TILs) and regulatory T (Treg) cells, than the low-risk
subgroup. Except for the type-2 IFN response pathway,
the other 12 immune pathways showed lower activity in
the high-risk group than in the low-risk group in the
TCGA cohort (Fig. 7B). When assessing the immune
status in the GEO cohort, similar conclusions were drawn.
In addition, we discovered that dendritic cells (DCs),
induced dendritic cells (iDCs), and macrophages were
enriched while type-2 IFN responses were downregulated
in the low-risk group compared with the high-risk group
(Fig. 7C, D).

Discussion
In this study, we first studied the mRNA levels of 33

currently known pyroptosis-related genes in OC and
normal tissues and found that most of them were differ-
entially expressed. However, the two clusters produced by
the consensus clustering analysis based on the DEGs did

Fig. 2 Tumour classification based on the pyroptosis-related DEGs. A 379 OC patients were grouped into two clusters according to the consensus
clustering matrix (k= 2). B Heatmap and the clinicopathologic characters of the two clusters classified by these DEGs (G1, G2, and G3 are the degree of
tumour differentiation. G1: High differentiated; G2: Moderate differentiated; G3: Poor differentiated). C Kaplan–Meier OS curves for the two clusters.
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not show any significant differences in clinical char-
acteristics. To further assess the prognostic value of these
pyroptosis-related regulators, we constructed a 7-gene
risk signature via Cox univariate analysis and LASSO Cox
regression analysis, which was then validated to perform
well in an external dataset. The functional analyses indi-
cated that the DEGs between the low- and high-risk
groups were related to immune-related pathways. The
immune cell infiltration and activated pathways in the
low- and high-risk groups were compared, and we found
that the high-risk group had universally decreased levels
of infiltrating immune cells and decreased activity of
immune-related pathways compared with the low-
risk group.
Pyroptosis, a novel form of programmed cell death, was

found to play a dual-role in tumour development and
therapeutic mechanisms in recent years. On the one hand,
normal cells are stimulated by a large number of inflam-
matory factors released by pyroptosis, leading to their
transformation into tumour cells17. On the other hand,
the promotion of tumour cell pyroptosis could be a new
therapeutic target18. In OC, how pyroptosis-related genes
interact and whether they are related to the survival time
of patients remain unknown. Our study generated a

signature featuring 7 pyroptosis-related genes (AIM2,
PLCG1, ELANE, PJVK, CASP3, CASP6, and GSDMA) and
found that it could predict OS in OC patients. Absent in
melanoma 2 (AIM2) was initially identified in melanoma,
in which it showed decreased expression19. AIM2 consists
of a HIN structural domain at the C-terminus and a PYD
domain at the N-terminus and can identify double-strand
DNA (dsDNA) of microbes or the host20. AIM2 activates
CASP-1 through ASC-mediated junctional proteins to
promote the maturation and release of IL-1β and IL-18
and to promote pyroptosis21. AIM2 was originally regar-
ded as a tumour suppressor because its inactivation or
mutation was found in a variety of tumours, including
endometrial, gastric, and colon cancers, but it was found
to be overexpressed in oral, nasopharyngeal, and non-
small-cell lung cancer22. Therefore, AIM2 may play a
unique role in different cancer types. Interestingly, in our
study, AIM2 seemed to be a cancer-promoting gene, as it
was upregulated threefold in tumour tissues; however, it
also contributed to prolonged patient survival because it
was enriched in the low-risk group. Given the limited data
from OC and the often conflicting results in different
tumours, our results regarding AIM2 provide some
insights for further studies. Phospholipase C gamma 1

Fig. 3 Construction of risk signature in the TCGA cohort. A Univariate cox regression analysis of OS for each pyroptosis-related gene, and 7 genes
with P < 0.2. B LASSO regression of the 7 OS-related genes. C Cross-validation for tuning the parameter selection in the LASSO regression.
D Distribution of patients based on the risk score. E PCA plot for OCs based on the risk score. F The survival status for each patient (low-risk
population: on the left side of the dotted line; high-risk population: on the right side of the dotted line). G Kaplan–Meier curves for the OS of patients
in the high- and low-risk groups. H ROC curves demonstrated the predictive efficiency of the risk score.
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Fig. 4 Validation of the risk model in the GEO cohort. A Distribution of patients in the GEO cohort based on the median risk score in the TCGA
cohort. B PCA plot for OCs. C The survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on the
right side of the dotted line). D Kaplan–Meier curves for comparison of the OS between low- and high-risk groups. E Time-dependent ROC curves
for OCs.

Fig. 5 Univariate and multivariate Cox regression analyses for the risk score. A Univariate analysis for the TCGA cohort (grade: the degree of
tumour differentiation, G1 to G3). B Multivariate analysis for the TCGA cohort. C Univariate analysis for the GEO cohort (FIGO stage: I to IV). D
Multivariate analysis for the GEO cohort. E Heatmap (green: low expression; red: high expression) for the connections between clinicopathologic
features and the risk groups (*P < 0.05).
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Fig. 6 Functional analysis based on the DEGs between the two-risk groups in the TCGA cohort. A Bubble graph for GO enrichment (the bigger
bubble means the more genes enriched, and the increasing depth of red means the differences were more obvious; q-value: the adjusted p-value).
B Barplot graph for KEGG pathways (the longer bar means the more genes enriched, and the increasing depth of red means the differences were
more obvious).

Fig. 7 Comparison of the ssGSEA scores for immune cells and immune pathways. A, B Comparison of the enrichment scores of 16 types of
immune cells and 13 immune-related pathways between low- (green box) and high-risk (red box) group in the TCGA cohort. C, D Comparison of the
tumour immunity between low- (blue box) and high-risk (red box) group in the GEO cohort. P values were showed as: ns not significant; *P < 0.05;
**P < 0.01; ***P < 0.001.
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(PLCG1) is involved in the receptor tyrosine kinase
(RTK)-mediated signal transduction pathway, thus
affecting cell growth, differentiation, and apoptosis23.
Recently, Kang et al.24 demonstrated that knockdown of
PLCG1 inhibited GSDMD-N-induced cell death and
indicated that PLCG1 could mediate the activity of
GSDMD and pyroptosis. However, the relationships
between PLCG1-mediated pyroptosis and tumour devel-
opment remain largely unknown. We found that high
PLCG1 expression was connected with poor survival
outcomes, which may be a result of its negative regulation
of pyroptosis. ELANE is one of the major serine proteases
secreted by neutrophils, and it activates proinflammatory
cytokines such as TNF-α, IL-1β, and IL-1825,26, which are
known to be pyroptosis promoters. Kambara et al.27

proved that GSDMD could be cleaved and activated by
ELANE and induce neutrophils to undergo pyroptosis.
The expression of ELANE was significantly higher while
the neutrophil infiltration score was much lower in the
high-risk group than in the low-risk group (in both the
TCGA and GEO cohorts); these results may be because
ELANE activates pyroptosis in neutrophils. PJVK, also
known as DFNB59, is the only member of the gasdermin
family that lacks the C-terminal domain, and it is not clear
whether this protein can induce membrane perforation
and execute pyroptosis28. As it is a member of the gas-
dermin family and has a complete N-terminal domain, we
treated it as a “potential” pyroptosis-related gene. PJVK
has been demonstrated to be associated with deafness,
while its role in tumours has been little explored29. We
found that PJVK was downregulated in tumour tissues,
and its low expression predicted poor survival rates,
indicating that it functioned as a tumour suppressor gene
in this study. Further studies may focus on whether/how
PJVK participates in pyroptosis and tumour suppression.
CASP3 exists as a non-activated zymogen in its normal
state, but upon activation, it produces active executors
that cleave structural and regulatory proteins in the
nucleus and cytoplasm of cells, thereby regulating cell
death, and it is recognized as a marker of apoptosis30. In
2017, Wang et al.31 discovered that GSDME was specifi-
cally cleaved by chemotherapeutic drug-activated CASP3
to produce a membrane-penetrating GSDME-N fragment,
which induced pyroptosis. CASP3 was upregulated in
patients with increased survival times in our analysis, and
CASP3 may be related to increased sensitivity to
chemotherapeutic-drug induced pyroptosis. CASP6 has
been proven to modulate inflammasome activation
(including activation of NLRP3, ASC, and CASP1) to
promote GSDMD-induced pyroptosis32. In addition,
CASP6 also plays an important role in promoting apop-
tosis and necroptosis33, but the specific mechanisms by
which it improves the survival rate of OC patients still
need further exploration. GSDMA has a two-domain

structure that can be self-inhibited, namely, the N-
terminal structural domain can be inhibited by the C-
terminal structural domain. The N-terminal domain can
bind membrane lipids, phosphatidylinositol, and cardio-
lipin, forming pores in the cell membrane to trigger
pyroptosis8. GSDMA acted as a cancer-promoting gene in
our study due to its overexpression in OC tissues and its
negative correlation with survival time. In summary, 5
genes (CASP3, CASP6, AIM2, PLCG1, and ELANE) in the
prognostic model were proven to be pyroptosis pro-
moters, and 2 genes (PJVK and GSDMA) were identified
as possible pyroptosis executors. However, these pro-
moters and executors were not all associated with better
OC prognosis in our study. How these genes interact with
each other during pyroptosis remains to be further
investigated.
Until now, pyroptosis has not been fully studied, although

certain similarities to apoptosis, as well as some crossovers
in mechanisms, have been found. As tumours develop,
multiple modes of cell death may coexist and interact with
each other34. For example, 3 genes (CASP3, CASP6, and
PLCG1) in our model are also known as key regulators in
apoptotic pathways. Generally, apoptosis features an intact
cell plasma membrane and no release of contents and does
not directly cause inflammatory responses, while pyroptosis
shows the opposite characteristics35. We analysed the DEGs
between different risk groups and found that the DEGs
were mainly involved in immune responses and inflam-
matory cell chemotaxis, indicating that dying cells induce
intense inflammatory responses. Based on the results of our
GO and KEGG analyses, it is reasonable to speculate that
pyroptosis can regulate the composition of the tumour
immune microenvironment.
The levels of key antitumour infiltrating immune cells

were low, indicating an overall impairment of immune
functions in the high-risk group in the TCGA cohort, and
this conclusion was verified in the GEO cohort. Surpris-
ingly, Treg cells were found in higher proportions in a
low-risk group than in the high-risk group in our study,
while they have been reported to suppress antitumour
immunity and to be correlated with poor clinical out-
comes in previous studies36,37. A possible reason for this
discrepancy may be that Treg cells are essential in the
tumour microenvironment to regulate the overactive
inflammatory reactions caused by pyroptosis. In addition,
in colon cancers, two main subtypes of Treg cells that
have opposite roles in the regulation of the tumour
microenvironment have been reported38; therefore, it is
worth identifying the subtypes of Treg cells in OC. Except
for the type II IFN response pathway, other immune
pathways were poorly activated in the high-risk group in
the two cohorts. Based on these findings, the poor survival
outcome of high-risk OCs may be caused by decreased
levels of antitumour immunity.
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There is little current research on pyroptosis, especially
on its mechanism in OC. Our study identified 2 genes in
the gasdermin family that may be the executors of pyr-
optosis in OC and 5 genes that have the ability to regulate
pyroptosis. We preliminarily studied the prognostic value
of these pyroptosis-related genes and provided theoretical
support for future research. However, due to a lack of
data, we could not confirm whether these regulators
(which have been reported in prior studies) also play
corresponding roles in pyroptosis pathways in OC, and
this question deserves further in-depth studies.
In summary, our study demonstrated that pyroptosis is

closely connected to OC because most of the pyroptosis-
related genes between normal and OC tissues were dif-
ferently expressed. Moreover, the score generated from
our risk signature based on 7 pyroptosis-related genes was
an independent risk factor for predicting OS in both the
TCGA and GEO cohorts. The DEGs between the low-
and high-risk groups were associated with tumour
immunity. Our study provides a novel gene signature for
predicting the prognosis of OC patients and offers a sig-
nificant basis for future studies of the relationships
between pyroptosis-related genes and immunity in OC.

Materials and methods
Datasets
We obtained the RNA sequencing (RNA-seq) data of

379 OC patients and the corresponding clinical features
from TCGA database on 30 November 2020 (https://
portal.gdc.cancer.gov/repository). The RNA-seq data of
88 normal human ovarian samples were downloaded
from the GTEx database (https://xenabrowser.net/
datapages/). The RNA-seq data and clinical informa-
tion of the external validation cohort were downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/, ID: GSE140082). The follow-up time of each
participant in the GSE140082 cohort was up to 4 years,
which was shorter than that in the TCGA cohort.

Identification of differentially expressed pyroptosis-related
genes
We extracted 33 pyroptosis-related genes from prior

reviews17–20, and they are presented in Table S1. Due to
the lack of normal ovarian tissue data in the TCGA
cohort, we also considered GTEx data from 88 normal
ovarian samples to identify the DEGs between normal and
tumour tissues. The expression data in both datasets were
normalized to fragment per kilobase million (FPKM)
values before comparison. The “limma” package was used
to identify DEGs with a P value <0.05. The DEGs are
notated as follows: * if P < 0.05, ** if P < 0.01, and *** if P <
0.001. A PPI network for the DEGs was constructed with
Search Tool for the Retrieval of Interacting Genes
(STRING), version 11.0 (https://string-db.org/).

Development and validation of the pyroptosis-related
gene prognostic model
To assess the prognostic value of the pyroptosis-related

genes, we further employed Cox regression analysis to
evaluate the correlations between each gene and survival
status in the TCGA cohort. To prevent omissions, we set
0.2 as the cut-off P-value, and 7 survival-related genes
were identified for further analysis. The LASSO Cox
regression model (R package “glmnet”) was then utilized to
narrow down the candidate genes and to develop the
prognostic model. Ultimately, the seven genes and their
coefficients were retained, and the penalty parameter (λ)
was decided by the minimum criteria. The risk score was
calculated after centralization and standardization (apply-
ing the “scale” function in R) of the TCGA expression data,
and the risk score formula was as follows: Risk Score=P7

i Xi´Yi (X: coefficients, Y: gene expression level). The
TCGA OC patients were divided into low- and high-risk
subgroups according to the median risk score, and the OS
time was compared between the two subgroups via
Kaplan–Meier analysis. PCA based on the 7-gene sig-
nature was performed by the “prcomp” function in the
“stats” R package. The “survival”, “survminer” and “time-
ROC” R packages were employed to perform a 3-year ROC
curve analysis. For the validation studies, an OC cohort
from the GEO database (GSE140082) was employed. The
expression of each pyroptosis-related gene was also nor-
malized by the “scale” function, and the risk score was then
calculated by the same formula used for the TCGA cohort.
By applying the median risk score from the TCGA cohort,
the patients in the GSE140082 cohort were also divided
into low- or high-risk subgroups, and these groups were
then compared to validate the gene model.

Independent prognostic analysis of the risk score
We extracted the clinical information (age and grade) of

patients in the TCGA cohort and the age and Interna-
tional Federation of Gynaecology and Obstetrics (FIGO)
stage data of patients in the GEO cohort. These variables
were analysed in combination with the risk score in our
regression model. Univariate and multivariable Cox
regression models were employed for the analysis.

Functional enrichment analysis of the DEGs between the
low- and high-risk groups
OC patients in the TCGA cohort were stratified into

two subgroups according to the median risk score. The
DEGs between the low- and high-risk groups were filtered
according to specific criteria (|log2FC| ≥ 1 and FDR
< 0.05). Based on these DEGs, GO and KEGG analyses
were performed by applying the “clusterProfiler” package.
The “gsva” package was utilized to conduct the ssGSEA to
calculate the scores of infiltrating immune cells and to
evaluate the activity of immune-related pathways.
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Statistical analysis
Single-factor analysis of variance was applied to com-

pare the gene expression levels between the normal
ovarian and OC tissues, while the Pearson chi‐square test
was used to compare the categorical variables. To com-
pare the OS of patients between subgroups, we employed
the Kaplan–Meier method with a two-sided log-rank test.
To assess the independent prognostic value of the risk
model, we used univariate and multivariate Cox regres-
sion models. When comparing the immune cell infiltra-
tion and immune pathway activation between the two
groups, the Mann–Whitney test was used. All statistical
analyses were accomplished with R software (v4.0.2). The
overall flow diagram is shown in Fig. 8.
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