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Introduction: Podocyte depletion is a histomorphologic indicator of glomerular injury and predicts clinical

outcomes. Podocyte estimation methods or podometrics are semiquantitative, technically involved, and

laborious. Implementation of high-throughput podometrics in experimental and clinical workflows necessi-

tates an automated podometrics pipeline. Recognizing that computational image analysis offers a robust

approach to study cell and tissue structure, we developed and validated PodoCount (a computational tool for

automated podocyte quantification in immunohistochemically labeled tissues) using a diverse data set.

Methods: Whole-slide images (WSIs) of tissues immunostained with a podocyte nuclear marker and pe-

riodic acid–Schiff counterstain were acquired. The data set consisted of murine whole kidney sections (n ¼
135) from 6 disease models and human kidney biopsy specimens from patients with diabetic nephropathy

(DN) (n ¼ 45). Within segmented glomeruli, podocytes were extracted and image analysis was applied to

compute measures of podocyte depletion and nuclear morphometry. Computational performance eval-

uation and statistical testing were performed to validate podometric and associated image features.

PodoCount was disbursed as an open-source, cloud-based computational tool.

Results: PodoCount produced highly accurate podocyte quantification when benchmarked against existing

methods. Podocyte nuclear profiles were identified with 0.98 accuracy and segmented with 0.85 sensitivity

and 0.99 specificity. Errors in podocyte count were bounded by 1 podocyte per glomerulus. Podocyte-specific

image features were found to be significant predictors of disease state, proteinuria, and clinical outcome.

Conclusion: PodoCount offers high-performance podocyte quantitation in diverse murine disease models

and in human kidney biopsy specimens. Resultant features offer significant correlation with associated

metadata and outcome. Our cloud-based tool will provide end users with a standardized approach for

automated podometrics from gigapixel-sized WSIs.
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C
hronic kidney disease is a state of prolonged and
progressive reduction in kidney function that may

evolve to end-stage kidney disease (ESKD). Driven by
increasingly prevalent conditions with high incidence
(e.g., diabetes, hypertension), chronic kidney disease
accounts for unprecedented mortality and socioeco-
nomic burden.1,2 To mitigate this, biomedical initia-
tives aim to identify disease-related biomarkers with
1377
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improved precision for early detection and interven-
tion. For glomerular diseases, some biomarker studies
have focused on podocytes, highly specialized epithe-
lial cells that maintain the kidney filtration barrier.
The podocyte depletion hypothesis proposes3–8 that
podocyte loss in the setting of podocytopathic injury
from hyperfiltration, hyperglycemia, or hypertension
is an early determinant of proteinuria and glomerulo-
sclerosis.9–11 Thus, podocyte enumeration offers a
measurable indicator of irreversible glomerular injury
and therapeutic success in these states.

Unfortunately, existing podocyte estimation
methods or podometrics are semiquantitative and not
scalable or offer morphologic assessment.3,4,12–16

Furthermore, podocyte identification on routine and
special stains viewed under brightfield microscopy
remains difficult.12 In a recent study, Venkatareddy
et al.16 present a novel methodology for podometric
estimation, including podocyte count and density from
a single histologic section. Recognizing that the num-
ber of nuclear profiles per glomerulus cross-section is
not a true estimate of podocyte count, this single-
section method applied podocyte nuclear labeling,
manual annotation, image analysis software, and ste-
reological equations to arrive at a correction factor (CF)
which modulates podocyte count and volume density
estimates based on section thickness. Designed for
single glomerulus quantitation from image patches, this
estimation method lacks scalability to the WSI context.
To achieve big-data podocyte studies that facilitate
early detection and intervention, accurate and auto-
mated methods for brightfield whole-slide podocyte
quantification must be established. Therefore, we
developed PodoCount (an automated podometric tool
for single-section estimation from WSIs) and used it to
evaluate WSIs of kidney sections immunostained with
a podocyte marker (see the workflow in Supplementary
Figure S1).
METHODS

Data Sources

Human data collection followed protocols approved by
the Institutional Review Board at the Seoul National
University College of Medicine (H-1812-159-998),
Seoul, Republic of Korea. All experiments were per-
formed according to federal guidelines and regulations.
Animal studies were performed in accordance with
protocols approved by the Institutional Animal Care
and Use Committee at the Georgetown University,
National Institutes of Health, University of Minnesota,
and Johns Hopkins University, are consistent with fed-
eral guidelines and regulations, and are in accordance
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with recommendations of the American Veterinary
Medical Association guidelines on euthanasia.

Description of Murine and Human Data

We analyzed 135 whole kidney sections from 135 mice
across 6 kidney disease models (Figure 1a,c) and 45
kidney biopsy specimens from patients with DN
(Figure 1b,d), as detailed in the subsequent sections.
These multi-institutional, murine and human, male and
female data feature highly variable sample preparation,
staining, imaging, and pathology, comprising a diverse
data set to assess robustness and reproducibility
(Supplementary Figure S2).

Models 1 and 2 (Diabetes)

There were 2 models of type 2 diabetes mellitus used
(db/db and KKAy). Model 1 consisted of db/db (leptin
receptor mutation) mice on BKS background (n ¼ 4)
that developed spontaneous/congenital disease and
were compared with wild type (WT) BKS mice (n ¼
6).17 Model 2 consisted of the KKAy mice (n ¼ 10)
(described previously18) that developed spontaneous
diabetes of polygenic origin and were compared with
WT mice (n ¼ 8).

Model 3 (Focal Segmental Glomerular Sclerosis)

A postadaptive form of focal segmental glomerular
sclerosis (FSGS) was induced in WT FVB/N mice (n ¼ 8)
by a combination of 4 interventions (SAND) (0.9%
saline drinking water, angiotensin II infusion [osmotic
pump], unilateral nephrectomy, and deoxycorticoster-
one [subcutaneous pellet]19,20) and were compared with
untreated mice (n ¼ 11).

Model 4 (HIV-Associated Nephropathy)

Tg26 mice (gag-pol-deleted HIV-1 genome25) (n ¼ 13)
on an FVB/N � 129S F1 background with a collapsing
glomerulopathy were compared with littermate con-
trols (n ¼ 11).

Model 5 (Aging)

In this aging model, 21-month-old C57BL/6 male mice
(n ¼ 5) were compared with 4-month-old controls (n ¼
6), both obtained from the National Institute on Aging
rodent colony.21

Model 6 (Progeria)

An Ercc1�/D progeroid mouse model (n ¼ 30) and WT
littermate controls (n ¼ 20) (15–18 weeks old) on a
C57BL/6J:FVB/N f1 background were used for this
study.22,23 Mice were bred and genotyped as previ-
ously described.24

Human Cohort

Human tissues consisted of needle biopsy samples
from human patients with type 2 diabetes mellitus
(n ¼ 45) (biopsied 2011–2017 at the Seoul National
University Hospital, which were collected from the
Kidney International Reports (2022) 7, 1377–1392



Figure 1. Summary of data sets. The image data set contains light microscopic images of kidney tissues from 6 mouse models of glomerular
disease and 5 stages of human DN. (a) The murine cohort was composed of tissues from 135 mice with control and diseased specimens for
each model. Two distinct models of type II diabetes mellitus were studied (db/db and KKAy). The SAND intervention (saline, angiotensin II,
uninephrectomy, and deoxycortisone) models postadaptive FSGS (FSGS [SAND]). Samples from SAND, HIVAN, and Progeroid syndrome models
included male and female mice; those from the db/db, KKAy, and Aging mouse models consisted only of males. (b) The human DN study
consisted of 45 patients (n ¼ 35 male and n ¼ 10 female subjects). Representative glomerular p57-PAS image from (c) each mouse model and
(d) each Tervaert stage of the human DN cohort. DN, diabetic nephropathy; FSGS (SAND), a postadaptive model of FSGS, focal segmental
glomerular sclerosis; HIVAN, HIV-associated nephropathy.

BA Santo et al.: PodoCount TRANSLATIONAL RESEARCH
Seoul National University Human Biobank). Biopsies
were graded by a renal pathologist based on the
Tervaert classification scheme.25 Clinical metadata
including serum creatinine and estimated glomer-
ular filtration rate (eGFR)26 were measured at the
time of biopsy and at 1 year and 2 years
Kidney International Reports (2022) 7, 1377–1392
postbiopsy. For the purposes of our study, pro-
gression to ESKD within 2 years after biopsy was
the primary end point. Patients with type 1 dia-
betes mellitus and additional glomerulonephritis
and patients without need for antidiabetic agents
were excluded from the cohort.
1379
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Sample Preparation and Imaging

All samples were formalin-fixed, paraffin-embedded
tissues cut at 2 mm in thickness. Podocyte nuclei were
immunohistochemically labeled for p57kip2, a marker of
podocyte terminal differentiation27 (catalog number
ab75974, Abcam, Cambridge, United Kingdom), and
detected with horseradish peroxidase and dia-
minobenzidine chromogen substrate (catalog number
RU-HRP1000, Diagnostic BioSystems, Pleasanton, CA,
and catalog number BSB0018A, Bio SB, Santa Barbara,
CA, respectively). A periodic acid–Schiff poststain was
applied without hematoxylin counterstain.

Brightfield WSIs were captured using an Aperio
AT2 microscope (Leica Microsystems, Buffalo Grove,
IL) or a NanoZoomer S360 slide scanner equipped with
a 40� objective (Hamamatsu Photonics, Bridgewater,
NJ). The full image data set consisted of WSIs of 135
whole murine kidney sections and 45 DN biopsy
specimens, all from discrete mice and human partici-
pants (Figure 1).

Whole-Slide Segmentation of Renal

Parenchyma

Images of podocytes and renal tissue compartments
were extracted from WSIs through image segmentation
by selecting image regions of interest based on differ-
ences in color, texture, and shape.28 Segmented struc-
tures included whole tissue sections, glomerular
boundaries (glomerular capillaries, Bowman’s space,
and Bowman’s capsule), and podocyte nuclei. Select
image processing techniques that require a more
extensive explanation are italicized and defined in the
glossary of terms in Supplementary Table S1. Struc-
tural segmentation involved several sequential steps.
First, a global mean-based threshold was applied to
segment the tissue section from the WSI background.
Glomerular boundaries were then detected using our
published Human-AI-Loop tool,29 a convolutional
neural network developed for WSI segmentation. For
WSIs with >1 tissue section, tissue boundary seg-
mentations were used to partition the whole-slide
glomerular population into groups linked to their
respective tissue section. Immunohistochemically pos-
itive podocyte nuclei were then segmented from
detected glomerular units using stain deconvolution30

and local mean-based thresholding. Morphologic im-
age processing techniques,28 including hole filling, size
exclusion, and marker-controlled watershed,31–33 were
applied to refine segmentations and separate over-
lapping nuclei.

Computational performance of WSI segmentation
was evaluated. Tissue section and glomerulus bound-
aries were manually annotated in 12 randomly selected
WSIs, equally sampled from each murine data set. A
1380
stratified randomized sampling was performed,
wherein for each cohort and disease state, samples (or
images) were given a number and then selected via the
random number generator in MATLAB (“rand” com-
mand). Per WSI, automated segmentations were
compared pixel wise against manual ground truth. To
quantify tissue and glomerulus boundary segmentation
performance, the pixel-wise sensitivity, specificity,
precision, and accuracy were calculated across WSIs,
defined as,

Sensitivity ¼ TP

TP þ FN

Specificity ¼ TN

TN þ FP

Precision ¼ TP

TP þ FP

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN

where TP, true positive; TN, true negative; FP, false posi-
tive; and FN, false negative.

Glomerulus images were randomly and equally
sampled from murine (n ¼ 40 per cohort, 20 each from
control and disease) and human (n ¼ 40 per DN stage)
data, and podocyte nuclei were manually annotated in
each image. Pipeline segmentations were compared
pixel wise against manual ground truth. To quantify
podocyte nuclear segmentation performance, sensi-
tivity, specificity, precision, and accuracy were
computed per glomerulus image (as defined
previously).

Performance of podocyte detection was assessed
with Hit-Miss analysis to determine the frequency at
which podocyte nuclei were positively identified.
Median performance was computed per cohort (median
of n ¼ 40 murine glomerulus images or n ¼ 200 human
glomerulus images) and then across all data sets.
Computational Podocyte Count and Density

Estimation From WSIs

Segmented podocyte nuclei were automatically
enumerated in each glomerulus image as a raw count.
Image analysis techniques were then applied in
sequence to emulate the single-section method16

(Supplementary Figure S3). First, the bounding box
of each nuclear profile was derived, and the box length
and width were averaged to find the apparent caliper
diameter per profile (dbounding box). Then, dbounding box

values were averaged to d, and established equations16

were used to estimate D, CF, the corrected podocyte
count, and podocyte density (number per 106 mm3).
Kidney International Reports (2022) 7, 1377–1392



Table 1. Histologic image feature definitions for podometrics
Features Definition

PC Corrected podocyte count after application of the single-section method’s CF.
Computed as number of podocyte nuclear profiles times the CF.

GA Cross-sectional area of the glomerulus unit (mm2).

GPD Podocyte volume density is computed as the ratio of the corrected podocyte
count to the glomerulus volume and approximates the spatial density of

podocytes (number per 106 mm3).

TPA Total podocyte nuclear area is computed as the cumulative area of podocyte
nuclear profiles for a given glomerular unit (mm2).

GPC Glomerular podocyte nuclear coverage is computed as the ratio of total
podocyte nuclear area to glomerulus unit cross-sectional area.

2D, two-dimensional; CF, correction factor; GA, glomerulus area; GPC, glomerular
podocyte nuclear coverage; GPD, glomerular podocyte density; PC, corrected podocyte
count; TPA, total podocyte nuclear area.
Podocyte morphometrics are invaluable tools for prognostication. Podometric meth-
odologies compute podocyte nuclear count, size, and spatial density, relative to
glomerulus area, to provide quantitative modeling of progressive glomerular disease.
These features are incorporated into PodoCount as PC, GA, GPD, TPA, and GPC to
quantify podocyte depletion through image features engineered from digitized renal
histopathology. All reported podometric feature values are based on 2D quantification
from glomerulus profiles in whole kidney sections.

BA Santo et al.: PodoCount TRANSLATIONAL RESEARCH
The performance of podocyte count and density
estimates, which were output as continuous values,
was assessed by calculation of error. To do this,
computational estimates of podocyte count and density
were compared against manual ground truth generated
using MATLAB as described in Venkatareddy et al.16

(Estimation of D Using Image-Pro Software and the
Quadratic Equation). For a detailed explanation of
ground truth generation, see the Supplementary
Methods.

Whole-Slide Podocyte and Glomerulus Feature

Extraction

Built-in morphologic operations were applied to derive
whole-slide coordinate locations and geometric features
from podocyte nuclei and glomerulus profiles.34 Geo-
metric features included image object area (mm2),
bounding box area (mm2), convex area (mm2), eccen-
tricity, equivalent diameter, extent, major and minor
axis lengths (mm), orientations, perimeters (mm), and
solidities. A brief description of each feature is pro-
vided in Supplementary Table S1. Feature statistics
were computed per podocyte, per glomerulus podocyte
population, and per WSI glomerulus population.

Biologically Inspired Podocyte Feature

Engineering

Additional morphologic and spatial features were
engineered from podocyte nuclear profiles and
glomerulus units. Features validated in this work
included total podocyte nuclear area (mm2) and podo-
cyte nuclear coverage (Table 1). Validation of hand-
crafted features (e.g., podocyte nuclear distance to the
glomerulus unit edge, Supplementary Table S2) was the
scope of future work, and thus further discussion was
omitted.
Kidney International Reports (2022) 7, 1377–1392
Determination of the Number of Glomerulus

Profiles Required to Reliably Estimate Podocyte

Density

The number of glomerular profiles required to arrive at
an estimate of podocyte density within 10% of the
whole-slide mean value with 90% and 95% confidence
was assessed per mouse model (Supplementary
Figure S4). For each mouse (WSI), the true whole-
slide podocyte density was calculated. Podocyte den-
sity estimates for n ¼ 2 to 50 randomly sampled
glomeruli were then computed, for 1000 trials apiece,
and compared against the true value. The probability
of arriving at an estimate within 10% of the true value
(n successes of 1000 trials) was recorded per sampling,
and the minimum n glomeruli required to achieve 90%
and 95% confidence was determined. The study was
repeated for estimates within 20% of the true value.

Statistical Analysis

Data were analyzed with Minitab Statistical Software
version 19 (Minitab 17 Statistical Software 2010, Min-
itab, State College, PA) and MATLAB’s Statistics and
Machine Learning Toolbox. Feature means and SDs
were reported to allow for interpretation of biological
and/or clinical significance. The normality of each
feature distribution was assessed with the Anderson-
Darling test statistic.35 Nonparametric tests were used
for non-normal feature distributions. Differences be-
tween groups (e.g., WT vs. transgenic mice) were
assessed with unpaired, 2-sample t tests. Nonpara-
metric tests and Welch’s correction for unequal vari-
ances were performed when appropriate.

Correlation analyses between murine histologic im-
age features and terminal urinary albumin-to-creatinine
ratio (UACR) were completed using the Spearman rank-
order correlation measure (Spearman’s r).36 Spearman
correlation was selected over Pearson correlation
because of the non-normality of image feature data.

Using the Statistics and Machine Learning Toolbox
in MATLAB, linear mixed-effects models were imple-
mented to assess whether image features differed be-
tween disease statuses while accounting for multiple
glomeruli from the same mouse kidney section.37 In
this study, WT and transgenic disease statuses con-
sisted of the pooled glomerulus populations across WT
and transgenic mice, respectively. In each linear
mixed-effects model, the image feature was used as the
outcome and the model included a fixed effect for bi-
nary disease status and a random intercept term for
each mouse. Parameter estimation was conducted by
maximizing the restricted log-likelihood of the model.
Linear mixed-effects models were selected over un-
paired, 2-sample t tests (i) to account for potential
clustering of glomerulus subpopulations derived from
1381
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the same mouse and (ii) because linear mixed-effects
models can handle missingness at random and there-
fore different numbers of glomeruli per mouse.

For analysis of human data, differences among 3 or
more groups (e.g., DN stages) were assessed with
Kruskal–Wallis nonparametric tests followed by post
hoc Dunn’s tests, as the data were not normally
distributed and violated analysis of variance
criteria.38,39 Logistic regression was used to study
ESKD outcome. First, a model was fit using only eGFR
because eGFR is a benchmark outcome indicator.40 To
assess whether image features improved the prediction
of ESKD beyond eGFR alone, subsequent models were
fit using a single-image feature and adjusted for eGFR.

To correct for multiple hypothesis testing, we
implemented the Benjamini-Hochberg procedure, with
a false discovery rate of 0.0541 for all analyses. A cor-
rected P value (q) <0.05 was considered statistically
significant. The Benjamini-Hochberg procedure was
selected over the Bonferroni correction because of its
robustness to high volume and nonindependence of
tests.

Residual and absolute error were used to compare
computational podocyte count and density estimates,
respectively, against manual ground truth. Departures
in computational estimates compared with ground
truths were visualized with Bland-Altman plots. Re-
sidual error was calculated as the difference between
ground truth and computational estimates (y� by), and
absolute error was calculated as the absolute value of
the difference between ground truth and computa-

tional estimates (|y� byj). Correlation between compu-
tational and ground truth estimates was assessed using
Pearson’s correlation analysis (Pearson’s R).36

Deployment of Whole-Slide Podocyte Analysis

With Cloud Computation

HistomicsUI,42 a distributed system with RESTful
application programming interface, was developed by
Kitware (Clifton Park, NY) and was used to deploy our
algorithm as a plugin, thereby creating an online
platform that would enable multiple users to detect and
quantify podocytes via a web interface. The algorithm
was packaged in the form of a Docker image using
Docker software (Palo Alto, CA),43–45 a framework that
enables users to build and run applications in con-
tainers. The generated container conforms to the Slicer
CLI workflow interface, which allows HistomicsUI to
display a user interface to adjust algorithm parameters.

Hardware

Computational processing was performed on a Linux
distribution operating system (Ubuntu 16.04) with 2
Intel Xeon Silver 4114 processors, each with 10 cores,
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running at 2.20 GHz and equipped with 64 GB of
random-access memory. Neural network training and
predictions for glomerulus boundary detection were
performed using a NVIDIA Quadro RTX 5000 GPU (16
GB of memory). HistomicsUI plugin is made available
for end users in a research computer with Intel i5 6-
core processor, running at 3.1 to 4.5 GHz and equip-
ped with 16 GB of random-access memory.

Data Availability

To support reproducibility, we released fully annotated
pipeline codes along with sample image data, glomer-
ulus annotation files, and all pipeline output (i.e.,
podocyte nuclear annotations files, feature files). We
also launched our cloud-based PodoCount plugin for
the end user community and created an instructional
video for first-time users (Supplementary Movie S1)
accessible via http://hermes.med.buffalo.edu:8080. All
codes and documentation, Docker image of the web
cloud interface, and data are available via http://bit.
ly/3rdGPEd and our Github repository,46 https://
github.com/SarderLab/PodoCount.

RESULTS

Qualitative and Quantitative Performance

Analysis

Visual inspection of pipeline-derived podocyte nuclear,
glomerular, and tissue boundaries confirmed successful
region detection and segmentation (Supplementary
Figure S5). Computational performance evaluation was
first completed to assess the quality of image segmen-
tation. Segmented image regions included tissue sec-
tions, boundaries of glomerular units, and podocyte
nuclei. Across all randomly sampled images/ROIs, we
observed high performance for all segmentation tasks
(Table 2 and Supplementary Figure S6). The median
sensitivity, specificity, precision, and accuracy in tis-
sue boundary, glomerulus boundary, and podocyte
nuclear segmentation tasks were 0.99/0.99/0.99/0.99
(tissue boundary), 0.97/0.99/0.92/0.99 (glomerulus
boundary), and 0.85/0.99/0.93/0.99 (podocyte nuclear
segmentation), respectively (see Table 2 for additional
results, including averages and ranges of each perfor-
mance metric). Furthermore, the Hit-Miss analysis
determined that the frequency at which podocyte
nuclei were positively identified was 0.98.

The accuracy of podocyte count and density in
PodoCount was then assessed. For each cohort, auto-
mated, continuous counts and density estimates were
compared against manual ground truth. Podocyte
count error was bounded by 1 podocyte per glomer-
ulus (Table 3 and Figure 2a). Automated and manual
counts were strongly and significantly correlated
across all cohorts. Departure of automated counts from
Kidney International Reports (2022) 7, 1377–1392
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Table 2. Computational performance of podocyte detection and image segmentation

Segmented region(s)

Assessment of image segmentation and podocyte detection

Sensitivity med. (avg./[range]) Specificity med. (avg./[range]) Precision med. (avg./[range]) Accuracy med. (avg./[range]) Hit-miss percent

Tissue boundary 0.996 (0.994/0.985–0.997) 0.998 (0.998/0.996–1.000) 0.990 (0.990/0.977–0.998) 0.997 (0.998/0.996–0.999) —

Glom boundary 0.966 (0.965/0.954–0.977) 0.999 (0.999/0.999–1.000) 0.916 (0.917/0.875–0.943) 0.999 (0.999/0.999–1.000) —

Podocyte nuclei 0.846 (0.834/0.425–0.993) 0.997 (0.994/0.980–1.000) 0.931 (0.933/0.763–1.000) 0.997 (0.992/0.943–1.000) 0.980

Avg., average; DN, diabetic nephropathy; Glom, glomerulus; Med., median.
Sensitivity, specificity, precision, and accuracy were computed for image segmentation tasks, and percentage accuracy in podocyte nuclear detection was assessed by Hit-Miss (i.e.,
frequency at which podocyte nuclei were positively identified). Performance analysis for segmentation of tissues and glomerulus unit boundaries was completed for n ¼ 12 randomly
selected whole-slide images, equally distributed across data sets and disease states. Assessment of podocyte detection and image segmentation tasks was completed using n ¼ 240
glomerulus images randomly and equally sampled from murine (n ¼ 40 per cohort, 20 each from control and disease) and human (n ¼ 40 per DN stage) data. High performance was
observed for segmentation of tissue and glomerulus unit boundaries. Although podocyte nuclear segmentation was less sensitive and precise, podocytes were positively detected 98%
of the time. Lesser performance in podocyte nuclear segmentation was attributed to the challenge of manually delineating a consistent boundary about immunohistochemistry-labeled
nuclei in brightfield images.
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ground truth was greatest for the DN cohort, where
histologic manifestation of disease was most pro-
nounced (Figure 1d). Absolute errors in PodoCount
density estimates were near zero (Figure 2b), and across
all cohorts, automated and ground truthdensity estimates
were strongly and significantly correlated (Table 4).
Podocyte and Glomerulus Feature Significance

Across Murine Models

Quantified image features were compared based on
their ability to differentiate diseased tissue from normal
tissue. Statistical analysis focused on the following
image features: glomerulus area, podocyte density, to-
tal podocyte nuclear area, and podocyte nuclear
coverage. For each model, statistical tests compared the
image features of (i) diseased mice against WT mice and
(ii) the glomerulus populations of diseased mice against
those of WT mice. For glomerulus-level comparisons,
see Supplementary Figure S7 and Supplementary
Tables S3 to S8, part B. Strength and association of
image features and UACR were assessed for those
models where complete UACR data were available.

1. db/db model. Although no podocyte feature
proved significant when comparing db/db and WT
mice (Supplementary Table S3), the distributions
Table 3. Comparison of podocyte counts by PodoCount and the single-se

Cohort

Comparison of PodoCou

Median error in estimation

Residual Absolute

db/db �0.01 0.26

KKAy �0.36 0.47

FSGS �0.17 0.25

HIVAN 0.06 0.25

Aging �0.28 0.37

Progeroid 0.10 0.16

DN 0.10 0.17

DN, diabetic nephropathy; FSGS, focal segmental glomerular sclerosis; HIVAN, HIV-associated
PodoCount estimates of corrected podocyte counts were compared against manual ground trut
1 podocyte. Tendency toward over- or underestimation was cohort dependent. Automated coun
Correlation results between automated and ground truth podocyte density estimates were eval
values).

Kidney International Reports (2022) 7, 1377–1392
were different across all features with greater
variance observed in disease (Figure 3a). In db/db
mice, glomerular area and total podocyte nuclear
area were greater, whereas podocyte density was
less. Moderate strength of correlation (|r| > 0.4)
was observed pairwise between these image fea-
tures and UACR; with increasing UACR, glomer-
ular and total podocyte nuclear area increased
whereas podocyte density decreased
(Supplementary Table S9). Nuclear coverages were
similar in diabetes and had little correlation with
UACR.

2. KKAy model. In the KKAy model of diabetes,
podocyte density was significantly less, whereas
glomerular and total podocyte nuclear area were
significantly greater (Supplementary Table S4, part
A and Figure 3b). Strong, significant correlations
(|r| > 0.75) were also observed between these im-
age features and UACR (Supplementary Table S10).
UACR increased with increasing glomerular and
total podocyte nuclear area, as well as decreasing
podocyte density.

3. FSGS model. SAND-treated mice showed signifi-
cantly lesser podocyte densities and nuclear cover-
ages with accompanying increases in the glomerular
area. Total podocyte nuclear area was similar
ction method
nt automated counts vs. the single-section method

Pearson correlation analysis

R2 95% CI for R2 P value

0.95 (0.91–0.98) <0.001

0.82 (0.68–0.90) <0.001

0.89 (0.80–0.94) <0.001

0.97 (0.94–0.98) <0.001

0.96 (0.92–0.98) <0.001

0.94 (0.87–0.97) <0.001

0.57 (0.35–0.57) <0.001

nephropathy.
h generated using the single-section method. Error in automated counts was bounded by
ts were strongly and significantly correlated with ground truth counts across all cohorts.
uated with parametric Pearson analysis (R2 value and 95% CIs reported, in addition to P
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Figure 2. Comparison of podometric estimates by PodoCount and the single-section method. PodoCount estimates of corrected podocyte count
and podocyte density were compared against those from manual ground truth measurements using the single-section method. (a) Error in
automated counts was bounded by 1 podocyte. Tendency toward over- or under- estimation was cohort dependent. (b) The modified Bland-
Altman plot highlights the departure in PodoCount podocyte density estimates from ground truth. No., number; FSGS (SAND), focal segmental
glomerular sclerosis; HIVAN, HIV-associated nephropathy.
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between WT and FSGS-affected mice (Supplementary
Table S5, part A). The podocyte density distributions
of control and FSGS mice were markedly different,
with control mice featuring a broad range of average
podocyte densities and FSGS mice featuring a narrow
range of reduced podocyte densities (Figure 3c).
Moderate-to-strong correlations described the re-
lationships between UACR and image features
(Supplementary Table S11). With increasing UACR,
significant reduction in podocyte density was
observed.

4. HIV-associated nephropathy (HIVAN) model. Image
features did not significantly differentiate Tg26 mice
from WT mice (Supplementary Table S6, part A).
Before correction for multiple testing, the podocyte
counts of Tg26 and WT mice were significantly
different as demonstrated by the marked difference
in their respective distributions (Figure 3d). All
other feature values and distributions were compa-
rable. In a transgenic model of HIVAN, variable
Table 4. Comparison of podocyte density by PodoCount and the single-s

Cohort

Comparison of PodoCou

Median error in estimation

Residual Absolute

db/db �0.01 0.75

KKAy �1.88 2.18

FSGS �1.59 2.29

HIVAN 0.51 1.80

Aging �0.93 1.38

Progeroid 0.59 1.59

DN 0.11 0.15

DN, diabetic nephropathy; FSGS, focal segmental glomerular sclerosis; HIVAN, HIV-associated
PodoCount estimates of podocyte density were compared against manual ground truth gene
average 1.55 (number per 106 mm3). Tendency toward over- or underestimation was cohort depe
estimates across all cohorts. Correlation results between automated and ground truth podocyte
CIs reported, in addition to P values).

1384
penetrance among mice and within a single animal
contributes to subtler histomorphologic phenotypes.

5. Aging model. In contrast with young mice, old mice
featured significantly greater glomerular area, as well
as significantly reduced podocyte density and podo-
cyte nuclear coverage (Figure 3e, Supplementary
Table S7, part A). Total podocyte nuclear area did
not significantly differ with increased age.

6. Progeria (Ercc1�/D) model. Significantly lower
glomerular areas and podocyte densities were
observed in Ercc1�/D mice (Supplementary Table 8,
part A and Figure 3f). The podocytes’ nuclear cov-
erages of WT and Ercc1�/D mice were comparable.
Before correction for multiple testing, significantly
lower total podocyte nuclear areas were noted in
Ercc1�/D mice.
For each model, a single estimate of the apparent

mean caliper diameter (d), true mean caliper diameter
(D), and CF was determined (Supplementary Table S12).
The CFs per model were found to be 0.19 in db/db, 0.20
ection method
nt automated counts vs. the single-section method

Pearson correlation analysis

R2 95% CI for R2 P value

0.96 (0.93–0.98) <0.001

0.92 (0.85–0.96) <0.001

0.97 (0.93–0.98) <0.001

0.98 (0.96–0.99) <0.001

0.97 (0.95–0.99) <0.001

0.94 (0.88–0.97) <0.001

0.39 (0.24–0.48) <0.001

nephropathy.
rated using the single-section method. Absolute error in automated estimates was on
ndent. Automated estimates were strongly and significantly correlated with ground truth
density estimates were evaluated with parametric Pearson analysis (R2 value and 95%
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Figure 3. Podocyte and glomerular morphometrics of control and disease mice across murine models. Distribution of podocyte feature values
across disease states with each black dot corresponding to a single mouse in the (a) db/db model of type II diabetes mellitus, (b) KKAy model of
type II diabetes mellitus, (c) FSGS model, (d) HIVAN model, (e) Aging model, and (f) Progeroid (Ercc �/D) model. All podometric values are based
on 2D quantification from glomerulus profiles in whole kidney sections. *q < 0.05. 2D, 2-dimensional; CTRL, control; FSGS, focal segmental
glomerular sclerosis; Glom ¼, glomerulus; HIVAN, HIV-associated nephropathy; Pod, podocyte; WT, wild type.
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Table 5. Podocyte morphometrics significantly differentiated diabetic nephropathy stages IIb and III

Image feature

Diabetic nephropathy cohort
(A) Summary of feature values across patients’ DN stages according to the Tervaert classification scheme

Mean ± SD

Stage I Stage IIa Stage IIb Stage III Stage IV

n 3 6 12 4 20

PC 1.09 � 0.24 1.15 � 0.72 1.40 � 0.56 0.52 � 0.31 0.85 � 0.51

GA 29660.26 � 4644.71 10085.43 � 16639.20 31116.08 � 8381.64 22629.21 � 4758.69 23256.96 � 9121.63

GPD 16.82 � 3.85 19.96 � 9.79 19.89 � 6.31 12.55 � 8.10 17.85 � 7.91

TPA 95.76 � 30.14 99.69 � 70.29 155.42 � 98.43 28.34 � 27.70 84.94 � 86.35

GPC 3.09 � 0.65 2.82 � 1.44 4.14 � 2.09 0.98 � 0.80 2.73 � 1.66

Image feature

(B) Kruskal--Wallis and post hoc Dunn’s tests comparing DN stages at the patient level

Significantly different DN stages q value

PC IIb from III 0.007a

GA IIb from IV 0.067

GPD No distinct groups 0.646

TPA IIb from III 0.012a

GPC IIb from III 0.017a

DN, diabetic nephropathy; GA, glomerular area; GPC, glomerular podocyte nuclear coverage; GPD, glomerular podocyte volume density; n, number of unique patient thin-needle biopsies
per DN stage; PC, corrected podocyte count; TPA, total podocyte nuclear area.
aq < 0.05.
Pipeline-computed features were ranked based on their ability to differentiate between DN stages defined by the Tervaert classification scheme. (A) The table summarizes the mean
and SD of each feature across Tervaert stages. (B) Corrected podocyte count was the most significant indicator of disease in DN, followed by total podocyte nuclear area and podocyte
nuclear coverage. Pairwise tests revealed that differences in podocyte counts and nuclear morphometrics are consistently observed between DN stages IIb and III. Podometric values
are based on 2D quantification from glomerulus profiles in whole kidney sections. Feature units: GA, mm2; GPD, number per 106 mm3; TPA, mm2. Statistical conclusions are based on
Kruskal–Wallis and post hoc Dunn’s tests comparing population medians at a significance level of 0.05. H0: At least one population mean is different.
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in KKAy, 0.22 in FSGS, 0.21 in HIVAN, 0.20 in Aging,
and 0.22 in Progeroid. These CF values align well with
those previously reported.16

Glomerular Sampling for Accurate Podocyte

Density Estimates

The number of glomerular profiles required to arrive at
an estimate of podocyte density within 10% of the true
(whole-slide) value with 90% and 95% confidence was
studied for each model based on murine phenotype.
Across all cohorts, accurate estimation in the diseased
state required more glomerular profiles (Supplementary
Table S13). The number of profiles required to achieve
an estimate within 10% of the true value with 90%
confidence for each cohort’s control and disease
groups, respectively, was found to be 32 and 38 in db/
db, 27 and 29 in KKAy, 30 and 37 in FSGS, 27 and 28 in
HIVAN, 28 and 33 in Aging, and 35 and 44 in Proge-
roid, respectively. As expected, the number of
required profiles increased for estimates with 95%
confidence. Achievement of a 90% confident estimate
with 10 or fewer profiles required relaxation of the
constraint to estimation within 20% of the true value.
These data demonstrate the value of a robust pipeline
that assesses all the available glomeruli to eliminate
model-specific variability and potential sampling bias.

Podometrics in Clinical Human DN Biopsies

Biopsy-level features were compared among DN sub-
jects based on their Tervaert classification25 (Table 5)
and outcome (Table 6 and Figure 4a and b). Corrected
podocyte count was the lead indicator of DN stage at
1386
the patient level, with a marked reduction in glomer-
ular podocyte number (from 1.4 to 0.52) defining the
transition from DN stage IIb to III (part B in Table 5).
Total podocyte nuclear area and podocyte nuclear
coverage were also significantly different across DN
stages and were characteristic of the transition from
stage IIb to III. Meanwhile, significantly greater
glomerular area differentiated stage IIb from IV. These
observations are consistent with established histo-
pathologic classification criteria25,47 and suggest a
relationship with progressive podocyte injury,
glomerular hypertrophy, and transition between DN
stages. Single estimates of d, D, and CF were also
determined for the human DN cohort (Supplementary
Table S12). The CF value representative of the entire
data set was 0.22. This human CF value is comparable
to what has been previously reported.16

Podometrics Predict ESKD in DN

A logistic regression model fit using the DN cohort’s
eGFRs at time of biopsy significantly predicted ESKD
with an odds ratio of 0.75 (Table 7). Each additional
unit increase in eGFR was associated with a 25%
decrease in the odds of patient progression to ESKD, a
finding supported by clinical standards that uphold
eGFR as a key indicator of outcome.40 A series of lo-
gistic regression models each fit using an engineered
image feature with adjustment for eGFR demonstrated
that glomerular area and total podocyte nuclear area
were also significant predictors of ESKD. For each 1000
mm2 increase in mean biopsy glomerular area, the odds
of ESKD was increased by 43%. Similarly, each 10 mm2
Kidney International Reports (2022) 7, 1377–1392



Table 6. Biopsy nuclear podocyte pathology is predictive of progression to end-stage kidney disease

Image feature

Diabetic nephropathy cohort
Two sample t test comparing nonprogressors (n [ 31) against progressors to ESKD (n [ 14)

Feature summary (mean ± SD) Difference of means (ESKD -- no ESKD)

q valueNo ESKD ESKD Difference 95% CI

PC 3.44 � 1.93 1.97 � 1.05 �1.47 (�2.37 to �0.57) 0.002a

GA 28432.41 � 9450.26 21426.01 � 5384.96 �7006.40 (�11502.52 to �2510.29) 0.003a

GPD 19.22 � 7.52 15.73 � 7.38 �3.49 (�8.40 to 1.43) 0.156

TPA 124.26 � 95.79 50.74 � 29.88 �73.52 (�111.85 to �35.18) <0.001a

GPC 3.01 � 2.10 2.21 � 1.31 �0.80 (�2.00 to 1.31) 0.002a

ESKD, end-stage kidney disease; GA, glomerular area; GPC, glomerular podocyte nuclear coverage; GPD, glomerular podocyte density; PC, corrected podocyte count; TPA, total
podocyte nuclear area.
aq < 0.05.
The table summarizes the mean and SD of each feature across patient outcomes. Significant reduction in corrected podocyte count, glomerular area, total podocyte nuclear area, and
glomerular podocyte nuclear coverage was characteristic of progressor biopsies. Podometric values are based on 2D quantification from glomerulus profiles in whole kidney sections.
Feature units: GA, mm2; GPD, number per 106 mm3; TPA, mm2. Statistical conclusions are based on 2-sample t tests comparing murine population means at a significance level of 0.05.
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increase in biopsy total podocyte nuclear area was
associated with a 25% decrease in the odds of ESKD.
Odds ratio-associated P values also suggested that,
together, total podocyte nuclear area and eGFR were
more significantly related to ESKD incidence than eGFR
alone. When adjusted for eGFR, podocyte count,
podocyte density, and glomerular podocyte nuclear
coverage were not found to be significant predictors of
ESKD (odds ratios 0.91, 0.80, and 0.89, respectively).
These studies highlight the potential for encoded fea-
tures in histomorphology to increase the predictive
power of clinical metrics.
PodoCount in the Cloud

PodoCount was deployed as a cloud-based plugin on
the Sarder Laboratory’s Digital Slide Archive48

(Supplementary Figure S8). This integration was facil-
itated by HistomicsTK, a web-based tool that allows for
Figure 4. Podocyte and glomerular morphometrics in diabetic nephropathy
feature values comparing those with diabetes with progression to ESKD to
(a) or glomerulus (b). All podometric values are based on 2D quantifica
2D, 2-dimensional; ESKD, end-stage kidney disease; Pod, podocyte; Glo
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installation of user-defined algorithms as plugins in a
virtual user interface, HistomicsUI, and is supported
by the OpenSlide49 library for handling proprietary
digital pathology WSI formats. PodoCount end users
need only upload a WSI and glomerulus annotation file
and select the option for PodoCount analysis. Predicted
podocyte nuclear annotations are displayed in the
cloud and available for download (.xml. for standard
desktop pathology viewers) along with image features
files (.csv). An instructional video for end users was
shared along with open-source documentation and
codes to maximize plugin accessibility (Supplementary
Movie S1, http://bit.ly/3rdGPEd).

DISCUSSION

In this work, we introduced PodoCount, a novel tool
for automated, whole-slide assessment of podocyte
depletion and nuclear morphometry. Compared with
kidney biopsy specimens predict outcome. Distribution of podocyte
those without with each black dot corresponding to a single patient
tion from glomerulus profiles in whole kidney sections. *q < 0.05.
m, glomerulus.
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Table 7. Nuclear indicators of podocyte pathology may improve patient prognostication from time of biopsy

Image feature (adjusted for eGFR)

Diabetic nephropathy cohort
Logistic regression for prediction of patient progression to ESKD (n [ 14 ESKD, 31 no ESKD)

eGFR Feature

OR 95% CI P value OR 95% CI q value

eGFR 0.75 0.58–0.96 0.020a — — —

eGFR þ PC 0.54 0.23–1.29 0.167 0.91 (0.83–0.99) 0.285

eGFR þ GA 0.74 0.57–0.96 0.021a 1.43 (0.34–6.06) 0.023b

eGFR þ GPD 0.69 1.01–1.78 0.047a 0.80 (0.54–1.20) 0.389

eGFR þ TPA 0.74 0.58–0.96 0.022a 0.75 (0.60–0.95) 0.018b

eGFR þ GPC 0.74 0.58–0.95 0.022a 0.89 (0.31–2.61) 0.836

eGFR, estimated glomerular filtration rate at time of biopsy; ESKD, end-stage kidney disease; GA, glomerulus area; GPC, glomerular podocyte nuclear coverage; GPD, glomerular
podocyte density; OR, odds ratio; TPA, total podocyte nuclear area.
aLogistic regression models were evaluated for feature-based prediction of patient outcome in diabetic nephropathy. Each pipeline-computed image feature was evaluated in com-
bination with eGFR as predictors of ESKD incidence (response variable). Response frequency was 14 of 45 patients. The values and 95% CIs for odds ratios were reported, in addition to
their associated P values. Select image features were rescaled to provide interpretable unit changes in OR, including GA by 1000, GPD by 10, and TPA by 10. Feature units: GA, mm2; GPD,
number per 106 mm3; TPA, mm2.
bq < 0.05.
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existing automated methods,50,51 PodoCount takes a
deterministic approach to podocyte quantification, us-
ing classical image analysis in place of deep learning.
Benefits of this approach include computational
simplicity, strong performance without big-data re-
quirements, and thus no need for expensive GPUs or
training time. PodoCount’s computational image anal-
ysis approach was informed by the benchmark method
for estimation of podocyte density from a single his-
tologic section developed by Venkatareddy et al.16 We
validated this tool using WSIs from 6 distinct mouse
models (n ¼ 135) and human DN (n ¼ 45) biopsy
specimens from male and female mice and participants.
These data were curated from multiple institutions and
feature lab-to-lab technical variability, aspects that are
known to hinder generalizable computational frame-
works,52–56 including highly variable sectioning and
staining methods, as well as image and tissue quality
(Supplementary Figure S2). PodoCount navigated this
challenging data set well, achieving precise segmenta-
tion and accurate detection of podocyte nuclei
(Table 2), as well as highly accurate podocyte density
estimates (Tables 3 and 4 and Figure 2). When paired
with strategic, literature-informed, feature engineering,
this computational performance facilitated robust
quantification of podocyte depletion across varied renal
pathologies using a podocyte nuclear marker and
nuclear-based quantification from 2-dimensional cross-
sections.

Our nuclear-based approach was informed by prior
studies which demonstrated that podocyte nuclear
quantification is sufficient to estimate glomerular
podocyte density and predict podocyte pathology.15,16

Emphasis on nuclear quantification guided our choice
of podocyte label. p57kip2 was a podocyte-exclusive
nuclear label within the glomerular microenviron-
ment enabling reproducible detection amidst proximate
1388
cell populations. Two-dimensional analysis was opted
for over 3-dimensional podocyte visualization to
maximize feasibility and efficiency while maintaining
accuracy in podocyte estimation. Prior studies vali-
dated that podocyte estimation from single sections is
comparable to 3-dimensional, multisection methods,
irrespective of disease state.3,12,14–16 Murine data CFs
and podocyte density estimates computed using
PodoCount aligned well with the literature,16,50,57–59 as
did human CF values.16 Podocyte density estimates for
human DN data were slightly lower than those values
reported for prior studies in early diabetes and clinical
nephropathy.60

According to the podocyte depletion hypothesis,
podocyte depletion may manifest (i) absolutely, as a
reduction in glomerular podocyte count, or (ii) rela-
tively, when pathologic increase in glomerular area
reduces podocyte spatial density.3 In this work, we
found that computational podocyte features reproduc-
ibly predict disease-specific histopathology. Although
the db/db model emulates early changes in human
DN,61 the KKAy model, renowned for rapid glomerular
basement membrane thickening,62 recapitulates the
later, morphologically advanced stages of DN. Quanti-
fied feature trends in the db/db and KKAy models re-
flected these tendencies toward mild and advanced
diabetic changes, respectively. Similarly, computed
image features from the aging and progeroid models
aligned well with our current understanding of
glomerular senescence. Studies demonstrated that with
age relative podocyte depletion from compensatory
podocyte hypertrophy peaks at a 2.5-fold increase,
giving way to absolute podocyte loss and progressive
glomerulosclerosis. Observed feature trends in the ag-
ing and progeroid models aligned well with the liter-
ature, with marked increase in total podocyte nuclear
area, in the presence of reduced podocyte volume
Kidney International Reports (2022) 7, 1377–1392
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density, reflecting peak podocyte hypertrophic capac-
ity, followed by overt podocyte loss.

The postadaptive FSGS phenotype is characterized
by glomerular hypertrophy and podocyte loss63,64 and
is best described as a combination of absolute and
relative podocyte depletion. Computed, significant
decrease in podocyte density, as well as increase in
glomerular area, for SAND-treated mice in the FSGS
model was consistent with FSGS pathology. Similarly,
quantified podocyte loss in Tg26 mice was consistent
with HIVAN pathology.65,66

From the human DN cohort, we learned that podo-
cyte nuclear image features have the potential to be
valuable diagnostic and prognostic tools. Podocyte
nuclear metrics differentiated patient biopsy specimens
(n ¼ 45) according to Tervaert class, highlighting the
transition from stage IIb to III as a key turning point in
DN pathology (Table 5) and outcome (Table 6 and
Figure 4). Intriguingly, logistic regression analysis
demonstrated that podocyte morphometrics derived
from patient biopsy specimens have the potential to
improve prediction of ESKD beyond eGFR alone
(Table 7). Total podocyte nuclear area was more
significantly associated with ESKD than eGFR alone,
and together, these 2 measures significantly predicted
progression to ESKD. Glomerular sampling studies for
reliable estimation of podocyte density were not
completed for human data wherein the number of
glomerulus profiles per patient biopsy was limited
(Supplementary Table S14). We recognize that the
number of human samples is a limitation of the study
and emphasize that our findings warrant future studies
with greater statistical power.

As the irreversible end point of chronic kidney dis-
ease, ESKD is characterized by complete loss of kidney
function and patient dependence on dialysis or trans-
plant for survival. The presence of significant feature-
response relationships underscores the potential for bi-
opsy podocyte features to increase the precision of
clinical metrics in chronic kidney disease prognostica-
tion, and thus improve patient outcomes. With potential
to augment both experimental and clinical workflows,
PodoCount was launched as an open-source cloud-based
tool to maximize accessibility and promote standardiza-
tion of podocyte morphometrics.
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