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Purpose: To develop and assess the accuracy of a hybrid deep learning construct for
detecting keratoconus (KCN) based on corneal topographic maps.

Methods:We collected 3794 corneal images from 542 eyes of 280 subjects and devel-
oped seven deep learningmodels based on anterior and posterior eccentricity, anterior
and posterior elevation, anterior and posterior sagittal curvature, and corneal thick-
ness maps to extract deep corneal features. An independent subset with 1050 images
collected from 150 eyes of 85 subjects from a separate center was used to validate
models. We developed a hybrid deep learning model to detect KCN. We visualized
deep features of corneal parameters to assess the quality of learning subjectively and
computedareaunder the receiver operating characteristic curve (AUC), confusionmatri-
ces, accuracy, and F1 score to evaluate models objectively.

Results: In the development dataset, 204 eyes were normal, 123 eyes were suspected
KCN, and 215 eyes had KCN. In the independent validation dataset, 50 eyeswere normal,
50 eyes were suspected KCN, and 50 eyes were KCN. Images were annotated by three
corneal specialists. The AUC of the models for the two-class and three-class problems
based on the development set were 0.99 and 0.93, respectively.

Conclusions: The hybrid deep learning model achieved high accuracy in identifying
KCN based on corneal maps and provided a time-efficient framework with low compu-
tational complexity.

Translational Relevance: Deep learning can detect KCN from non-invasive corneal
images with high accuracy, suggesting potential application in research and clinical
practice to identify KCN.

Introduction

Keratoconus (KCN) is a noninflammatory ectatic
corneal disorder characterized by progressive thinning

of the cornea that may lead to reduced vision or even
vision loss.1 Although detecting subclinical KCN is
challenging, more advanced cases are easily diagnosed
due to the presence of more obvious retinoscopic and
biomicroscopic signs such as Munson’s sign, Vogt’s
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striae, or Fleischer’s ring2,3 Some of the early methods
for KCN diagnosis rely on subjective evaluation of
topographical maps4; however, automated models may
provide a more accurate and objective evaluation of
KCN.

Conventional machine learning models, includ-
ing neural networks, decision trees, and discriminant
analysis, have been applied to corneal topography
parameters for detecting KCN.5–8 Some of the models
have used data from the anterior topographic maps of
cornea only, whereas follow-up models have used data
from posterior cornea to evaluate KCN.9–11 Machine
learning models, however, can combine anterior and
posterior corneal data in order to complement infor-
mation regarding KCN and may lead to improved
detection.

Current artificial intelligence (AI) models for the
detection of KCN are mainly supervised6–15 and have
achieved area under the receiver operating character-
istic curves (AUCs) generally in the range of 0.90 to
1.0 based on Pentacam (OCULUS, Wetzlar, Germany)
indices or combined Pentacam and optical coherence
tomography (OCT) parameters.13,14 However, these
studies have used datasets with varying number of
samples and patients at different KCN stages, making
generalization of the results challenging. Unsupervised
machine learning models, on the other hand, require
no prelabeled data and have been applied to corneal
data to identify different severity levels of KCN16,17

and to predict those individuals who may require more
invasive corneal surgery by using topography, eleva-
tion, and pachymetry parameters of the cornea.18

Significantly fewer deep learning (DL) studies
exist for the cornea19–24 compared with other ocular
domains.25–42 Deep learning models, particularly deep
convolutional neural networks (CNNs), have been
applied to color-coded corneal maps such as eleva-
tion, curvature, and thickness to identify KCN. These
studies have typically utilized small subsets of images
with fewer than 400 images in spite of the fact
that DL models usually require a greater number of
samples.20 Other studies have used simulated corneal
images rather than real-world clinical corneal images.21
As such, it is challenging to generalize their results.
Zeboulon et al.22 used a relatively large dataset with
3000 corneal maps to detect KCN and a history of
refractive surgery. They achieved a high accuracy for
discriminating KCN from normal, but the ability of
the model to detect suspected KCN has not been
examined. Additionally, as training and optimizing
deep CNN models is typically computationally expen-
sive, models that run faster, such as our currently
proposedmodel, have greater potential to be integrated
into clinical practice.

In this study, we utilized a relatively large dataset
with 4844 corneal images to train and validate a hybrid
deep learning model for detecting KCN. We developed
seven deep CNN models based on the EfficientNet-b0
architecture such that eachmodel becomes an expert in
identifying KCN-induced features from that particular
corneal map. We then developed a hybrid model that
integrates deep corneal features extracted from each
corneal map based on a support vectormachine (SVM)
to provide a DL model for the identification of KCN.
To explain the outcome of the model and to subjec-
tively evaluate the relevance of deep features and DL
decisions, we developed t-distributed stochastic neigh-
bor embedding (t-SNE) and visualized the outcome.

Methods

Datasets and Preprocessing

The protocol of the study (0094/2020) was approved
by the Institutional Review Board of Federal Univer-
sity of São Paulo–UNIFESP/EPM as the coordinator
center and Hospital de Olhos–CRO, Guarulhos, as the
side center. Corresponding data use agreements were
signed among parties to use the data. The study was
conducted in accordance with the tenets of the Decla-
ration of Helsinki. If required, respective informed
consent was obtained from participants, and the data
were de-identified in Brazil before any further process-
ing.

Three corneal specialists (including RMH)
conducted vision tests and ophthalmic examina-
tions under standard conditions and collected corneal
images using Scheimpflug imaging systems (Penta-
cam). Three corneal trained specialists performed the
eye classification.We dealt with disagreements favoring
two versus one vote. The clinicians were instructed to
grade each eye as normal, suspected KCN, or KCN.
Eyes were labeled as KCN suspect based on standard
criteria in earlier studies.43,44 More specifically, eyes
were labeled as suspected KCN if the corneal topog-
raphy included atypical, localized steepening or an
asymmetrical bowtie pattern. Eyes were labeled as
suspected KCN if the keratometric curvature was
greater than 47.00 diopters (D), the oblique cylinder
was more than 1.50 D, or the central corneal thickness
(CT) was below 500 μm. Each eye of each patient was
evaluated independently.

Furthermore, raw data of Belin/Ambrosio
Enhanced Ectasia Display (BAD) values based on
elevation and thickness maps including Pentacam-
generated percentage thickness increase (PTI) and
corneal-thickness spatial profile were used in this
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study. Eyes were labeled as suspected KCN if the
best fit sphere with the optical zone of 9.0 mm front
elevation map was between 12 and 15 μm and the
back elevation map was between 17 and 20 μm.
Then, BAD indices, including standard deviations
of front and back elevation maps, standard devia-
tions of the PTI, and standard deviations of the
minimal thickness, were evaluated. These indices
compose the overall standard deviation, or what
is referred to as the final D (BAD-D). Eyes were
labeled as suspected KCN when BAD-D was between
1.6 and 3.0.

The development (training) dataset included
corneal images collected using different Pentacam
instruments with different settings (different color-
scale steps of the maps compared with the previous
subset; see Supplementary Material). All color scales
were based on decimal-scale grading using microns
for CT and elevation (EL) maps and diopters for
axial/sagittal curvature maps. An additional indepen-
dent dataset, collected from a different clinic in Brazil,
was also used to validate the proposed hybrid DL
approach. The image dataset of this study for seven
corneal maps is being made available to the research
community (https://drive.google.com/drive/folders/
1GR9T-p7GWGY_0nI5sm8GdJ4V6qlV4vZ2?usp=
sharing).

Input Image Preprocessing

Seven cornealmaps including anterior and posterior
eccentricity (EC), anterior and posterior EL, anterior
and posterior sagittal (SAG) curvature, and CT were
extracted from a Pentacam instrument and saved in
JPEG format. These maps are typically examined in
routine clinical settings for KCN assessment. Develop-
ment set images (7 maps × 542 eyes = 3794 images), in
addition to the independent test images (7 maps × 150
eyes), were resized to 224 × 224 × 3 pixels to match the
input of the standard DL models.

Deep Learning Model

Figure 1 shows the block diagram of the AI
construct that was developed to detect KCN from
corneal images. We first developed seven models based
on EfficientNet-b0,45 a DL architecture, pretrained
on ImageNet, to identify KCN-induced signs in each
corneal map separately. EfficientNet-b045 is a newly
developed efficient DL architecture with 290 layers.
It has fewer parameters compared with AlexNet,46
GoogleNet,47 VGG19,48 and Resnet-50,49 and it has
achieved greater accuracy when tested on ImageNet50
datasets.

Each EfficientNet-b0 DL model extracted deep
features from the last convolutional layers of the

Figure 1. Diagram of the proposed hybrid DL construct for detecting eyes with suspected KCN, normal eyes, and eyes with KCN.

https://drive.google.com/drive/folders/1GR9T-p7GWGY0nI5sm8GdJ4V6qlV4vZ2?uspsharing
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respective models of anterior and posterior EC,
anterior and posterior EL, anterior and posterior SAG,
and CT maps (Fig. 1).

The deep features were extracted from
the fully connected layer (efficientnet-
b0|model|head|dense|MatMul), layer number 288,
which provides an output with 1000 features, without
retraining the DL model, which was originally
trained on ImageNet. The first and last layers of
the EfficientNet-b0 are shown in Supplementary
Figure S4.

To develop the hybrid model for integrating the
information from each individual deep CNN model,
we fused 1000 deep features from each map to gener-
ate a concatenated vector with 7000 deep features. This
hybridmodel was developed on the representation level
rather than on the decision level of each model, as
doing so generated higher performance. We then used
an SVM classifier with quadratic kernel function and
set the box constraint level to 1. To make multiclass
feasible, we employed a one-versus-one classification in
the three-class scenario. We estimated the classification
metrics based on the SVM classifier.

Subjective Evaluations

To identify the effectiveness of the generated deep
features, we applied t-SNE on deep features and
visualized the results using two-dimensional (2D)
plots for the two-class (normal vs. KCN) and three-
class (normal vs. KCN vs. suspected) KCN detection
problems. Visualization of deep features through 2D t-
SNE plots improves our understanding of how deep
feature extraction is relevant in identifying KCN.

Objective Evaluations

We employed AUCs to evaluate the model perfor-
mance.We also computed the confusionmatrices along
with accuracy and F1 scores to compare the perfor-
mance and quality of learning objectively. To evaluate
models, we split the dataset into 80% for model devel-
opment and 20% for validation. To reduce possible
data selection bias, we repeated this process five times
each time the model was evaluated based on randomly
selecting the split of 80%/20%. An independent test
set with 150 eyes (50 eyes from each group) was also
utilized to validate the DL models. We also estimated
the time for training and validation. We computed the
time for the entire pipeline to extract features and train
the SVM classifier on a machine with a Core i5 central
processing unit (CPU; Intel Corporation, Santa Clara,
CA) and 16 GB of RAM equipped with MATLAB
2020b (MathWorks, Natick, MA). We estimated the

time of testing a new sample on this framework, as
well. Classificationmetrics such as accuracy or F1 score
were estimated with SVM classifiers for all classes and
networks investigated in this study. We also included
another testing scheme in which we merged 542 eyes in
the development subset with 150 eyes in the indepen-
dent subset, then randomly divided the entire set into
a 50% training set, a 25% validation set, and a 25% test
set. We re-evaluated the accuracy based on these sets to
ensure that the model is stable.

Results

A total of 204 eyes of 104 patients were normal,
215 eyes of 113 patients had KCN, and 123 eyes of 63
patients were suspected KCN. The mean ages ± SD of
the subjects in the normal, KCN, and suspected KCN
groupswere 33.4±10.1 years, 29.0± 9.3 years, and 28.6
± 9.4 years, respectively. Images from 56 normal eyes
and 58 eyes with KCNwere collected using a Pentacam
instrument with settings different from others (Fig. 2;
samples in the dashed green lines); see the Supplemen-
tary Materials for more examples of different color
scales.

The independent validation subset included 150 eyes
of 85 patients collected from Hospital de Olhos–CRO,
a private hospital located in São Paulo, Brazil. This
dataset included 50 normal eyes from 29 subjects,
50 KCN eyes from 31 patients, and 50 suspect KCN
eyes from 25 patients. The mean ages ± SD of the
subjects in the normal, KCN, and suspected KCN
groups were 29.5 ± 4.7 years, 26.3 ± 6.8 years, and
29.1 ± 5.3 years, respectively. The t-SNE plot of the
entire dataset of 692 eyes (development and test sets)
for the three-class case is shown in the lower panel of
Figure 2.

We extracted 1000 deep features from the last fully
connected layer of each of the seven deep learning
models (Fig. 1). Figure 2, top left and top right, shows
the t-SNE plots of 7000 fused deep features extracted
from seven maps of eyes in the development dataset
for the two-class (419 eyes) and three-class (542 eyes)
scenarios, respectively. Figure 3, left and right, presents
the t-SNE plots of 7000 fused deep features extracted
from seven maps of eyes in the independent validation
dataset for the two-class (100 eyes) and three-class (150
eyes) problems, respectively.

The receiver operating characteristic (ROC) curves
of the proposed model for the two-class and three-
class problems based on the development dataset are
presented in Figure 4. The accuracy of the proposed
model in detecting KCN from the seven corneal maps
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Figure 2. Visualization of 7000 deep features extracted by the EfficientNet-b0 DL architecture from seven different corneal maps using t-
SNE. (Top left) The t-SNE plot of features of the two-class problem (eyes from the Pentacam instrument with a different setting are separated
with dashed green lines). (Top right) The t-SNE plot of features of the three-class problem. (Lower panel) A t-SNE visualization of the features
of the whole dataset (692 eyes) for the three-class problem based on the development and independent test sets.

Figure 3. Visualization of 7000 deep features for the independent test set, extracted by the EfficientNet-b0 DL architecture from seven
corneal maps using t-SNE. (Left) A t-SNE plot of features of the two-class problem. (Right) A t-SNE plot of features of the three-class problem.

was 98.8% for the two-class problem (normal vs. KCN)
and 81.5% for the three-class problem (normal vs. KCN
vs. suspected KCN). The AUC and F1 score of the
model based on the development dataset were 0.99 and
0.99 for the two-class problem, respectively, and the
AUC and F1 score for the three-class problem were
0.93 and 0.81, respectively. The confusion matrices of

the two-class and three-class scenarios are presented
in Figure 5.

The accuracies of the seven individual CNNmodels
for the two-class problem, based on corneal anterior
and posterior EC, anterior and posterior elevation
EL, anterior and posterior SAG, and CT maps for
detecting KCN were 97.6%, 96.9%, 95.7%, 97.9%,
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Figure 4. ROC curve of the hybrid model based on the development subset. (Left) ROC curves of the two-class problem for discriminating
between normal and KCN cases. (Right) ROC curves of the three-class problem for discriminating among normal, suspected KCN, and KCN.

Figure 5. Confusionmatrix of the hybridmodel for KCNdiagnosis obtainedbased on fivefold cross-validation on the development dataset.
(Left) Confusionmatrix of the two-class problem. (Right) Confusionmatrix of the three-class problem.NOR, normal; SUSPECT, suspectedKCN.

Table 1. Performance Metrics Including AUC, F1 Score, and Accuracy Based on Different Datasets

Dataset Classes, n AUC F1 Score Accuracy (%)

Development dataset 1 (542 eyes) 2 0.99 0.99 98.5
3 0.93 0.81 81.5

Independent test dataset 2 (150 eyes) 2 0.99 0.92 92
3 0.81 0.69 68.7

Merged datasets (692 eyes) 2 0.99 0.98 97.7
3 0.96 0.85 84.4

98.3%, 95.2%, and 95.5%, respectively. Accordingly,
for the three-class problem, the obtained accuracies
were 75.5%, 72.1%,76.6%, 75.3%, 80.8%, 72%, and
73.8%, respectively. Based on the independent valida-
tion subset, for the two-class problem, the AUC, F1
score, and accuracy were 0.99, 0.92, and 92%, respec-
tively; for the three-class problem, the AUC, F1 score,
and accuracy were 0.81, 0.69, and 68.7%, respectively.
Based on the merged development subset (542 cases)
and independent validation subset (150 eyes), and
randomly splitting the whole set into 50%/25%/25%
training/validation/testing, for the two-class problem
the AUC, F1 score, and accuracy were 0.99, 0.98, and

97.7%, respectively; for the three-class problem, the
AUC, F1 score, and accuracy were 0.96, 0.85, and
84.4%, respectively. Table 1 illustrates a summary of the
AUC, F1 score, and accuracy metrics.

Figure 6 shows sample images of eyes that were
misclassified by the DL model for the two-class
problem (Figs. 6A, 6B) and three-class problem (Figs.
6C, 6D). More examples of suspect eyes are provided
in the Supplementary Materials. The times required
to extract features from the seven maps and for train-
ing the SVM classifier for the two-class and three-class
problems were about 9.4 minutes and 11.9 minutes,
respectively, and the time for testing a new sample
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Figure 6. Anterior sagittal curvaturemaps of eight eyes that weremisclassified by the hybrid DL framework. (A) Two normal eyes that were
misclassified as KCN. (B) Two KCN eyes that weremisclassified as normal. (C) Two suspected KCN eyes that weremisclassified as KCN. (D) Two
suspected KCN eyes that were misclassified as normal.

for the two-class or three-class problem was about 1.2
seconds.

Discussion

We developed a hybrid DL construct to diagnose
KCN from non-invasive corneal topographic images.
Our strategy in developing the new construct was to
address some of the limitations in previous models.
We used a relatively large development dataset with
3794 corneal images to develop and validate the DL
models. We then tested the developed models on an
independent test set of 1050 images. We first devel-
opedmultiple DLmodels, each of which was trained to
extract relevant deep features from a particular corneal
map for identification of KCN-induced lesions related
to that map only. We then fused deep features from
different corneal maps in the hybrid construct and
compared the performance of single-map and hybrid
models. Because single CNN models are known to be
sometimes highly sensitive to slight perturbations in the
pixels of input images and thus may be error prone,51
hybrid CNN models could be an appropriate alterna-
tive that provides a more solid platform.

Several conventional models have been developed
to assess KCN.9–11 However, there is a significant

overlap between parameters of normal eyes versus eyes
with KCN based on these models. To address this
weakness and to provide automated and more objec-
tive methods, a variety of machine learning classifiers
have been used to detect KCN, as reported in the
previous literature, using decision trees,52,53 SVM,54,55
and neural networks.56 These models rely heavily on
handcrafted features or indices extracted from the
machine. In contrast, DL models can provide an end-
to-end solution that learns to extract features without
supervision and with no requirement for handcrafted
features or machine-generated parameters.46

Multiple DL models have been proposed to
diagnose KCN previously20,21; however, the models
either have utilized small sample sizes of fewer than
400 images or have used simulated images to train
and test the models.21 Because DL models generally
require large representative datasets to successfully
learn different features corresponding to the underly-
ing condition. In contrast to the previous study,22 we
trained the model to identify both KCN and suspected
KCN, which is critical as eyes with suspected KCNwill
more likely progress to KCN.

We used the EfficientNet-b045 architecture, which
has been shown to provide superior performance
in some applications compared with previous DL
architectures such as AlexNet,46 GoogleNet,47
VGG19,48 and Resnet-50.49 The EfficientNet-b0
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architecture includes a fewer number of parameters
compared with most of the current DL architectures,
making it an ideal candidate for most of the problems,
including those with relatively small numbers of
samples. Moreover, the computational complexity of
the proposed hybrid model is relatively low, allowing
it to be run on machines without graphics process-
ing units (GPUs) and only on CPUs, thus providing
a suitable platform for many settings with limited
resources.

The proposed hybrid construct showed a high AUC
of 0.99, F1 score of 0.99, and accuracy of 98.8% for
the two-class problem in discriminating eyes with KCN
from normal eyes. There were only five misclassifica-
tions out of 419 eyes (Fig. 4, left), which included
three of the eyes with KCN that were misclassified
as normal. Although the model was highly accurate
in detecting KCN cases versus normal, there was an
obvious overlap between features of suspected KCN
and normal eyes in the three-class scenario, which is
supported from t-SNE of the deep features presented
in Figure 2 (top right), where features from normal and
suspected KCN eyes show a noticeable overlap. This
can be explained by the fact that, although the Penta-
cam tomographic maps are reasonably distinguishable
for normal and established KCN eyes, there is still
a significant overlap between maps of normal eyes
and eyes suspected of KCN. Nevertheless, this is not
a problem associated with this study, but it exists in
many biological studies, as the spectrum of normal and
disease is a continuum and it can be highly challenging
to find a single threshold that separates normal from
suspected or early disease.

To assess the generalizability of the model to unseen
data, we evaluated the accuracy of the model based
on an independent validation subset with 150 eyes. We
obtained an AUC of 0.99 (F1 score, 0.92; accuracy,
92%) for the two-class problem and an AUC of 0.81
(F1 score, 0.69; accuracy, 68.7%) for the three-class
problem. Although the accuracy levels for the two-
class problem were similar, based on the development
and independent validation subsets, the accuracy of the
three-class problem declined (AUC of 0.93 vs. 0.81).
This is not surprising, as features of normal eyes and
KCN eyes are more separated compared with features
of normal eyes and suspect eyes, particularly when
dealing with different datasets. This observation could
be partially explained by the following. The indepen-
dent validation subset was collected from instruments
in a private hospital in which the color scale was
substantially different from our development subset.
Also, fine-tuning of models based on greater numbers
of classes is more challenging compared with models
that work on only two classes. It should also be noted
that the results on the independent set are lower than

those of the development set in both the two-class
and three-class problems (based on F1 score). This
shows that generalizability to different corneal maps
that were collected under different instrument color
scales is limited. This is expected, asAImodels typically
will be generalizable on unseen datasets with similar
distributions and not on datasets with dissimilar distri-
butions (which is the case here). One solution could be
merging the datasets, as was shown in a recent study on
retinopathy of prematurity (ROP).57 We also observed
that, if we merge both datasets, then the F1 scores will
be improved (F1 score= 0.98 and 0.85 for the two-class
and three-class problems, respectively).

For DL models that work with multiple numbers
of classes, we typically require greater numbers of
samples compared with two classes. Nevertheless, the
model was highly generalizable to two classes. Also,
based onmerged development and independent valida-
tion subsets, we allowed the DL model to learn color
scale, as well, and reproduce the accuracy level that we
obtained based on the development dataset alone. In
this study, images were collected from different clinics
based on different color scales, which poses a major
challenge due to the distributions of the datasets being
dissimilar. This issue may be addressed by standardiza-
tion of the scales of the acquired maps (if the same
color palate is used). However, follow-up studies are
desirable to investigate whether standardization can
fully address this problem.

Future studies with larger numbers of normal
and suspected KCN are warranted to further eluci-
date slight differences between corneal maps of
normal eyes and eyes with suspected KCN. To under-
stand why the hybrid DL model made incorrect
decisions, corneal maps of several misclassified eyes
were evaluated (Fig. 6). In fact, these eyes were
challenging for the corneal specialists to make clini-
cal diagnoses, as the inferior inclination or high
regular astigmatism (astigmatism against the rule) was
presented on the axial/sagittal front maps. In such
cases, clinicians typically require additional informa-
tion, including maps of the BAD-D enhanced ectasia
screen and corneal thickness PTI, to make clinical
diagnosis.

There is a compromise between a single end-to-
end CNN model and a hybrid model that integrates
multiple CNN models. Although the former provides
a simpler approach, the latter generates a more
robust and less error-prone model (less likely to be
fooled by misleading images). The model is more
robust because we know that voting overall increases
the robustness and, in many cases, the accuracy,
which we showed empirically. In addition to improved
robustness, the likelihood of seven CNN models being
fooled is substantially lower than the likelihood of a
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Table 2. Previous Literature Investigating the Detection of KCN From Corneal Topographic Images

Study KCN Classes Device Used
Dataset/Number of

Maps Evaluation Method Network Used Accuracy

Kamiya et al.19 Normal and 4 grades of
KCN

Tomey CASIA 543 cases/6 maps Fivefold CV ResNet-18 99%

Kuo et al.20 Normal, KCN Tomey TMS-4 Corneal
Topographer

354 cases/1 map Training, testing, and
subclinical testing

VGG16
InceptionV3
ResNet152

93.1%
93.1%
95.8%

Lavric and
Valentin21

Normal, KCN Synthetic maps SyntEyes and SyntEyes
KTC models58/1 map

Training, validation, and
testing

KeratoDetect 99.3%

Zeboulon et al.22 Normal/KCN and history
of refractive surgery

Bausch + Lomb Orbscan 3000 cases/4 maps Tenfold CV CNN 99.3%

Al-Timemy et al.23 Normal, KCN OCULUS Pentacam 534 cases/4 maps Training, validation, and
testing

EDTL with AlexNet and
product fusion

98.3%

Current study Normal, KCN, suspected
KCN

OCULUS Pentacam 692 eyes/7 maps Training, validation, and
independent testing

EfficientNet-b0 DL with
SVM

Two-class, 98%
Three-class, 81.6%

CV, cross-validation; EDTL, ensemble deep transfer learning.

single CNNmodel to be fooled, which further improves
the dependability of the construct. It should be noted
that corneal experts typically use these seven corneal
maps to assess KCN; thus, this architecture mimics
clinical evaluation. The accuracies of the seven individ-
ual CNNmodels, based on corneal anterior and poste-
rior EC, anterior and posterior elevation EL, anterior
and posterior SAG, and CT maps for detecting KCN
were 97.6%, 96.9%, 95.7%, 97.9%, 98.3%, 95.2%, and
95.5%, respectively. In comparison, the hybrid model
provided slightly higher accuracy while generating a
more solid framework consistent with clinical KCN
diagnosis.

Previous published studies have investigated differ-
ent DL models for KCN detection, where different
number of maps were investigated. Our work is differ-
ent in terms of the number of maps utilized and the
use of seven DL models for each map without the
need for training. It should be noted that Kamiya
et al.19 trained six separate models, and the output
from all networks was averaged to obtain a decision.
In our work, we directly extracted features from the
seven models by the process of convolution of the
networkwith all inputmaps, without the need for train-
ing of the seven networks. Then, we fused the features
from all networks and fed them to the SVM classifier
to obtain a decision. This approach saved significant
amounts of computational time and time spent tuning
the parameters of the DL models, as our method does
not require training. Table 2 provides a comparison
of previous studies investigating KCN detection that
includes details regarding the device used, number of
eyes/maps, DL models used, and evaluation methods.

Although we used a relatively large dataset and
employed a robust hybrid platform, our study has
potential limitations, as well. First, greater numbers of
suspected eyes will be required to enhance the learn-

ing process and improve the accuracy of the model
with regard to identifying suspected KCN. Second,
although we performed development and testing five
times to ensure that the accuracy of themodel is consis-
tent, independent subsets would be desirable to confirm
our findings. Third, the data were collected from two
centers in Brazil, in addition to the independent test
set, which was collected from a different clinical setting;
thus, obtaining data for other populations with differ-
ent races is warranted to validatemodels independently
and to ensure generalizability. Finally, future studies
should evaluate the impact of the fusion of different
corneal maps and their combinations on accuracy and
generalizability.

Conclusions

We developed a hybrid DL model composed of
seven individual models to extract deep features from
corneal maps using a relatively large dataset with 4844
images. The model achieved close to perfect accuracy
for discriminating eyes with KCN from normal eyes
and reasonable accuracy in distinguishing among
normal, suspected KCN, and KCN eyes. The proposed
framework provides a robust platformwith low compu-
tational complexity. Successful validation and deploy-
ment of this model may assist clinicians in managing
patients with KCN.
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