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Introduction
In eukaryotic nuclei, DNA is wrapped around a protein  octamer 

containing two copies of each of the core histones H2A, H2B, 

H3, and H4, forming nucleosomes, the fundamental units of 

chromatin (Luger et al., 1997). Nucleosomes are assembled with 

the assistance of chaperones or assembly complexes. During 

de novo nucleosome assembly, DNA is fi rst wrapped around the 

H3–H4 tetramer before the addition of two H2A–H2B dimers 

(Loyola and Almouzni, 2004). Once assembled, these core 

 histones are tightly bound to DNA, and the interactions must be 

loosened or remodeled to allow the access of molecular 

 machineries (e.g., polymerases) to DNA. In living cells, the 

 histone–DNA interaction and chromatin structure are expected 

to be continually altered during transcription, genome duplica-

tion, and damage recovery, and the remodeling of chromatin is 

often associated with histone exchange (Belotserkovskaya and 

Reinberg, 2004; Flaus and Owen-Hughes, 2004; Loyola and 

 Almouzni, 2004; Henikoff and Ahmad, 2005; Kimura, 2005). 

On the other hand, nucleosome contexts on specifi c loci must be 

preserved to maintain epigenetic marks on histone tails (Turner, 

2002). The modifi cation of histones, including acetylation, 

methylation, and phosphorylation, plays essential roles in chro-

matin functions such as gene expression and chromosome seg-

regation. Thus, fl uidity and stability seem to be well balanced in 

nucleosomes in living cells.

Early studies of histone deposition and exchange in living 

cells used radiochemical labeling. The stable association of 

[3H]arginine-labeled H3–H4 with chromatin was demonstrated 

by cell fusion (Manser et al., 1980). In a series of studies ana-

lyzing the deposition of the newly synthesized radio-labeled 

histones into nucleosomes, it was found that linker histone 
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 I
n eukaryotic nuclei, DNA is wrapped around a protein 

octamer composed of the core histones H2A, H2B, H3, 

and H4, forming nucleosomes as the  fundamental units 

of chromatin. The modifi cation and deposition of specifi c 

histone variants play key roles in chromatin function. In 

this study, we established an in vitro system based on 

permeabilized cells that allows the assembly and ex-

change of histones in situ. H2A and H2B, each tagged 

with green fl uorescent protein (GFP), are incorporated 

into euchromatin by exchange independently of DNA 

replication, and H3.1-GFP is assembled into replicated 

chromatin, as found in living cells. By purifying the 

cellular factors that assist in the incorporation of H2A–

H2B, we identifi ed protein phosphatase (PP) 2C γ sub-

type (PP2Cγ/PPM1G) as a histone chaperone that binds 

to and dephosphorylates H2A–H2B. The disruption of 

PP2Cγ in chicken DT40 cells increased the  sensitivity 

to caffeine, a reagent that disturbs DNA replication 

and damage checkpoints, suggesting the involvement 

of PP2Cγ-mediated histone dephosphorylation and ex-

change in damage response or checkpoint recovery in 

higher eukaryotes.
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H1 and H2A–H2B undergo exchanges independently of DNA rep-

lication and transcription (Louters and Chalkley, 1985; Jackson, 

1990). Such different behaviors of different histone species are 

also seen in living cells using GFP-tagged proteins (Kimura, 

2005). The linker histone H1 is rapidly exchanged within a few 

minutes, and core histones are more stably bound. Long-term 

observation and cell fusion experiments further revealed that a 

substantial fraction of H2B-GFP exchanges slowly in euchro-

matin, whereas most H3-GFP (which is the H3.1 variant and is 

referred to below as H3.1-GFP) and H4-GFP remain bound to 

chromatin. In addition to the slowly exchanging fraction of 

H2B-GFP, which exchanges independently of DNA replication 

and transcription, another rapidly exchanging fraction, probably 

coupled to transcription, has been observed (Kimura and Cook, 

2001), which is in agreement with the dimer eviction observed 

during transcription (Kireeva et al., 2002; Belotserkovskaya 

and Reinberg, 2004).

The exchange and assembly of histones are regulated in 

a development- and differentiation-specifi c manner (Meshorer 

et al., 2006) by chaperones or assembly factors that are distinct 

for each histone variant. Histone H3 has several variants, which 

are deposited into specialized chromatin loci mediated differen-

tially through the action of deposition complexes (Loyola and 

Almouzni, 2004; Tagami et al., 2004; Henikoff and Ahmad, 

2005; Thiriet and Hayes, 2005). The modifi cation pattern in the 

conserved tail is also distinctive in each variant (Hake et al., 

2006). H3.3 has modifi cations associated with transcriptionally 

active chromatin, which is consistent with its localization on 

active genes; in contrast, replication-coupled H3.2 has mostly 

silencing modifi cations. Although the modifi cation pattern of 

each histone is established after its assembly into nucleosomes 

(infl uenced by the surrounding chromatin state), some specifi c 

modifi cations are associated with nucleosome-free deposition 

forms. Such modifi cations are typically found in H4, whose 

 deposition form is diacetylated throughout eukaryotes, and some 

acetylation is associated with newly synthesized H3 in human 

cells (Benson et al., 2006).

In addition to H3, variant-specifi c deposition and modifi -

cation are found in H2A. Nucleosome assembly protein 1 (Nap1) 

and the related proteins are known as somatic H2A–H2B 

 chaperones after Nap1’s purifi cation from HeLa cells on the 

 basis of nucleosome assembly activity in vitro (Ishimi et al., 1984; 

Loyola and Almouzni, 2004; Henikoff and Ahmad, 2005). 

 Although Nap1 is not essential for yeast viability, its disruption 

affects the expression level of �10% of genes in clusters, sug-

gesting a nucleosome maintenance function of Nap1 by depos-

iting H2A–H2B (Ohkuni et al., 2003). Although Nap1 assists 

nucleosome assembly without ATP in vitro, complexes contain-

ing ATP-dependent chromatin remodeling activity have recently 

been shown to mediate the exchange of H2A–H2B dimers 

(Bruno et al., 2003; Kobor et al., 2004; Krogan et al., 2004; 

Mizuguchi et al., 2004). A complex containing yeast SWR1 

(Swi2/Snf2-related ATPase 1) exchanges canonical H2A with 

H2AZ in nucleosome arrays, and SWR1 and H2AZ regulate an 

overlapping subset of genes. Another complex containing Tip60 

(Tat-interacting protein 60) is involved in the exchange of phos-

phorylated H2Av (a Drosophila melanogaster histone H2A 

variant homologous to H2AX) with the unphosphorylated form 

at DNA lesions in Drosophila (Kusch et al., 2004). Thus, multi-

ple mechanisms appear to exist to control the exchange of H2A 

variants at appropriate chromatin loci and in response to various 

stimuli, including DNA damages.

To understand the molecular mechanisms that regulate the 

assembly and exchange of histones in higher eukaryotes, we set 

Figure 1. Visualization of histone exchange and assembly by permeabi-
lized cells incubated in cell extract containing GFP-tagged histones. 
(A) Strategy. HeLa cells are permeabilized and incubated in extract pre-
pared from cells expressing histone-GFP. Cy3-dUTP is incorporated into 
replicated chromatin. (B) Localization of histone-GFP in permeabilized cells 
incubated in cell extracts. Permeabilized cells were incubated in S100 ex-
tract prepared from cells expressing GFP-H2A or H3.1-GFP. After washing 
and fi xation, DNA was counterstained with DAPI. Four views of single con-
focal sections are shown. Insets show magnifi ed views of the boxed areas. 
(C) Localization of GFP-H2A in euchromatin. After incubating permeabilized 
cells with GFP-H2A–containing extract and Cy5-dUTP, cells were immuno -
l abeled with rabbit polyclonal antibody specifi c to hyperacetylated H4 
(top) or K20-trimethylated H4 (bottom) and Cy3-conjugated donkey anti–
rabbit IgG. Typical examples of cells outside the S phase (without Cy5-
dUTP incorporation) are shown. (B and C) Bars, 10 μm. (D) GFP-H2A 
replaces H2A in chromatin. Permeabilized cells were incubated in S100 
extract from HeLa cells or cells expressing GFP-H2A. Mononucleosomes 
(input) and GFP-containing nucleosomes precipitated using anti-GFP (IP) 
were separated by SDS-PAGE. The line intensity profi les of histones stained 
with Coomassie are shown.
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out to establish an in vitro system that mimics in vivo histone 

dynamics using permeabilized cells. When cells are treated with 

nonionic detergents such as Triton X-100 or saponin, cellular 

membranes are permeabilized and some proteins are extracted, 

but many nuclear functions remain active (Jackson and Cook, 

1985; Pombo et al., 1999), and some nuclear structures can be 

manipulated by adding exogenous factors (Misteli and Spector, 

1996; Maison et al., 2002). Therefore, we expected that exoge-

nously added histones might be incorporated into chromatin in 

permeabilized cells by exchange or replication-coupled assembly. 

As expected, GFP-tagged histones were indeed incorporated 

into chromatin in permeabilized cells with the assistance of cel-

lular factors. By purifying the factors assisting GFP-H2A–H2B 

incorporation, we identifi ed the type 2C protein phosphatase 

(PP) 2Cγ/PPM1G (Travis and Welsh, 1997; Murray et al., 1999) 

in addition to the Nap1 family members. PP2Cγ directly bound 

to and dephosphorylated H2A–H2B, and its disruption in chicken 

DT40 cells caused hypersensitivity to checkpoint abrogation. 

 Although PP2Cγ did not appear to be the major phosphatase for 

H2AX and H2B, dephosphorylation and exchange via PP2Cγ 

may function to allow full recovery from DNA damage.

Results
Histone assembly and exchange 
in permeabilized cells
As illustrated in Fig. 1 A, HeLa cells were permeabilized and 

incubated in cell extracts prepared from cells stably expressing 

GFP-tagged core histones whose expression levels were <10% 

of their endogenous counterparts (Kimura and Cook, 2001). After 

washing out the unincorporated materials, GFP-H2A localized 

to euchromatin, which was devoid of DAPI-dense heterochro-

matin (Fig. 1 B, inset), in most permeabilized cells (Fig. 1 B). In 

contrast, H3.1-GFP highlighted replicated chromatin, which was 

labeled with Cy3-dUTP. The euchromatic localization of GFP-

H2A was confi rmed by the overlapping signals with specifi c 

 antibodies recognizing acetylated histone H3 (not depicted) and 

H4 (Fig. 1 C), which are associated with transcriptionally active 

chromatin (Turner, 2002). In contrast, GFP-H2A was excluded 

from inactive chromatin rich in K20-trimethylated H4 (Fig. 1 C; 

Turner, 2002). To confi rm that GFP-H2A replaced the endo-

genous H2A in chromatin in permeabilized cells, GFP- containing 

mononucleosomes were prepared by immunoprecipitation using 

antibody directed against GFP, and the ratio of core histones was 

analyzed by SDS-PAGE and Coomassie staining (Fig. 1 D). The 

amount of H2A was roughly halved in GFP-H2A nucleosomes 

(Fig. 1 D), suggesting the incorporation of a dimer of GFP-H2A 

and H2B (GFP-H2A–H2B) into chromatin by exchange. This 

stoichiometry is unlikely to be created by the nonspecifi c ag-

gregation of a GFP-H2A–containing histone octamer from the 

extract onto chromatin, as H2A–H2B and H3–H4 are present in 

different complexes in the chromatin-free fraction (see Fig. 5 B; 

Chang et al., 1997; Tagami et al., 2004).

We next used specifi c inhibitors to examine whether the 

incorporation of histones depends on transcription and/or DNA 

replication in permeabilized cells. Most H2A–H2B appeared 

to be exchanged independently of ongoing RNA polymerase II 

transcription and DNA replication, as the incorporation of GFP-

H2A and H2B-GFP was still observed in the presence of 

α- amanitin and aphidicolin, respectively (Fig. 2 and not 

depicted). The incorporation of H3.1-GFP into chromatin was 

coupled to DNA replication, as the signal almost disappeared in 

the presence of aphidicolin (Fig. 2). These results are reminis-

cent of the different behaviors of H2A–H2B and H3.1–H4 ob-

served in  living mammalian cells (Louters and Chalkley, 1985; 

Jackson, 1990, Kimura and Cook, 2001; Benson et al., 2006).

Purifi cation of the activity required 
for histone H2A–H2B incorporation 
from HeLa cell extract
To analyze whether GFP-H2A–H2B dimer alone can be in-

corporated into chromatin, permeabilized cells were incubated 

Figure 2. Effects of polymerase inhibitors on the 
 incorporation of GFP histones. Permeabilized HeLa 
cells were incubated in extracts prepared from cells 
expressing GFP-H2A and H3.1-GFP as in Fig. 1. In 
some cases, inhibitors of RNA polymerase II (2 μg/ml 
α-amanitin) and/or DNA polymerase (5 μg/ml 
aphidicolin) were added. Three views of single con-
focal sections are shown. Bar, 10 μm.



JCB • VOLUME 175 • NUMBER 3 • 2006 392

with GFP-H2A–H2B purifi ed from HeLa cells expressing GFP-

H2A (Fig. 3). Although GFP-H2A–H2B alone failed to be in-

corporated, its incorporation was restored when supplemented 

with HeLa cell extract (Fig. 3 C), suggesting the presence of 

soluble factors required for H2A–H2B exchange in the extract. 

By following the incorporation of GFP-H2A under a fl uores-

cent microscope, we purifi ed the activity required for H2A–H2B 

exchange using column chromatography (Fig. 4 A). The purest 

active fraction consisted of three major bands by SDS-PAGE 

(Fig. 4 B). Mass spectrometry analysis identifi ed these polypep-

tides as PP2Cγ/PPM1G (Travis and Welsh, 1997; Murray et al., 

1999), Nap1/Nap1L1 (Ishimi et al., 1984), and Nap2/Nap1L4 

(Rodriguez et al., 1997). It was not surprising to fi nd Nap1 

and Nap2 in the active fractions, as they have been described 

as  histone chaperones that assist nucleosome assembly in vitro 

(Ishimi et al., 1984; Rodriguez et al., 1997). In contrast, no link 

between PP2Cγ and histones was previously established, which 

prompted us to focus on the function of PP2Cγ in histone H2A–

H2B exchange. The phosphatase might regulate the chaperone 

activity of Nap1/2 by altering their phosphorylation state. On 

the other hand, PP2Cγ might also mediate the H2A–H2B ex-

change as such because it has a unique acidic domain (Travis 

and Welsh, 1997) that could potentially interact with histone 

H2A–H2B.

Recombinant Nap1, Nap2, 
and PP2C𝛄 individually support 
H2A–H2B incorporation
To examine the relationship between H2A–H2B exchange ac-

tivity and the individual proteins, we incubated permeabilized 

cells with the purifi ed GFP-H2A–H2B and each recombinant 

protein fused to a histidine hexamer (His) tag expressed in and 

purifi ed from Escherichia coli (Fig. 4, C and D). GFP-H2A was 

incorporated into chromatin in the presence of either His-Nap1, 

-Nap2, or -PP2Cγ (Fig. 4 D), and similar results were obtained 

when ATP was omitted from the system (Fig. S1, available at 

Figure 3. The incorporation of purifi ed GFP-H2A–H2B into  permeabilized 
cell chromatin requires HeLa cell extract. (A) Strategy.  Permeabilized 
HeLa cells are incubated in the nucleotide mixture containing Cy3-
dUTP with GFP-H2A–H2B dimer in the presence or absence of extract 
from nonfl uorescent HeLa cells. (B) SDS-PAGE. H2A–H2B and GFP-
H2A–H2B dimers purifi ed from chromatin of HeLa cells and cells stably 
 expressing GFP-H2A, respectively, were analyzed by SDS-PAGE and 
Coomassie staining. (C) GFP-H2A incorporation. Permeabilized cells 
were incubated with 10 μg/ml of purifi ed GFP-H2A–H2B ± HeLa S100 
extract. Two views (GFP and DAPI) of single confocal sections are shown. 
Bar, 10 μm.

Figure 4. Identifi cation of histone exchange activity. (A) Chromatography 
procedure to purify the activity assisting H2A–H2B exchange. (B) Identifi ca-
tion of proteins associated with H2A–H2B exchange activity. The Superose 
6 fractions were separated by SDS-PAGE and stained with Coomassie 
(top), and the activity supporting GFP-H2A incorporation was followed 
under a microscope (bottom). The 76- and 54/50-kD bands were identi-
fi ed as PP2Cγ and Nap1/Nap2 by mass spectrometry as indicated. 
(C) Recombinant proteins. His-tagged PP2Cγ, the mutants, Nap1, and Nap2 
expressed in and purifi ed from E. coli were analyzed by SDS-PAGE and 
Coomassie staining. (D) GFP-H2A–H2B incorporation supported by Nap1, 
Nap2, and PP2Cγ. Permeabilized cells were incubated in 10 μg/ml 
GFP-H2A–H2B ± HeLa extract or indicated recombinant proteins (30 or 
90 μg/ml). In the case of mixing three proteins, an equal amount of each 
protein (10 or 30 μg/ml) was added to give the fi nal concentration (30 or 
90 μg/ml, respectively). Two views of single confocal sections are shown. 
(B and D) Bars, 10 μm.
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http://www.jcb.org/cgi/content/full/jcb.200608001/DC1), sug-

gesting that PP2Cγ itself possesses ATP-independent chaper-

one activity, as do Nap1 and Nap2. Although the cofractionation 

of these three proteins by gel fi ltration chromatography (Fig. 4 B) 

suggests their presence in a complex, only additive effects on 

the incorporation of GFP-H2A–H2B were observed when these 

three recombinant proteins were mixed (Fig. 4 D).

As the acidic domain is unique to PP2Cγ among PP2C 

family members (Travis and Welsh, 1997; Murray et al., 1999), 

this domain might be essential for the chaperone function. 

 Indeed, a phosphatase mutant lacking the acidic domain (∆AcDo) 

did not support GFP-H2A incorporation (Fig. 4 D).  Furthermore, 

coimmunoprecipitation analysis confi rmed that the physical 

 interaction of PP2Cγ with H2A–H2B requires this domain 

(Fig. 5 A). When FLAG-tagged phosphatase was transiently ex-

pressed in human 293T cells and recovered using anti-FLAG 

agarose beads, substantial amounts of endogenous H2A and 

H2B were coprecipitated with FLAG-PP2Cγ but not with 

FLAG-∆AcDo (Fig. 5 A). The interaction between basic pro-

teins like histones and the acidic domain could occur through 

nonspecifi c binding as a result of the positive and negative 

charges. However, the immunoprecipitation experiments show 

specifi c binding of the phosphatase to H2A–H2B because only 

these two, but not the other histones (i.e., H1, H3, and H4), 

were coprecipitated even though all histone subtypes are posi-

tively charged. The complex formation between GFP-H2A–

H2B and PP2Cγ in the cell extract (used in Fig.1) was observed 

by immunoprecipitation using anti-GFP agarose beads (Fig. 5, 

B and C). The presence of PP2Cγ as well as Nap1 in the immuno-

precipitates was confi rmed by mass spectrometry (Fig. 5 B) and 

immunoblotting (Fig. 5 C). A two-hybrid cDNA library screen 

also yielded histone H2B as an interactor with PP2Cγ, and the 

interaction required the phosphatase’s acidic domain (unpub-

lished data).

PP2C𝛄 dephosphorylates nucleosome-free 
histone H2A–H2B
The aforementioned results showing the physical interaction 

between PP2Cγ and H2A–H2B suggest that these histones 

could be substrates for the phosphatase. Therefore, we analyzed 

the phosphorylation state of FLAG-PP2Cγ–bound histones us-

ing acid-urea-Triton (AUT) gel electrophoresis and immuno-

blotting with specifi c antibodies directed against phosphorylated 

histones (Fig. 6 A). As expected, histones coprecipitated with 

the wild-type phosphatase were poorly recognized by antiphos-

phohistone antibodies. In contrast, histones bound to a phos-

phatase-inactive mutant (D496A) comprised detectable levels 

of phosphorylated molecules, including those related to DNA 

damage response and apoptosis such as Ser139-phosphorylated 

H2AX (called γ-H2AX; Rogakou et al., 1999) and Ser14-phos-

phorylated H2B (Cheung et al., 2003; Fernandez-Capetillo 

et al., 2004), although the overall migration pattern was similar to 

those bound to the wild-type phosphatase. As bulk nucleosomal 

histones were still phosphorylated in cells overexpressing the 

wild-type phosphatase (Fig. 6 A and by immunofl uorescence; 

not depicted), only nucleosome-free H2A–H2B may be de-

phosphorylated by the phosphatase. Consistently, the purifi ed 

His-PP2Cγ effi ciently dephosphorylated nucleosome-free his-

tones, including γ-H2AX in vitro (Fig. 6, C and D). As the D496A 

mutant still supported histone exchange in permeabilized cells 

(Fig. 4 D), the histone exchange and dephosphorylation do not 

appear to be coupled. These results suggest that a nucleosome-

free H2A–H2B that binds to PP2Cγ may be dephosphorylated 

before its deposition into a nucleosome. Although we did not 

obtain positive data indicating the dephosphorylation of nucleo-

somal histones by PP2Cγ in overexpression and in vitro assays, 

it is also possible that additional cellular factors, which may be 

limited in the assays, stimulate the phosphatase activity or tar-

geting toward the nucleosomal histones.

We next tested whether PP2Cγ has in vitro nucleosome 

assembly activity using a supercoiling assay (Fig. S2, available at 

http://www.jcb.org/cgi/content/full/jcb.200608001/DC1) in which 

the assembly of nucleosomes can be assessed by the formation 

of supercoils from relaxed circular DNA (Ishimi et al., 1984; 

Figure 5. Binding of histones with PP2C𝛄. (A) SDS-PAGE analysis of 
anti-FLAG immunoprecipitation. Immunoprecipitates from 293T cells trans-
fected with GFP (control), FLAG-PP2Cγ (wild type [wt]), and FLAG-PP2Cγ 
(∆AcDo) were separated by SDS-PAGE and stained with Coomassie. The 
two bands smaller than 19 kD that coprecipitated with FLAG-PP2Cγ were 
identifi ed as histone H2B and H2A by mass spectrometry and immunoblot-
ting. (B and C) Immunoprecipitation of GFP-H2A and its binding proteins. 
GFP-H2A was immunoprecipitated from S100 extract using anti-GFP aga-
rose beads. The immunoprecipitated materials from control (HeLa) and ex-
tract prepared from cells stably expressing GFP-H2A (HeLa:GFP-H2A) 
were separated by SDS-PAGE and stained with Coomassie (B) or analyzed 
by immunoblotting (C). (B) Coomassie staining. The positions of size stan-
dards are indicated on the left. Proteins identifi ed by mass spectrometry 
are indicated on the right. Asterisks indicate IgG heavy and light chains re-
leased from beads. (C) Immunoblotting. The membranes were probed with 
anti-PP2Cγ (left) and anti-Nap1 (right). The target proteins of the antibodies 
and IgG from beads are indicated by arrows and asterisks, respectively.
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Rodriguez et al., 1997). Most of the plasmid DNA became su-

percoiled in the presence of Nap1, but only some supercoiled 

molecules accumulated even in the presence of high levels of 

PP2Cγ (Fig. S2), indicating that PP2Cγ has only weak de novo 

nucleosome assembly activity.

Effect of PP2C𝛄 knockdown on H2A–H2B 
mobility in living HeLa cells
To investigate whether PP2Cγ is involved in the regulation of 

H2A–H2B kinetics in living cells, we knocked down PP2Cγ in 

HeLa cells expressing histone-GFP using RNAi; 3 d after the 

transfection of a specifi c siRNA, the level of PP2Cγ decreased 

substantially to <5% of the normal level (Fig. 7, A and B). 

The mobility of H2A–H2B was analyzed by fl uorescence recovery 

after photobleaching (Kimura and Cook, 2001). The recovery 

 kinetics of both GFP-H2A and H2B-GFP decreased in cells 

transfected with PP2Cγ-specifi c siRNA compared with those 

with the control siRNA (Fig. 7, C and D), whereas the mobility 

of the linker histone H1c-GFP was unaffected (Fig. 7 E). These 

observations in living cells refl ect the results from in vitro 

 assays, suggesting that at least a part of H2A–H2B exchange 

is mediated by PP2Cγ as a histone chaperone in HeLa cells.

PP2C𝛄-defi cient DT40 cells show 
hypersensitivity to caffeine
To gain further insights into the biological function of PP2Cγ in 

vertebrate cells, we established PP2Cγ-defi cient chicken DT40 

cells by gene targeting (Fig. S3, available at http://www.jcb.org/

cgi/content/full/jcb.200608001/DC1). As the defi cient cells 

were generated by a simple knockout strategy to disrupt both 

alleles, PP2Cγ does not appear to be essential for cell growth. 

However, substantial growth defects were observed when DNA 

replication and damage checkpoints were abrogated by  caffeine, 

which preferentially inhibits ataxia telangiectasia mutated– and 

ataxia telangiectasia and RAD3 related–dependent pathways, 

although its exact interfering points remain elusive (Kaufmann 

et al., 2003; Abraham, 2004). As shown in Fig. 8, PP2Cγ-

defi cient cells were more sensitive to caffeine compared with 

the wild type in a growth rate assay (Fig. 8 A) and in a colony 

formation assay (Fig. 8 B). In 2 mM caffeine, the wild-type 

cells continued to grow for 3 d, but PP2Cγ-defi cient cells 

stopped growing at day 2. At a higher concentration (4 mM), the 

number of live cells (judged by the exclusion of trypan blue) 

became considerably lower after day 2 in PP2Cγ-defi cient cells 

(Fig. 8 A). The colony formation assay revealed that the survival 

rate after 22 h of incubation in 4 mM caffeine was 35 ± 8 and 

8.2 ± 0.3% in the wild-type and PP2Cγ-defi cient cells, respec-

tively (Fig. 8 B). As caffeine is known to sensitize cells to DNA 

double-strand breaks induced by ionizing radiation (Kaufmann 

et al., 2003; Abraham, 2004), we compared the sensitivity of 

these cells with γ-ray irradiation in the presence or absence of 

caffeine. Although PP2Cγ-defi cient cells showed a similar radi-

ation sensitivity to the wild type without caffeine, they became 

more sensitive when 1 mM caffeine was present in the colony-

forming medium (Fig. 8 C).

These results indicate that PP2Cγ is not essential for DNA 

double-strand break repair but suggest its involvement in recov-

ery from damage. As H2AX is known to be phosphorylated 

around damaged chromatin, its dephosphorylation is required 

for full recovery from the damage response (Chowdhury et al., 

2005; Keogh et al., 2005). Even though PP2A is likely to be the 

major γ-H2AX phosphatase in higher eukaryotes (Chowdhury 

et al., 2005), PP2Cγ could be involved in a backup dephosphor-

ylation and deposition pathway. To assess the role of PP2Cγ in 

γ-H2AX dephosphorylation, the phosphorylation level of 

H2AX (i.e., the signal detected with antibody directed against 

γ-H2AX) was compared between the wild-type and PP2Cγ-

 defi cient cells in response to DNA damage combined with treat-

ment with calyculin A, an inhibitor of PP1 and PP2A (Nazarov 

et al., 2003; Chowdhury et al., 2005). In both cells, γ-H2AX 

Figure 6. Dephosphorylation of histones by PP2C𝛄. (A) PP2Cγ-bound his-
tones analyzed by AUT gel electrophoresis. After transfecting FLAG-PP2Cγ 
(wild type [wt]) or FLAG-PP2Cγ (D496A) into 293T cells, PP2Cγ-bound 
and nucleosomal histones were separated in an AUT gel. Coomassie stain-
ing (left) and immunoblots with the indicated phospho-specifi c antibodies 
are shown. The positions of histone subtypes and their phosphorylated 
forms (arrows) are indicated. (B) Dephosphorylation of histones by PP2Cγ. 
2 μg of 32P-labeled histones, which were phosphorylated by MSK1, were 
incubated with different amounts (lanes 2 and 5, 12.5 ng; lanes 3 and 6, 
50 ng; lanes 4 and 7, 250 ng) of His-PP2Cγ (wt; lanes 2–4) or mutant 
(D496A; lanes 5–7) and separated by SDS-PAGE. The radioactivity and 
Coomassie-stained histones are shown. The 32P signals from all of the his-
tones disappear by dephosphorylation with increasing amounts of His-
PP2Cγ but not with His-PP2Cγ (D496A). (C) Dephosphorylation of H2AX 
by PP2Cγ. 1 μg histone H2A–H2B fraction prepared from 12 Gy–irradi-
ated HeLa cells was incubated alone (lane 1) or with different amounts 
(lanes 2 and 5, 1 ng; lanes 3 and 6, 5 ng; lanes 4 and 7, 25 ng) of His-
PP2Cγ (wt; lanes 2–4) or mutant (D496A; lanes 5–7) and separated by 
SDS-PAGE. The phosphorylation level of H2AX was analyzed by immuno-
blotting with anti–γ-H2AX. The Coomassie-stained gel (CBB) is shown as a 
loading control.
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appeared at a similar level 2 h after irradiation (8 Gy) and disap-

peared by 8 h (Fig. 8 D, lanes 1–6); faint signals of apoptosis-

associated H2B (S14) phosphorylation appeared by 8 h. When 

cells were incubated with calyculin A, γ-H2AX was accumu-

lated by 8 h even in the wild-type cells, probably as a result of 

spontaneous or replication-associated damages, which is con-

sistent with the involvement of PP2A in γ-H2AX dephosphory-

lation (Chowdhury et al., 2005). The levels of γ-H2AX and 

phospho-H2B (S14) were higher in PP2Cγ-defi cient cells in the 

presence of calyculin A (Fig. 8 D, lanes 9 and 12), suggesting 

that PP2Cγ is also one of the phosphatases that regulate 

γ-H2AX and phosphorylated H2B. The difference between wild-

type and mutant cells became more evident when the cells were 

irradiated and incubated in calyculin A, as more γ-H2AX and 

phospho-H2B (S14) were accumulated in PP2Cγ-defi cient cells 

(Fig. 8 D, lanes 13–18). These results suggest that PP2Cγ de-

phosphorylates γ-H2AX and phosphorylated H2B in wild-type 

DT40 cells.

Discussion
Identifi cation of histone chaperones 
required for H2A–H2B incorporation 
into chromatin in permeabilized cells
To understand the biological function and molecular mecha-

nisms of histone dynamics, we established a permeabilized cell-

based assay for histone assembly and exchange. GFP-H2A and 

H2B-GFP were incorporated into euchromatin in permeabilized 

cells. This is consistent with the exchange of H2A–H2B in liv-

ing cells, which can occur independently of DNA replication 

Figure 7. Effects of PP2C𝛄 knockdown on kinetics of GFP-tagged H2A 
and H2B in living cells. (A and B) Knockdown of PP2Cγ by siRNA. The 
amount of PP2Cγ in HeLa cells transfected with control or PP2Cγ-specifi c 
siRNA was evaluated by immunoblotting (A) and immunofl uorescence 
(B; 3 d after transfection) with anti-PP2Cγ. Anti–α-tubulin was used as a 
loading control. (C–E) FRAP. 3 d after RNA transfection, the mobility of his-
tone-GFP was analyzed by bleaching a half of a nucleus (H2A and H2B) 
or a 2-μm spot (H1c) after the fl uorescence recovery. Examples (GFP-H2A) 
and the recovery curves of GFP-H2A and H2B-GFP (D) or H1c-GFP (E) are 
shown. The means of the relative intensity in the bleached area are indi-
cated with the SD (n ≥ 9). (B and C) Bars, 10 μm.

Figure 8. Phenotypes of PP2C𝛄-defi cient cells. (A) Growth curve. The 
wild-type (Cl18; left) and PP2Cγ-defi cient cells (clone KO30; right) were 
plated (105 cells/ml), grown in caffeine (0, 2, or 4 mM), and the number 
of cells excluding trypan blue was counted every 24 h until 72 h. n = 4. 
(B and C) Colony formation assay. The number of colonies 10–12 d after 
plating was expressed as the relative value to that in controls without treat-
ments. n = 3. (A–C) The mean and SD (error bars) are shown. (B) Caffeine 
sensitivity. Cells were treated with caffeine for 4, 10, or 22 h, diluted, and 
plated. (C) Radiation sensitivity. Cells were plated in methylcellulose 
 medium ± 1 mM caffeine, irradiated (0, 2, 4, or 8 Gy), and incubated. 
(D) Effect of calyculin A on the phosphorylation of H2AX and H2B. The 
wild-type (wt; lanes 1–3, 7–9, and 13–15) or PP2Cγ-defi cient (lanes 4–6, 
10–12, and 16–18) cells were irradiated (8 Gy; lanes 1–6 and 13–18) or 
not irradiated (lanes 7–12), and calyculin A was added (lanes 7–18). 
Cells were collected either immediately (0 h), 2, or 4 h after irradiation, 
and the levels of γ-H2AX and phosphorylated H2B (S14) were analyzed 
by immunoblotting. The Coomassie-stained gel (CBB) is shown as a load-
ing control. KO, knockout.
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and transcription (Jackson, 1990; Kimura and Cook, 2001), 

preferentially in chromatin-containing acetylated H4 (Benson 

et al., 2006). H3.1-GFP assembled into replicated chromatin but 

contrasted to H2A–H2B, which is also reminiscent of the be-

havior in living cells (Kimura and Cook, 2001). By purifying 

the activity that assists GFP-H2A–H2B incorporation into chro-

matin in permeabilized cells, we identifi ed three proteins—

Nap1, Nap2, and PP2Cγ—in the purest fraction. Finding these 

Nap1-related proteins in our active fractions reassures us that 

the permeabilized cell-based assay has physiological relevance. 

The third protein we found was PP2Cγ, which harbors a unique 

acidic domain (Travis and Welsh, 1997) and was purifi ed as a 

factor that stimulates spliceosome assembly in vitro (Murray 

et al., 1999).

Our analyses indicated that the phosphatase as such can 

assist the incorporation of H2A–H2B into chromatin in permea-

bilized cells and that it binds to and dephosphorylates histone 

H2A and H2B subtypes. Although the acidic domain of PP2Cγ 

could potentially mediate nonspecifi c electrostatic binding to 

basic proteins such as the histones, the fact that H2A–H2B was 

exclusively coimmunoprecipitated among all of the histones 

using FLAG-tagged phosphatase suggests that the interaction 

between PP2Cγ and H2A–H2B is specifi c. These histone chap-

erones do not require ATP for assisting H2A–H2B incorpo-

ration into chromatin in permeabilized cells as well as for in 

vitro nucleosome assembly with naked DNA. Because we fol-

lowed the most active fractions that support GFP-H2A incor-

poration globally in euchromatin, other H2A–H2B exchange 

factors that are probably less abundant and act on more spe-

cifi c loci, including facilitating chromatin transcription (FACT; 

 Belotserkovskaya and Reinberg, 2004) and ATP-dependent 

remodeling factors (Flaus and Owen-Hughes, 2004), were not 

found in the fi nal preparation. Although Nap1/2 and PP2Cγ 

may mediate global H2A–H2B exchange independently of tran-

scription and DNA replication, FACT may participate in tran-

scription-coupled exchange. Future studies may reveal whether 

FACT supports H2A–H2B incorporation in a transcription-

 dependent manner in permeabilized cells.

A recent study revealed that ATP-dependent chromatin 

remodeling complexes can mediate histone exchange in addi-

tion to their remodeling function without the displacement of 

histone octamers (Flaus and Owen-Hughes, 2004). Therefore, 

it is also possible that the function of ATP-independent chaper-

ones like Nap1/2 and PP2Cγ is solely to escort H2A–H2B and 

transfer the dimer to the ATP-dependent machineries, such as 

the yeast SWR1 complex that catalyzes the exchange between 

a canonical dimer and an H2AZ–H2B dimer (Mizuguchi 

et al., 2004). However, several lines of evidence suggest that 

the chaperones might also mediate H2A–H2B incorporation 

by themselves in addition to their escorting function. First, 

yeast Nap1 has the ability to exchange H2A–H2B in mono-

nucleosomes in vitro (Park et al., 2005). Second, additional 

ATP is not required for H2A–H2B incorporation supported 

by Nap1/2 and PP2Cγ in permeabilized cells. Third, a sub-

stantial H2B-GFP recovery was still observed in living cells 

by FRAP even when the cellular ATP pool was depleted by 

treatment with sodium azide (unpublished data). Thus,  although 

ATP-dependent factors might be required for the exchange 

of a dimer containing H2AZ at specifi c loci or during gene 

activation, ATP-independent chaperones may participate in the 

basal level of exchange of the major H2A and other variants. 

Alternatively, the major role of ATP-independent chaperones 

may be to deposit an H2A–H2B dimer into an incomplete 

nucleosome lacking a dimer, which can result from  positive 

torsional stress (Jackson et al., 1994) or through ATP-driven 

eviction. This may account for the slow exchange rate of 

H2A–H2B in living cells despite the presence of a large pool 

of PP2Cγ (�106 molecules/HeLa cell) diffusing almost freely 

in the  nucleus (unpublished data).

Involvement of PP2C𝛄 in DNA 
damage response
To understand the biological function of PP2Cγ at the cellu-

lar level, we used chicken DT40 cells to create knockout cells 

by gene targeting. Although the defi cient cells are viable, they 

show subtle growth retardation and a remarkable hypersensi-

tivity to caffeine, which abrogates DNA replication and dam-

age checkpoints. One possible mechanism to explain these 

phenomena is that the chaperone function together with the 

phosphatase activity plays a role in completing chromatin 

formation after DNA repair and/or replication by depositing 

dephosphorylated H2A–H2B molecules (Fig. 9). H2AX is 

phosphorylated around damaged chromatin (Rogakou et al., 

1999), and its dephosphorylation is required for full recovery 

from damage responses. Also, H2AX molecules outside the 

damaged area are kept from undergoing phosphorylation for 

several hours. Although PP2A seems to play a major role in 

γ-H2AX dephosphorylation on chromatin (Chowdhury et al., 

2005), we showed that PP2Cγ likewise mediates γ-H2AX 

and H2B dephosphorylation, as PP2Cγ-defi cient cells showed 

a greater accumulation of γ-H2AX and phosphorylated H2B 

(S14) compared with wild-type cells when PP1 and PP2A were 

inhibited by calyculin A.

Although the eviction of γ-H2AX or phosphorylated H2B 

may be mediated by other proteins such as the Drosophila 

Tip60-containing complex (Kusch et al., 2004), PP2Cγ may 

passively deposit dephosphorylated H2A–H2B or H2AX–H2B 

Figure 9. A model for PP2C𝛄 function. PP2Cγ binds to nucleosome-free 
H2A–H2B (or H2AX–H2B) and removes phosphate groups (indicated by 
circled P) before the next deposition. Alternatively, the phosphatase activity 
and/or substrate specifi city might be controlled by binding with histones. 
See Discussion for details.
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to incomplete nucleosomes lacking one dimer. This view is con-

sistent with the observed uncoupling of the chaperone function 

and phosphatase activity of PP2Cγ; histone dephosphorylation 

can occur at any time after the binding of PP2Cγ until deposition 

(Fig. 9). Most H2A–H2B that bound to PP2Cγ but away from 

nucleosomes was indeed dephosphorylated. The lack of PP2Cγ 

in the DT40 knockout cells may thus delay the recovery from 

damage. When checkpoints are functional, such a subtle repair 

defect would not be critical and might only cause a subtle 

delay in cell growth. However, when checkpoints are abrogated, 

more cells with damaged chromatin would enter into mitosis 

for catastrophe.

An alternative possibility is that the substrate specifi city 

or phosphatase activity of PP2Cγ is regulated by binding to 

H2A–H2B (Fig. 9); the level of nucleosome-free H2A–H2B 

could be altered by damage or replication fork arrest. The type 

2C phosphatase family members are indeed involved in check-

point responses (Leroy et al., 2003; Lu et al., 2005), and the 

γ subtype in particular might take part in inactivating check-

points by sensing the free H2A–H2B level in the nucleus. 

Finally, a link between chromatin-remodeling factors and alter-

native pre-mRNA splicing was recently reported (Batsche et al., 

2006). Consistent with this observation, PP2Cγ was previously 

identifi ed as a factor that stimulates pre-mRNA splicing in vitro 

(Murray et al., 1999), raising the interesting possibility that 

PP2Cγ coordinately regulates stress responses in mammalian 

cells at the level of chromatin and RNA splicing.

Concluding remarks
It is now widely acknowledged that histone modifi cation is key 

for the regulation of chromatin functions. Recent studies further 

indicate that the deposition and exchange of appropriate histone 

variants to specifi c chromosome loci are also important for gene 

expression and genome integrity (Loyola and Almouzni, 2004; 

Henikoff and Ahmad, 2005). A connection between the histone 

modifi cation and deposition has been shown typically in the 

case of histone H4; before replication-coupled assembly, the 

newly synthesized molecules are diacetylated by HAT1 histone 

acetylase in the H3.1–H4 deposition complex (Chang et al., 

1997; Tagami et al., 2004). Although diacetylation is not a pre-

requisite for assembly (Ma et al., 1998), this modifi cation con-

tributes to the recovery from replication block-mediated DNA 

damage (Barman et al., 2006). Similarly, in the case of H2A–

H2B and H2AX–H2B, the deposition of unphosphorylated 

forms mediated by PP2Cγ appears to play a role in DNA dam-

age responses. Thus, controlling the incorporation of appropri-

ately modifi ed histones seems to be important for maintaining 

genome integrity. Future studies should reveal how individual 

ATP-independent chaperones and ATP-dependent remodeling 

complexes function in distinct exchange processes in different 

chromatin contexts. Although differences in histone exchange 

kinetics in vivo were shown decades ago (Manser et al., 1980; 

Louters and Chalkley, 1985), the biological signifi cance of the 

exchange and the underlying molecular mechanisms are just 

emerging. The approach presented in this study may contribute 

to bridging the gap between live cell observations and biochem-

ical analyses.

Materials and methods
Histone exchange and assembly in permeabilized cells
In typical experiments, HeLa cells were plated in a 12-well plate containing 
15-mm coverslips and were grown up to subconfl uence. Cells were chilled 
on ice, washed twice in ice-cold physiological buffer (PB; 100 mM 
CH3COOK, 30 mM KCl, 10 mM Na2HPO4, 1 mM DTT, 1 mM MgCl2, and 
1 mM ATP; Jackson and Cook, 1985) containing 5% Ficoll (PBF; pH 7.4; 
1 ml per well; Nacalai Tesque), permeabilized in PBF containing 0.1% 
 Triton X-100 (1 ml; for 5 min on ice), and washed twice in 1 ml PBF on ice. 
Cells were incubated for 1 h at 30°C in a reaction mixture containing cell 
extract (40%) or purifi ed proteins supplemented with 100 μM each of NTP 
and dNTP (GE Healthcare), 0.4 μM Cy3-dUTP (PerkinElmer), and 800 μM 
MgCl2 in PBF. For incubation, a coverslip was overlaid (cell side down) on 
a 100-μl drop of the reaction mixture on Parafi lm covering a fl at aluminum 
block in a water bath at 30°C. After washing twice in 1 ml PBF for 5 min 
on ice in a 12-well plate, cells were fi xed in 4% PFA (Electron Microscopy 
Sciences) in 250 mM Hepes-NaOH, pH 7.4 (Wako), for 20 min at room 
temperature, washed three times in 1 ml PBS, and DNA was counterstained 
with DAPI (12.5 ng/ml in PBS; 1 ml for 15 min; Nacalai Tesque). After 
washing twice in 1 ml PBS, coverslips were mounted using Prolong Gold 
(Invitrogen). In some cases, ATP and the other nucleotides were omitted 
from PBF and the reaction mixture.

For immunolabeling (Fig. 1 C), permeabilized cells were incubated 
in the reaction mixture containing 40% GFP-H2A extract and 2 μM Cy5-
dUTP instead of Cy3-dUTP for 30 min at 30°C. After fi xation, cells were 
treated with 1% Triton X-100 in PBS for 20 min, washed fi ve times in PBS, 
and incubated in blocking buffer (0.2% gelatin, 1% BSA, and 0.05% 
Tween 20 in PBS, pH 8.0) for 30 min and then with rabbit polyclonal anti-
bodies directed against hyperacetylated H4 (1:1,000; Upstate Biotechnol-
ogy) or H4-trimethylated K20 (1:500; Abcam) in the same buffer for 3 h. 
Cells were washed in PBS containing 0.05% Tween 20 (PBST) three times 
for 10 min, incubated in Cy3-conjugated donkey anti–mouse IgG (1:500; 
Jackson ImmunoResearch Laboratories) overnight at 4°C, and washed with 
PBST three times for 10 min before DAPI staining.

Fluorescence images were sequentially collected using a confocal 
microscope featuring 405-, 488-, 543-, and 633-nm laser lines with the 
optimized pinhole setting operated by the built-in software: either a micro-
scope (LSM510 META; Carl Zeiss MicroImaging, Inc.) with a C-Apo 40× 
NA 1.2 objective lens (for Figs. 1 B and 7 B) or a microscope (FV-1000; 
Olympus) with a UPlanSApo 60× NA 1.35 lens (for Figs. 1 C and 2–4). 
Image fi les were converted to tiff format using the operating software, 
merged, linearly contrast stretched (with the same setting in each set of 
 experiments) using Photoshop version 7.01 (Adobe), and imported into 
Canvas 8 (Deneva) for assembly.

For chromatin immunoprecipitation, cells were centrifuged at 1,300 g 
for 10 min at 4°C after each step for buffer replacement. After the incuba-
tion and washing, nucleosomes were prepared, and GFP-containing nu-
cleosomes were precipitated as described previously (Kanda et al., 1998; 
Kimura and Cook, 2001).

Preparation of cell extracts and protein purifi cation
HeLa cells and derivatives expressing H2B-GFP (Kanda et al., 1998) and 
H3.1-GFP were grown as described previously (Kimura and Cook, 2001), 
and lines expressing GFP-H2A and H1c-GFP were established by transfect-
ing the expression vectors (Misteli et al., 2000; Perche et al., 2000). Cell 
extracts were prepared based on the study by Dignam et al. (1983) with 
modifi cations. The S100 extract was prepared using a 1.5 cell-packed vol-
ume of 10 mM CH3COOK, 3 mM KCl, 1 mM Na2HPO4, 1 mM MgCl2, 
1 mM ATP, 1 mM DTT, 10 mM Hepes-KOH, pH 7.4, and Complete protease 
inhibitor cocktail (EDTA-free; Roche) and dialyzed against PB plus inhibi-
tors (1.5 μg/ml leupeptin, 2.5 μg/ml aprotinin, and 1 μg/ml pepstatin A; 
Wako). The nuclear pellet was extracted using an equal volume of 20 mM 
Hepes-KOH, 0.6 M KCl, 0.2 mM EDTA, 25% glycerol, 1 mM DTT, 1.5 mM 
MgCl2, and protease inhibitor cocktail (Roche) to yield the nuclear extract, 
which was also dialyzed against PB. Histone H2A–H2B and H3–H4 were 
separately purifi ed from the nuclear pellet essentially according to Simon 
and Felsenfeld (1979), and the GFP-H2A–H2B fraction was separated 
from untagged H2A–H2B using gel fi ltration column chromatography 
(HiLoad Superdex 75; GE Healthcare).

To purify the activity assisting histone H2A–H2B incorporation in 
permeabilized cells, S100 extract was fi rst fractionated through a histone 
H2A–H2B column, which was prepared by coupling 3 mg of the purifi ed 
H2A–H2B to 1 ml N-hydroxysuccinimide ester–activated Sepharose (GE 
Healthcare) according to the manufacturer’s instructions. Approximately 
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6 mg/ml HeLa S100 extract was mixed with 5 M NaCl to yield a fi nal 
salt concentration of 0.5 M before applying to the column (2 ml per run). 
After washing with fi ve column volumes of PB containing 0.5 M NaCl, 
bound proteins were eluted with a linear gradient of NaCl (0.5–2 M in 
PB; 20 column volumes). Each fraction was concentrated, and the buffer 
was substituted to PB using Ultrafree 0.5 (Millipore) before use in the 
 permeabilized cell assay with 10–20 μg/ml of purifi ed GFP-H2A–H2B. 
The activity supporting the nuclear localization of GFP-H2A except in 
 nucleoli was followed under a fl uorescence microscope (Axiovert2; Carl 
Zeiss MicroImaging, Inc.). The active fractions eluted in �1 M NaCl were 
further separated using a MonoQ 5/50 GL column (GE Healthcare) 
with a linear gradient of NaCl (0–2 M in PB; 20 column volumes). The 
most active fraction eluted in �0.6 M NaCl was concentrated and sepa-
rated (0.2 ml in each fraction) on a Superose 6 gel fi ltration column (GE 
 Healthcare). Proteins were identifi ed by mass spectrometric analysis 
using a mass spectrometer (Ultrafl ex TOF/TOF; Bruker Daltonics) and by 
comparison between the determined molecular weights and theoretical 
peptide masses from the proteins registered in the National Center for 
Biotechnology Information.

Recombinant proteins and phosphatase assay
The cDNAs encoding human Nap1 (Nap1L1) and Nap2 (Nap1L4) 
were amplifi ed by reverse transcription (Revertra Ace and oligo-dT18; 
TOYOBO) of HeLa RNA and PCR (high fi delity PCR master; Roche) 
 using the following primers designed from GenBank/EMBL/DDBJ acces-
sion no. BT007023 (Nap1) and BC022090 (Nap2): Nap1 forward, 
T T A C C A T A T G G C A G A C A T T G A C A A C A A A G A A C A G T C ; Nap1 reverse, 
C A T C A A G C T T C A C T G C T G C T T G C A C T C T G C T G G G T T ; Nap2 forward, 
C C T T C A T A T G G C A G A T C A C A G T T T T T C A G A T G G G G T ; and Nap2 reverse, 
G A C A A A G C T T A C A C C T T G G G G T T A A T T T C C G C A T C A .

The amplifi ed products were purifi ed (QIAGEN), digested with NdeI 
and HindIII, and ligated into pHIT51 (containing T7 promoter, D box, His 
sequence, and multicloning site; provided by H. Tabara, Kyoto University, 
Kyoto, Japan) digested with the same enzymes. The resulting plasmids 
were verifi ed by nucleotide sequencing. The expression plasmids for 
PP2Cγ and the mutants were also constructed by inserting the PP2Cγ se-
quence (Murray et al., 1999) into pHIT51. Each plasmid was introduced 
into BL21-Gold (Stratagene), and expression was induced with 1 mM IPTG 
at 30°C. The His-tagged proteins were purifi ed using Ni-agarose beads 
(Sigma-Aldrich) according to the standard protocol by the manufacturer 
followed by MonoQ chromatography (GE Healthcare) and elution with a 
linear NaCl gradient (0.1–1 M NaCl in 50 mM Tris-Cl, pH 8.0).

For the phosphatase assay of bulk histones, histones purifi ed from 
20 μg HeLa cells were phosphorylated using 1 μg MSK1 (Upstate Biotech-
nology) in 12 mM MOPS, pH 7.0, 15 mM MgCl2, 0.2 mM EDTA, 1 mM 
EGTA, 0.2 mM DTT, 0.1 mM ATP, and 7.4 MBq/ml γ-[32P]ATP for 10 min 
at 30°C. The unincorporated ATP was removed, and the buffer was substi-
tuted with TMD (10 mM Tris-Cl, pH 8.0, 10 mM MgCl2, and 1 mM DTT) 
using Ultrafree fi lters 0.5 (Millipore). The phosphorylated histones (2 μg in 
10 μl) were mixed with a serial dilution of His-tagged proteins (2.5 μl) and 
incubated for 1 h at 37°C. After stopping the reactions by adding 12.5 μl 
of 2× SDS gel loading buffer (Sambrook et al., 1989) and boiling, the 
samples were separated by SDS-PAGE and stained with Coomassie. The 
radioactivity was detected using an imaging analyzer (BAS2000; Fujifi lm). 
For the γ-H2AX dephosphorylation assay, the γ-H2AX–containing H2A–
H2B fraction was prepared from HeLa cells irradiated (12 Gy) using a 
137Cs source at a dose rate of 1.13 Gy/min (Gammacell 40 Exactor; MDS 
Nordion). The H2A–H2B sample (1 μg in 10 μl) was mixed with 2.5 μl 
phosphatases in TMD buffer, incubated for 30 min at 37°C, and the level 
of γ-H2AX was analyzed by immunoblotting using antiphospho-H2AX 
Ser139 antibody (1:1,000; Upstate Biotechnology).

Immunoprecipitation and AUT gel electrophoresis
To immunoprecipitate GFP-H2A and its binding proteins, 1 ml S100 extract 
from HeLa cells (control) or cells expressing GFP-H2A was mixed with 
50 μl anti-GFP agarose beads (Nacalai Tesque). After incubation for 
1.5 h at 4°C with rotation, the beads were collected by centrifugation at 
1,600 g for 5 min at 4°C. After washing four times for 10 min at 4°C in 
PB containing 0.05% Tween 20, 0.2 M NaCl, and protease inhibitor 
cocktail (Nacalai Tesque), the immunoprecipitates were eluted from the 
beads by boiling for 10 min in 60 μl of 2× SDS gel loading buffer 
 (Sambrook et al., 1989).

For Fig. 5 (A and B), the FLAG-PP2Cγ, -∆AcDo, and -D496A plas-
mids were generated by inserting the corresponding cDNAs into a modi-
fi ed version of pcDNA3.1/Hygro (Invitrogen) that contains N-terminal 

FLAG and V5 tags. 293T cells (4 × 90-cm2 dishes; 20% confl uent) were 
transfected with these constructs using a calcium phosphate precipitation 
method (Sambrook et al., 1989). 3 d later, cells were washed with ice-
cold PB, lysed in 2 ml PB containing 0.1% Triton X-100 and protease 
inhibitor cocktail, incubated for 5 min on ice, and cleared by centrifuga-
tion at 1,600 g for 10 min at 4°C. The supernatant was collected and 
mixed with 100 μl anti-FLAG agarose M2 beads (Sigma-Aldrich). After 
incubation and washing in the same buffer four times for 10 min at 4°C, 
the immunoprecipitated material was eluted with 100 μg/ml 3× FLAG 
peptide in PB (three times at 150 μl). The elution was pooled and either 
mixed with 2× SDS gel loading buffer for SDS-PAGE or with 20 mg/ml 
Casamino acids (fi nal concentration of 100 μg/ml; Difco) and 100% tri-
chloroacetic acid (fi nal concentration of 20%) for AUT gel electrophoresis. 
After incubation for 1 h on ice and centrifugation at 20,000 g for 30 
min at 4°C, the pellet was washed with acetone chilled at −20°C and 
dissolved in AUT sample buffer (Pilch et al., 2004). Immunoblotting was 
performed as described previously (Kimura and Cook, 2001) using the fol-
lowing primary antibodies: rabbit antiphospho-H2A/H4 Ser1 (1:1,000; 
Upstate Biotechnology), mouse antiphospho-H2AX Ser139 (1:1,000; 
Upstate Biotechnology), and mouse antiphospho-H2B Ser14 (clone 6C9; 
1:20 hybridoma supernatant).

To produce antiphospho-H2B Ser14, mice were immunized with a 
synthetic peptide KSAPAPKKG(phospho-S)K K A V T K A Q K C  (Sigma-Genosys) 
coupled to keyhole limpet hemocyanin (Kimura et al., 1994), and a hybrid-
oma clone 6C9 was obtained by ELISA screening using the phosphory-
lated and unphosphorylated peptides. As H2B Ser14 is phosphorylated 
during apoptosis (Cheung et al., 2003), the specifi city was then checked 
by the specifi c appearance of positive signals in apoptosis-induced (etopo-
side treated) HeLa cells by immunoblotting and immunofl uorescence.

siRNA transfection and photobleaching
PP2Cγ-specifi c Stealth RNA (Invitrogen; nucleotide number 351-376 or 
642-667 of GenBank EMBL/DDBJ accession no. NM_177983) and the 
control RNA (Invitrogen; number 12935-300) were transfected using Lipo-
fectAMINE2000 (Invitrogen). Total cellular proteins were prepared 1–3 d 
after transfection, separated on an 8% SDS-polyacrylamide gel, and immuno-
blotted (Kimura and Cook, 2001) with mouse monoclonal antibody di-
rected against PP2Cγ (1:10,000; Murray et al., 1999) or α-tubulin 
(1:1,000; Oncogene Research Products) as a control. Cells grown on cov-
erslips were transfected with Stealth RNA and fi xed for immunofl uores-
cence using the mouse anti-PP2Cγ (1:30,000) and Cy3-conjugated 
anti–mouse IgG (1:500; Jackson ImmunoResearch Laboratories).

For photobleaching studies, HeLa cells expressing GFP-H2A, H2B-
GFP, or H1c-GFP (Misteli et al., 2000) grown on glass-bottom dishes (Mat-
Tek) were transfected with Stealth RNA. 3 d later, the dish was set on an 
inverted microscope (LSM510 META; Carl Zeiss MicroImaging, Inc.) in an 
air chamber at 37°C, and the mobility was analyzed by photobleaching 
using the inverted microscope with a plan-Neofl uar 40× NA 1.3 objective. 
For H2A and H2B, fi ve confocal images were collected (512 × 512 pix-
els, zoom 3, maximum scan speed, pinhole 3.7 airy unit, LP505 emission 
fi lter, and 0.3% transmission of 458-nm Ar laser with 75% output power), 
one half of a nucleus was bleached using 100% transmission of 458 and 
488 nm (eight iterations), and images were collected using the original set-
ting every 5 min. For H1c, fi ve images were collected (256 × 256 pixels, 
zoom 8, and scan speed 12), a 2-μm spot was bleached using 100% 
transmission of 458 and 488 nm (eight iterations), and images were col-
lected every 5 s (the graph in Fig. 7 E shows the points of every 10 s for 
ease of comparison). The fl uorescence intensity of the bleached area was 
measured using MetaMorph software (Molecular Devices). After subtract-
ing the background, the intensity was normalized to the initial intensity 
 before bleaching.

DT40 cells
PP2Cγ-defi cient DT40 cells were established using standard methods (Fig. 
S3; Fukagawa et al., 2004) and grown at 37°C. To measure the cell den-
sity, cells were mixed with trypan blue solution (Invitrogen), and the number 
of live cells excluding the dye was counted. To determine the sensitivity to 
caffeine and irradiation, serially diluted cells were plated in methylcellu-
lose plates with or without 1 mM caffeine (Sigma-Aldrich) and irradiated 
using a Gammacell 40 Exactor (Nordion). Colonies were counted 10–12 d 
after plating. For immunoblotting (Fig. 8 D), 4 × 105 cells/ml were irradi-
ated, and calyculin A (Sigma-Aldrich) was immediately added (fi nal con-
centration of 10 ng/ml). A 1-ml aliquot was taken at each time point, and 
cells were collected (600 g for 2 min) and lysed in 100 μl of 2× SDS gel 
loading buffer.
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Online supplemental material
Fig. S1 shows that ATP is not required for GFP-H2A incorporation into 
chromatin in permeabilized cells assisted by PP2Cγ or Nap1. Fig. S2 
shows that PP2Cγ has weak de novo nucleosome assembly activity. Fig. S3 
shows evidence for the generation of PP2Cγ knockout DT40 cells. Online 
supplemental material is available at http://www.jcb.org/cgi/content/
full/jcb.200608001/DC1.

We thank D.T. Brown, Y. Ishimi, T. Kanda, P.Y. Perche, H. Tabara, C. Vourc’h, 
and G. Wahl for materials, and Y. Agata, T. Ikura, H. Kurumizaka, T. Misteli, 
and S. Tashiro for valuable discussion and comments on the manuscript.

This work was prepared, in part, at the Radiation Biology Center and 
the Radioisotope Research Center (Kyoto University). This work was supported 
by Grants-in-aid from the Ministry of Education, Culture, Sports, Science and 
Technology (MEXT) of Japan and the Special Coordination Funds for Promoting 
Science and Technology from the MEXT of Japan. E. Allemand and A.R. 
Krainer acknowledge support from the National Institutes of Health grant 
GM42699.

Submitted: 1 August 2006
Accepted: 25 September 2006

References
Abraham, R.T. 2004. PI 3-kinase related kinases: ‘big’ players in stress-induced 

signaling pathways. DNA Repair (Amst.). 3:883–887.

Batsche, E., M. Yaniv, and C. Muchardt. 2006. The human SWI/SNF subunit Brm 
is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13:22–29.

Barman, H.K., Y. Takami, T. Ono, H. Nishijima, F. Sanematsu, K. Shibahara, and 
T. Nakayama. 2006. Histone acetyltransferase 1 is dispensable for repli-
cation-coupled chromatin assembly but contributes to recover DNA dam-
ages created following replication blockage in vertebrate cells. Biochem. 
Biophys. Res. Commun. 345:1547–1557.

Belotserkovskaya, R., and D. Reinberg. 2004. Facts about FACT and transcript 
elongation through chromatin. Curr. Opin. Genet. Dev. 14:139–146.

Benson, L.J., Y. Gu, T. Yakovleva, K. Tong, C. Barrows, C.L. Strack, R.G. 
Cook, C.A. Mizzen, and A.T. Annunziato. 2006. Modifi cations of H3 
and H4 during chromatin replication, nucleosome assembly, and histone 
 exchange. J. Biol. Chem. 281:9287–9296.

Bruno, M., A. Flaus, C. Stockdale, C. Rencurel, H. Ferreira, and T. Owen-
Hughes. 2003. Histone H2A/H2B dimer exchange by ATP-dependent 
chromatin remodeling activities. Mol. Cell. 12:1599–1606.

Chang, L., S.S. Loranger, C. Mizzen, S.G. Ernst, C.D. Allis, and A.T. Annunziato. 
1997. Histones in transit: cytosolic histone complexes and diacetylation 
of H4 during nucleosome assembly in human cells. Biochemistry. 
36:469–480.

Cheung, W.L., K. Ajiro, K. Samejima, M. Kloc, P. Cheung, C.A. Mizzen, A. 
Beeser, L.D. Etkin, J. Chernoff, W.C. Earnshaw, and C.D. Allis. 2003. 
Apoptotic phosphorylation of histone H2B is mediated by mammalian 
sterile twenty kinase. Cell. 113:507–517.

Chowdhury, D., M.C. Keogh, H. Ishii, C.L. Peterson, S. Buratowski, and J. 
Lieberman. 2005. γ-H2AX dephosphorylation by protein phosphatase 
2A facilitates DNA double-strand break repair. Mol. Cell. 20:801–809.

Dignam, J.D., R.M. Lebovits, and R.G. Roeder. 1983. Accurate transcription 
initiation by RNA polymerase II in a soluble extract from isolated mam-
malian nuclei. Nucleic Acids Res. 11:1475–1489.

Fernandez-Capetillo, O., C.D. Allis, and A. Nussenzweig. 2004. Phosphorylation 
of histone H2B at DNA double-strand breaks. J. Exp. Med. 
199:1671–1677.

Flaus, A., and T. Owen-Hughes. 2004. Mechanisms for ATP-dependent chro-
matin remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. 
Dev. 14:165–173.

Fukagawa, T., M. Nogami, M. Yoshikawa, M. Ikeno, T. Okazaki, Y. Takami, T. 
Nakayama, and M. Oshimura. 2004. Dicer is essential for formation of the 
heterochromatin structure in vertebrate cells. Nat. Cell Biol. 6:784–791.

Hake, S.B., B.A. Garcia, E.M. Duncan, M. Kauer, G. Dellaire, J. Shabanowitz, 
D.P. Bazett-Jones, C.D. Allis, and D.F. Hunt. 2006. Expression patterns 
and post-translational modifi cations associated with mammalian histone 
H3 variants. J. Biol. Chem. 281:559–568.

Henikoff, S., and K. Ahmad. 2005. Assembly of variant histones into chromatin. 
Annu. Rev. Cell Dev. Biol. 21:133–153.

Ishimi, Y., J. Hirosumi, W. Sato, K. Sugasawa, S. Yokota, F. Hanaoka, and M. 
Yamada. 1984. Purifi cation and initial characterization of a protein which 
facilitates assembly of nucleosome-like structure from mammalian cells. 
Eur. J. Biochem. 142:431–439.

Jackson, V. 1990. In vivo studies on the dynamics of histone-DNA interaction: 
evidence for nucleosome dissolution during replication and transcrip-
tion and a low level of dissolution independent of both. Biochemistry. 
29:719–731.

Jackson, D.A., and P.R. Cook. 1985. A general method for preparing chromatin 
containing intact DNA. EMBO J. 4:913–918.

Jackson, S., W. Brooks, and V. Jackson. 1994. Dynamics of the interactions of his-
tones H2A,H2B and H3,H4 with torsionally stressed DNA. Biochemistry. 
33:5392–5403.

Kanda, T., K.F. Sullivan, and G.M. Wahl. 1998. Histone-GFP fusion protein 
enables sensitive analysis of chromosome dynamics in living mammalian 
cells. Curr. Biol. 8:377–385.

Kaufmann, W.K., T.P. Heffernan, L.M. Beaulieu, S. Doherty, A.R. Frank, Y. 
Zhou, M.F. Bryant, T. Zhou, D.D. Luche, N. Nikolaishvili-Feinberg, et al. 
2003. Caffeine and human DNA metabolism: the magic and the mystery. 
Mutat. Res. 532:85–102.

Keogh, M.C., J.A. Kim, M. Downey, J. Fillingham, D. Chowdhury, J.C. Harrison, 
M. Onishi, N. Datta, S. Galicia, A. Emili, et al. 2005. A phosphatase com-
plex that dephosphorylates γH2AX regulates DNA damage checkpoint 
recovery. Nature. 439:497–501.

Kimura, H. 2005. Histone dynamics in living cells revealed by photobleaching. 
DNA Repair (Amst.). 4:939–950.

Kimura, H., and P.R. Cook. 2001. Kinetics of core histones in living cells: little 
exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 
153:1341–1353.

Kimura, K., N. Nozaki, M. Saijo, A. Kikuchi, M. Ui, and T. Enomoto. 1994. 
Identifi cation of the nature of modifi cation that causes the shift of DNA 
topoisomerase II beta to apparent higher molecular weight forms in the M 
phase. J. Biol. Chem. 269:24523–24526.

Kireeva, M.L., W. Walter, V. Tchernajenko, V. Bondarenko, M. Kashlev, and V.M. 
Studitsky. 2002. Nucleosome remodeling induced by RNA polymerase II: 
loss of the H2A/H2B dimer during transcription. Mol. Cell. 9:541–552.

Kobor, M.S., S. Venkatasubrahmanyam, M.D. Meneghini, J.W. Gin, J.L. 
Jennings, A.J. Link, H.D. Madhani, and J. Rine. 2004. A protein complex 
containing the conserved Swi2/Snf2-related ATPase Swr1p deposits his-
tone variant H2A.Z into euchromatin. PLoS Biol. 2:E131.

Krogan, N.J., K. Baetz, M.C. Keogh, N. Datta, C. Sawa, T.C. Kwok, N.J. 
Thompson, M.G. Davey, J. Pootoolal, T.R. Hughes, et al. 2004. 
Regulation of chromosome stability by the histone H2A variant Htz1, the 
Swr1 chromatin remodeling complex, and the histone acetyltransferase 
NuA4. Proc. Natl. Acad. Sci. USA. 101:13513–13518.

Kusch, T., L. Florens, W.H. Macdonald, S.K. Swanson, R.L. Glaser, J.R. Yates 
III, S.M. Abmayr, M.P. Washburn, and J.L. Workman. 2004. Acetylation 
by Tip60 is required for selective histone variant exchange at DNA 
 lesions. Science. 306:2084–2087.

Leroy, C., S.E. Lee, M.B. Vaze, F. Ochsenbein, R. Guerois, J.E. Haber, and M.C. 
Marsolier-Kergoat. 2003. PP2C phosphatases Ptc2 and Ptc3 are required 
for DNA checkpoint inactivation after a double-strand break. Mol. Cell. 
11:827–835.

Louters, L., and R. Chalkley. 1985. Exchange of histones H1, H2A, and H2B 
in vivo. Biochemistry. 24:3080–3085.

Loyola, A., and G. Almouzni. 2004. Histone chaperones, a supporting role in the 
limelight. Biochim. Biophys. Acta. 1677:3–11.

Lu, X., B. Nannenga, and L.A. Donehower. 2005. PPM1D dephosphory-
lates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev. 
19:1162–1174.

Luger, K., A.W. Mader, R.K. Richmond, D.F. Sargent, and T.J. Richmond. 1997. 
Crystal structure of the nucleosome core particle at 2.8 A resolution. 
Nature. 389:251–260.

Ma, X.J., J. Wu, B.A. Altheim, M.C. Schultz, and M. Grunstein. 1998. Deposition-
related sites K5/K12 in histone H4 are not required for nucleosome depo-
sition in yeast. Proc. Natl. Acad. Sci. USA. 95:6693–6698.

Maison, C., D. Bailly, A.H.F.M. Peters, J.P. Quivy, D. Roche, A. Taddei, M. 
Lachner, T. Jenuwein, and G. Almouzni. 2002. Higher-order structure in 
pericentric heterochromatin involves a distinct pattern of histone modifi -
cation and an RNA component. Nat. Genet. 30:329–334.

Manser, T., T. Thacher, and M. Rechsteiner. 1980. Arginine-rich histones do not 
exchange between human and mouse chromosomes in hybrid-cells. Cell. 
19:993–1003.

Meshorer, E., D. Yellajoshula, E. George, P.J. Scambler, D.T. Brown, and T. 
Misteli. 2006. Hyperdynamic plasticity of chromatin proteins in pluripo-
tent embryonic stem cells. Dev. Cell. 10:105–116.

Misteli, T., and D.L. Spector. 1996. Serine/threonine phosphatase 1 modulates 
the subnuclear distribution of pre-mRNA splicing factors. Mol. Biol. Cell. 
7:1559–1572.

Misteli, T., A. Gunjan, R. Hock, M. Bustin, and D.T. Brown. 2000. Dynamic 
binding of histone H1 to chromatin in living cells. Nature. 408:877–881.



JCB • VOLUME 175 • NUMBER 3 • 2006 400

Mizuguchi, G., X. Shen, J. Landry, W.H. Wu, S. Sen, and C. Wu. 2004. ATP-
driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin 
remodeling complex. Science. 303:343–348.

Murray, M.V., R. Kobayashi, and A.R. Krainer. 1999. The type 2C Ser/Thr phos-
phatase PP2Cγ is a pre-mRNA splicing factor. Genes Dev. 13:87–97.

Nazarov, I.B., A.N. Smirnova, R.I. Krutilina, M.P. Svetlova, L.V. Solovjeva, A.A. 
Nikiforov, S.L. Oei, I.A. Zalenskaya, P.M. Yau, E.M. Bradbury, and N.V. 
Tomilin. 2003. Dephosphorylation of histone gamma-H2AX during re-
pair of DNA double-strand breaks in mammalian cells and its inhibition 
by calyculin A. Radiat. Res. 160:309–317.

Ohkuni, K., K. Shirahige, and A. Kikuchi. 2003. Genome-wide expression 
analysis of NAP1 in Saccharomyces cerevisiae. Biochem. Biophys. Res. 
Commun. 306:5–9.

Park, Y.J., J.V. Chodaparambil, Y. Bao, S.J. McBryant, and K. Luger. 2005. 
Nucleosome assembly protein 1 exchanges histone H2A-H2B dimers and 
assists nucleosome sliding. J. Biol. Chem. 280:1817–1825.

Perche, P.Y., C. Vourc’h, L. Konecny, C. Souchier, M. Robert-Nicoud, S. 
Dimitrov, and S. Khochbin. 2000. Higher concentrations of histone mac-
roH2A in the Barr body are correlated with higher nucleosome density. 
Curr. Biol. 10:1531–1534.

Pilch, D.R., C. Redon, O.A. Sdelnikova, and W.M. Bonner. 2004. Two-
 dimensional gel analysis of histones and other H2AX-related methods. 
Methods Enzymol. 375:76–88.

Pombo, A., D.A. Jackson, M. Hollinshead, Z. Wang, R.G. Roeder, and P.R. Cook. 
1999. Regional specialization in human nuclei: visualization of discrete 
sites of transcription by RNA polymerase III. EMBO J. 18:2241–2253.

Rodriguez, P., D. Munroe, D. Prawitt, L.L. Chu, E. Bric, J. Kim, L.H. Reid, C. 
Davies, H. Nakagama, R. Loebbert, et al. 1997. Functional characteriza-
tion of human nucleosome assembly protein-2 (NAP1L4) suggests a role 
as a histone chaperone. Genomics. 44:253–265.

Rogakou, E.P., C. Boon, C. Redon, and W.M. Bonner. 1999. Megabase chroma-
tin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 
146:905–916.

Maniatis, T., E.F. Fritsch, and J. Sambrook. 1989. Molecular Cloning: A 
Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold 
Spring Harbor, NY. 545 pp.

Simon, R.H., and G. Felsenfeld. 1979. A new procedure for purifying histone 
pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. 
Nucleic Acids Res. 6:689–696.

Tagami, H., D. Ray-Gallet, G. Almouzni, and Y. Nakatani. 2004. Histone H3.1 
and H3.3 complexes mediate nucleosome assembly pathways dependent 
or independent of DNA synthesis. Cell. 116:51–61.

Thiriet, C., and J.J. Hayes. 2005. Replication-independent core histone dynamics 
at transcriptionally active loci in vivo. Genes Dev. 19:677–682.

Travis, S.M., and M.J. Welsh. 1997. PP2Cγ: a human protein phosphatase with a 
unique acidic domain. FEBS Lett. 412:415–419.

Turner, B.M. 2002. Cellular memory and the histone code. Cell. 111:285–291.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 599
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 599
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


