
Machine Learning, Molecular Docking, and Dynamics-Based
Computational Identification of Potential Inhibitors against Lung
Cancer
Agneesh Pratim Das, Puniti Mathur, and Subhash M. Agarwal*

Cite This: ACS Omega 2024, 9, 4528−4539 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Lung cancer is the most prevalent cause of cancer deaths
worldwide. However, its treatment faces a significant hurdle due to the
development of resistance. Phytomolecules are an important source of new
chemical entities due to their rich chemical diversity. Therefore, a machine
learning (ML) model was developed to computationally identify potential
inhibitors using a curated data set of 649 phytomolecules with inhibitory
activity against lung cancer cell lines. Four distinct ML approaches, including
k-nearest neighbor, random forest, support vector machine, and extreme
gradient boosting, were used in conjugation with MACCS and Morgan2
fingerprints to generate the models. It was observed that the random forest
model developed by using the MACCS fingerprint shows the best
performance. To further explore the chemical space and feature importance,
k-means clustering, t-SNE analysis, and mean decrease in impurity had been
calculated. Simultaneously, ∼400 000 natural products (NPs) retrieved from the COCONUT database were filtered for
pharmacokinetic properties and taken for a multistep screening using docking against epidermal growth factor receptor (EGFR)
mutant, a therapeutic drug target of lung cancer. Thereafter, the best-performing random forest model was used to predict the
antilung cancer potential of the NPs having binding affinity better than the cocrystal ligand. This allowed the identification of 205
potential inhibitors, wherein the molecules with an indolocarbazole scaffold were enriched in top-scoring molecules. The top three
indolocarbazole molecules with the lowest binding energy were further evaluated through 100 ns molecular dynamics (MD)
simulations, which suggested that these molecules are strong binders. Also, structural similarity analysis against known drugs revealed
that these NPs are similar to staurosporine, which demonstrates potent and selective activity against EGFR mutants. Thereby, the
consensus analysis employing ML, molecular docking, and dynamics revealed that the molecules having an indolocarbazole scaffold
are the most promising NPs that can act as potential inhibitors against lung cancer.

■ INTRODUCTION
Cancer is one of the major causes of death globally and the
number of patients dying due to it is continuously rising every
year.1 Among the different types of cancers, lung cancer is the
most prevalent and the primary cause of cancer-related
deaths.2 However, despite several chemotherapeutic treatment
options, lung cancer remains a major concern due to drug
resistance. Thus, there is a need for the identification of new
and potent antilung cancer compounds.3 In several nations
globally, medicinal plant-based remedies are popularly used.4,5

As per the latest and most comprehensive natural product drug
discovery review published by Newman and Cragg in 2020,
around 33.5% of the small-molecule anticancer drugs
developed during 1981−2019 were either direct natural
products (NPs) or their derivatives.6 This establishes that
NPs continue to be a primary source for the development of
new therapeutic anticancer drugs.
To find novel bioactive molecules against cancer drug

targets, the conventional structural approaches are extensively

used for in silico screening of chemical databases.5,7,8

Nonetheless, given the advent of advanced computational
techniques like machine learning (ML), it has found its
application in various scientific problems.9−11 The ML
classification models work on the preamble that the structures
of biologically active molecules have common features that are
responsible for their bioactivity.11,12 So, to accelerate the drug
discovery process, an integrated approach utilizing both ML
prediction models and structure-based virtual screening along
with molecular dynamics must be implemented to computa-
tionally identify molecules that can potentially inhibit lung
cancer drug targets.
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Therefore, in the present study, the reported biological
activity of phytomolecules against lung cancer cell lines was
extracted from the literature by text mining for building ML-
based prediction models. Multiple ML models were then
developed by using a combination of different ML algorithms
and molecular fingerprints. To integrate ML with structure-
based approaches, the T790M/L858R (TMLR) double-
mutated epidermal growth factor receptor (EGFR) protein
was chosen as it is one of the most important therapeutic drug
targets in lung cancer.13−15 The TMLR protein was then used
for the virtual screening of approximately 400 000 NPs
obtained from the COCONUT database.16 The NPs having
binding affinity better than the cocrystal ligand were subjected
to screening using the developed ML model. Among the NPs
that were predicted as actives by the ML model, the top three
molecules having the lowest binding affinities were further
evaluated for their stability using 100 ns molecular dynamics
(MD) simulations. Overall, the integration of ML and a
structure-based approach has led to the computational
identification of indolocarbazole-based molecules that are not
only strong and stable binders but are also predicted to have
inhibitory activity against lung cancer cell lines.

■ METHOD
Phytomolecule Identification and Experimental Data

Collection. The Naturally occurring Plant-based Anticancer
Compound-Activity-Target (NPACT) database17 is a reposi-
tory of anticancerous phytomolecules with experimental in
vitro activities recorded in the form of IC50. Since the IC50
value of a compound denotes the minimum quantity of the
compound that is required for the inhibition of a biological
process by 50%, it is one of the important parameters of
identifying the efficacy of a compound as an inhibitor.
Therefore, NPACT was mined to extract phytomolecules
with reported IC50 values against lung cancer cell lines.
Additionally, to expand the collection of phytomolecules that
have been studied against lung cancer at the in vitro level,
literature mining of the PubMed database was performed using
the R programming language. Papers that studied the role of
phytomolecules in lung cancer but did not report any half-
maximal inhibitory concentration (IC50) were discarded.
Finally, the compounds with IC50 < 10 μM were designated
as actives, whereas compounds with IC50 > 10 μM were
considered inactive. However, as bioactivity data have been
obtained from different studies, some compounds were found
to have multiple bioactivity values. Since the presence of
variation in IC50 among duplicates introduces noise into the
data set,18 the majority rule was applied to categorize the
molecule into the active−inactive data set. To decide the same,
the number of entries with biological activity for a molecule
was computed and if the bioactivity for the majority of the
entries was <10 μM, then it was designated as active, while if
the majority of the values were >10 μM, they were considered
inactive. Also, molecules having an equal number of active and
inactive values were removed from the data set. Additionally,
the data set is devoid of inorganics and mixtures as only single
compounds with bioactivity data have been collected from the
literature. As a result, a data set of 649 phytomolecules was
created.

Calculation of Molecular Fingerprints. Molecular
fingerprints are a chemoinformatic representation of a
molecular structure, wherein substructure key-based finger-
prints convert molecular structures into bit strings based on

the presence or absence of specific substructures. Two
substructure key-based fingerprints, viz, Molecular ACCess
Systems keys fingerprint (MACCS)19 and Morgan220

containing 166-bit molecular descriptors and 1024-bit keysets,
respectively, were calculated using the RDKit library in Python.

Model Building and Evaluation. To build the model, the
data set was divided into training and external test validation
based on an 80:20 ratio, respectively. The training/test split
was accomplished using the train_test_split module from
scikit-learn. The 80/20 rule of data splitting was implemented
as it provides an adequate amount of molecules for training the
models while keeping a sufficient amount of molecules for
evaluating the trained models. The training set is used to
construct the model by subjecting it to internal 5-fold cross-
validation, whereas the validation data set is a blind set that is
only used for assessing performance.
Four algorithms, viz., k-nearest neighbor (KNN), support

vector machine (SVM), random forest (RF), and extreme
gradient boosting (XGB), have been used in the current study
for developing the ML models in scikit-learn. For all of the
algorithms, a grid-search approach was used with recall as the
objective function utilized for hyperparameter optimization.
To evaluate the performance of the models, two validation
techniques have been implemented. The training set is first
subjected to 5-fold internal cross-validation, which is one of the
most widely accepted methods. Herein, the training data is
randomly split into five subsets and thereafter four subsets are
used for training the model and the fifth subset is used for
testing it. This process is repeated a total of five times such that
each time a different subset is used as the test set and the
average of the five outcomes yields the final result. One of the
key features of this approach is that it utilizes all of the
molecules for both training and testing. The model identified
as best through 5-fold cross-validation was again subjected to
evaluation using the external test validation set. Since this data
set was not used for developing the model; therefore, using this
data set provides confidence about the predictive capability of
the model that has been developed. Further, for determining
the quality of the models developed using each algorithm,
statistical parameters like accuracy, specificity, sensitivity, and
Matthews’s correlation coefficient (MCC) were assessed. The
receiver operating characteristic (ROC) curve was plotted, and
its corresponding AUC was also calculated. The formulas used
for calculating these parameters are given below

=
+

sensitivity
TP

TP FN

=
+

specificity
TN

TN FP

= +
+ + +

accuracy
TP TN

TP TN FP FN

=
* *

+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

where TP = true positive, FP = false positive, TN = true
negative, and FN = false negative.

Y-scrambling Test. The Y-scrambling test was used to
determine how likely it was that the top-performing model was
selected by coincidence. To assess this, a new training set is
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produced by leaving the feature data set unchanged while
arbitrarily rearranging the bioactivity labels. Using this
scrambled training data set, a model with the same parameters
as the best model was then constructed. Subsequently, the
model’s performance against the scrambled data set was
examined using the external test validation set. This approach
of scrambling and subsequent testing was repeated 30 times. If
the performance of the scrambled models is lower than the
best-performing model, then it provides confidence that the
model generated is not by chance.

Library Preparation and ADMET Calculation.
∼400 000 NPs were retrieved from the COCONUT database,
which was neutralized, desalted, and minimized using the
LigPrep module of Schrodinger. Thereafter, the absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
properties of the NPs were calculated using QikProp to
identify molecules with structural features within the accept-
able range.21,22 A total of 24 pharmaceutically relevant
properties and descriptors that determine the suitability of
the molecule as a potential lead molecule were calculated. The
properties are molecular weight, number of rotatable bonds,
number of hydrogen bond donors and acceptors, dipole
moment, ionization potential, electron affinity, various
components of solvent accessible surface area (SASA, FOSA,
FISA, PISA, WPSA), van der Waals surface area, total solvent
accessible volume, globularity, polarizability, multiple measures
of the partition coefficient (QPlogPC16, QPlogPoct,

QPlogPw, QPlogPo/w), aqueous solubility, human serum
albumin binding, blood/brain barrier partition coefficient, and
metabolic descriptors. QikProp identified ∼180 000 NPs that
showed no violation of the above properties and were within
the 95% range of known drugs (i.e., 0 stars). Therefore,
∼180 000 NPs were considered suitable for virtual screening.

Virtual Screening Using Molecular Docking. The
Protein Data Bank (PDB) was used to get the 3D crystal
structure of the double-mutated EGFR protein harboring a
reversible cocrystallized ligand (PDB ID: 5CAO).23 5CAO was
selected for the current study as it has been shown to identify
true actives early during virtual screening.24 The protein
preparation wizard of Schrodinger was used to preprocess,
minimize, and refine the protein structure. The preprocessing
step involved removing crystallographic waters, assigning bond
orders, and adding missing hydrogens. To identify potential
tight binders, a three-step docking approach was implemented,
wherein the ADMET adherent molecules were first screened
through high-throughput virtual screening (HTVS), then
standard precision docking (SP), and finally, extra precision
docking (XP). The cocrystal ligand of 5CAO was also
redocked and the docking score was used as a control to
identify high-affinity molecules.

Virtual Screening Using the ML Model. The molecules
with binding affinities better than the cocrystal ligand were
further screened using the ML model developed in this study
to determine the antilung cancer potential of the molecules.

Figure 1. (A) Chemical distribution of 649 phytomolecules, where red dots represent actives and green dots represent inactive molecules. (B)
Tanimoto similarity distribution. (C) Chemical space distribution of training and external test validation compounds.
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The NPs predicted to have antilung cancer activity by the
binary classification model were taken for chemical structure
classification using ClassyFire.25

Molecular Dynamics. The top three molecules with the
lowest binding affinities were evaluated by using MD
simulations. The three docked complexes were used as the
starting conformation for the 100 ns MD simulations using
Desmond.26 The complexes were put into orthorhombic boxes
of dimensions 10.0 Å × 10.0 Å × 10.0 Å, wherein the TIP3P
water model and 0.15 M NaCl ions were used in the solution.
Molecular minimization and molecular dynamics simulations
were performed using the OPLS4 force field with default
parameters. After equilibration, the three complexes were used
for 100 ns MD simulations in the NPT ensemble. Upon
completion of the simulation, root-mean-square deviation
(RMSD), root-mean-square fluctuation (RMSF), protein−
ligand interactions, and interaction percentages throughout the
MD simulation were used to assess the stability of the protein
and ligands in the bound form.27 Further, the relative free
energy of ligand binding was estimated using molecular
mechanics with generalized Bonn surface area (MM-GBSA)
as given below

= [ + ]G G G Gbinding complex protein ligand

wherein ΔGbinding represents the free energy of the protein−
ligand complex, ΔGprotein and ΔGligand are energy values of the
protein and ligand, respectively. Prime was used to calculate
MM-GBSA by considering the simulation trajectories for the
last 10 ns.

■ RESULTS AND DISCUSSION
Data Set Generation and Analysis. A data set of 649

phytomolecules having in vitro inhibitory activity against lung
cancer cell lines was collected from the NPACT database and
literature. Of these, 320 phytomolecules were designated as
actives, while the rest 329 phytomolecules were labeled as

inactives based on their biological activity. The chemical and
structural diversity of the data set influences the process of
model development; therefore, it was analyzed. The chemical
space coverage of the data set was visualized by performing
principal component analysis (PCA) using 166 MACCS
descriptors (Figure 1A). The plot indicates that there is
considerable overlap between active and inactive compounds
as well as that they are scattered widely across chemical space,
thereby reflecting significant chemical diversity. Also, to
understand the structural diversity of the data set, the
Tanimoto coefficient (Tc), which measures pairwise similarity
for each pair of compounds, was calculated using Morgan2
fingerprints (Figure 1B). The distribution curve of Tc values
shows that most pairs of compounds (∼90%) exhibit a
similarity of less than 0.3, which indicates that the data set is
diverse. Further, the chemical space of the training set (519
phytomolecules) and external test validation (130 phytomo-
lecules) generated by the random stratified splitting method
were examined through PCA (Figure 1C). It is clear from the
plot that the external test validation overlapped with the
distribution of the training set, revealing reasonable data set
splitting. The above characteristics of the data sets revealed
that it is suitable for model development and validation.

Model Development and Evaluation. In the current
study, both MACCS and Morgan2 fingerprints along with four
different ML algorithms (i.e., KNN, SVM, RF, and XGBoost)
were used to build eight types of models, which were evaluated
using 5-fold cross-validation and independent external test
validation. It is observed that the models developed with
MACCS fingerprints showed better sensitivity than Morgan2
for each of the ML algorithms. Among the eight models, the 5-
fold cross-validated outcome shows that the model built with
MACCS fingerprint and RF classifier (i.e., RF_MACCS
model) exhibited the highest sensitivity and accuracy and
therefore was chosen as the best-performing model (Table 1).
It showed 75.4% sensitivity, 77.6% specificity, and 76.5%
accuracy with a 0.53 MCC on the training set. On the test set,
the model shows 75% specificity, 71.2% sensitivity, and 73.1%
accuracy with 0.46 MCC (Table 1). Finally, the RF model
generated using the MACSS fingerprint has been selected, as it
shows the best performance.

RF_MACCS Model Validation Using Y-randomization.
Apart from 5-fold internal cross-validation and test set
validation, the best-performing model, i.e., RF_MACCS, was
also validated using Y-randomization to check the presence of
coincidental correlations. Herein, the average accuracy,
sensitivity, specificity, MCC, and AUC for the model after
30 randomized shuffles were approximately 51%, 49%, 53%,
0.02, and 0.50. As the shuffled models exhibited poor
performance in comparison to the selected model, it thus
indicates that the RF_MACCS model is statistically robust.

k-Means Clustering of Lung Cancer Inhibitors. The
structural features of the 649 antilung cancer molecules were
investigated by the k-means clustering approach using the 166
MACCS fingerprints in scikit-learn. In order to cluster the
data, the k-means approach divides the molecules into n
number of groups having equal variance and minimizes a
criterion called the inertia within-cluster sum-of-squares.
Further, t-SNE28 was used to reduce the dimensionality of
the data and visualize the eight clusters in two dimensions
(Figure 2). Thereafter, the number of actives and inactives
present in each cluster was calculated to identify whether a
cluster contains actives or inactives in the majority. Clusters 1,

Table 1. Performance of ML Models for Fivefold Cross-
Validation and Test Seta

5-fold cross-validation

Model Acc (%) AUC SP (%) SE (%) MCC

RF_MACCS 76.5 0.81 77.6 75.4 0.53
RF_MORGAN2 73.2 0.80 76.4 69.9 0.47
SVM_MACCS 75.5 0.80 76.4 74.6 0.51
SVM_MORGAN2 74.5 0.81 77.5 71.5 0.49
KNN_MACCS 75.1 0.79 79.4 70.7 0.51
KNN_MORGAN2 70.7 0.71 77.9 63.3 0.42
XGB_MACCS 74.6 0.80 76.0 73.0 0.50
XGB_MORGAN2 72.1 0.78 73.8 70.3 0.44

external test validation

model Acc (%) AUC SP (%) SE (%) MCC

RF_MACCS 73.1 0.80 75.0 71.2 0.46
RF_MORGAN2 66.9 0.80 75.0 59.1 0.35
SVM_MACCS 74.6 0.78 67.2 81.8 0.50
SVM_MORGAN2 70.8 0.79 76.6 65.2 0.42
KNN_MACCS 72.3 0.79 71.9 72.7 0.45
KNN_MORGAN2 71.5 0.71 71.9 71.2 0.43
XGB_MACCS 70.8 0.77 65.6 75.8 0.42
XGB_MORGAN2 72.3 0.80 75.0 69.7 0.45

aLegend�Acc: accuracy; SP: specificity; SE: sensitivity.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07338
ACS Omega 2024, 9, 4528−4539

4531

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07338?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4, and 8 were found to be dominated by active molecules,
wherein the percentage of active molecules ranged from 60 to
90%. Clusters 2, 3, and 5 were majorly represented with
inactive molecules, and the percentage of inactive molecules
was around 70%. While clusters 6 and 7 had comparable
numbers of actives and inactives. To further understand the
chemical scaffolds present in these clusters, the molecules were
classified using ClassyFire.
Cluster 1 consists of 100 molecules, among which 63% were

actives and 37% were inactives. The active molecules were
mainly prenol lipids and steroid derivatives like triterpenoids,
quassinoids, triterpene saponins, limonoids, withanolide
derivatives, cardenolide glycosides, and steroidal saponins.
Cluster 4 consisted of 77 molecules, among which 91% were
composed of actives. This cluster contains the largest number
of actives and belongs to the annonaceous acetogenin
category.29 In cluster 8, a total of 55 molecules were present,
among which 60% were active and 40% were inactive. Among
the active molecules, alkaloids were the major class present,

Figure 2. t-SNE representation of the eight clusters created from 649 inhibitors using k-means clustering. TSNE1 and TSNE2 represent the two
dimensions reduced from the 166 features of MACCS fingerprint and the black cross represents the centroid of each cluster.

Table 2. Characteristics of the Top 10 MACCS
Fingerprintsa

sl no. MACCS keys description MDI FS

1 bit 96 5 M ring 0.0278 30.39
2 bit 136 O�A > 1 0.0270 16.00
3 bit 128 ACH2AAACH2A 0.0265 33.09
4 bit 129 ACH2AACH2A 0.0264 32.74
5 bit 53 QHAAAQH 0.0243 −18.26
6 bit 72 OAAO 0.0240 22.20
7 bit 83 QAAAA@1 0.0240 29.12
8 bit 104 QHACH2A 0.0215 24.70
9 bit 154 C�O 0.0210 7.22
10 bit 90 QHAACH2A 0.0200 19.49

aMDI: Mean decrease in impurity. FS: Difference in the frequency of
a fingerprint in the active and inactive molecules. Atom symbols: A =
any valid periodic table element, Q = hetero atoms, O = oxygen, C =
carbon, H = hydrogen. Bond symbols: = means double bond.

Figure 3. Top three classes of molecules identified through integrated molecular docking and the ML-based approach.
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wherein subcategories like aporphines and oxo-aporphines
were found. Moreover, in this cluster, several other families of
compounds were also observed, such as benzoquinolines,
pyranoquinolines, benzofurans, and indoles.
In cluster 2, 52 molecules were present, among which 71.2%

of the molecules were inactive, while the rest were active.
These inactive molecules belonged to the phenylpropanoids
and polyketide class of natural products like flavonoids,
isoflavonoids, cinnamic acids, and their derivatives as well as
furanoid lignans. Cluster 3 contained 60 molecules, of which
70% were inactive and majorly belonged to the phenyl-
propanoids and polyketide classes similar to the inactives of
cluster 2. However, the major subcategories in this cluster were
linear 1,3-diarylpropanoids and stilbenes. Apart from these, a
few molecules were of the benzenoid family as well. Among the
109 molecules present in cluster 5, 71.6% of molecules were
inactive. These molecules were also found to belong to the
phenylpropanoids and polyketide class of natural products like
the inactives of clusters 2 and 3 as well as furanoid lignans of
cluster 2.
In cluster 6, there were 107 molecules, among which 53

were active and 54 were inactive. Prenol lipids like terpenoids
were heavily present in both the active and inactive groups
along with steroids and their derivatives. In the case of cluster

7, 58% of the molecules were inactive, whereas the remaining
42% were active. In both data sets, phenylpropanoids and
polyketides were the major categories along with benzopyran-
based compounds.
Overall, it was observed that prenol lipids, steroid

derivatives, withanolide derivatives, and annonaceous acetoge-
ninins are the major classes of compounds that show inhibitory
activity against lung cancer (actives), while most of the inactive
molecules are from the phenylpropanoids and polyketide
classes of molecules.

Feature Importance and Analysis of MACCS Finger-
prints. Feature importance is an important part of ML model
building, as it is capable of identifying the contribution of each
feature or fingerprint to the model’s prediction. Using mean
decrease in impurity (MDI) or Gini importance, the top 10
important fingerprints with respect to the RF_MACCS model
were calculated (Table 2). This approach evaluates the
capability of each feature to reduce uncertainty. MDI was
calculated using ‘feature_importances’ in scikit-learn. For these
10 important fingerprints, the difference in frequency in the
active and inactive data sets was also computed. For each
MACCS fingerprint, the frequency difference has been
calculated as given below and the ten most important
MACCS keys as well as their characteristics are given in
Table 2.

= ×=F
D

NA
100i

j i
j

A 1
NA

(1)

= ×=F
D

NI
100i

j i
j

I 1
NI

(2)

where FiA and FiI are the mean of the ith fingerprint in active
(A) and inactive (I) molecules, respectively; NA and NI are
the total number of molecules present in the active and
inactive data sets; and Di

j is the value of the ith fingerprint for
jth molecule (either 0 or 1). Using eqs 1 and 2, the fingerprint
score (FS) is then calculated for each fingerprint as follows

= F FFSi i i
A I (3)

where FSi is the difference in frequency of the ith fingerprint.
ADMET Screening of the COCONUT Database. As NP

molecules are often complex molecules, it becomes difficult for
them to get translated into drugs, and therefore, the
COCONUT natural product database, which contains
approximately 400 000 NPs, was screened for their pharma-
cokinetic profile using QikProp. QikProp generates molecular
descriptors from the chemical structure of phytomolecules and
utilizes them to predict the ADMET properties. It calculates
properties that fall beyond the 95% range of known drugs and
designates a star if the value lies outside the accepted
threshold. As a result, approximately 180 000 NPs that
exhibited no outliers in their ADMET properties, i.e., those

Table 3. Binding Affinity and Free Energies of the Protein−Ligand Complexes Calculated through Molecular Docking and
MM-GBSA (All Values Reported in kcal/mol)

ligand binding affinity binding free energy (ΔGbind) Coulomb energy (ΔEcoulomb) lipophilic energy (ΔElipo) van der Waals energy (ΔEvdw)

cocrystal −10.15 −64.77 ± 2.89 −12.86 ± 1.74 −12.99 ± 0.8 −57.89 ± 2.31
S5�3509 −13.83 −73.41 ± 3.84 −34.83 ± 4.92 −16.66 ± 0.89 −57.57 ± 2.38
S6�20 862 −13.50 −67.13 ± 3.67 −28.1 ± 5.75 −15.27 ± 0.71 −52.5 ± 2.28
S7�9517 −13.24 −61.76 ± 3.88 −28.12 ± 5.02 −14.62 ± 0.88 −51.61 ± 2.52

Figure 4. (A) Protein backbone RMSD in reference to the first frame
of the MD simulation. (B) RMSF of the Cα atoms in the protein
backbone.
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molecules having “0” stars were shortlisted as they have a
higher probability of showing ADMET adherent behavior.

Molecular Docking. Since the double-mutated EGFR is
one of the primary oncogenic proteins involved in the etiology
of a large fraction of lung cancer cases, this protein was
selected for molecular docking to identify molecules capable of
binding to the protein. The crystal structure of the double-
mutated EGFR protein was therefore subjected to a three-step
docking approach consisting of HTVS, SP, and XP. These
different docking modes are designed, such that the level of
precision increases consecutively from HTVS to SP to XP.
HTVS is useful to screen large chemical libraries due to its
simplified scoring function and faster optimization algorithm,
which enables the identification of potential hits in a relatively
shorter time frame. Therefore, initially, the 180 000 ADMET
adherent NPs were screened through HTVS, which led to the
identification of the top 60 000 molecules with the lowest
binding affinities. As SP mode offers a more accurate scoring
function compared to HTVS, the 60 000 molecules were
further screened using SP to identify the top 6000 molecules
with the lowest binding affinity. The XP mode provides the
highest precision docking in Glide and focuses on the accurate
prediction of ligand binding modes and binding affinities.
Because it employs advanced sampling techniques and a more
sophisticated scoring function, it captures subtle interactions
between ligands and proteins compared to HTVS and SP.
Finally, the top 6000 molecules identified from SP were
screened using XP mode along with the cocrystal ligand. The
cocrystal ligand was used as a positive control, and its docking
score which resembles the binding affinity of the ligand toward

the protein active site was then used as a reference for
identifying better binders. The cocrystal ligand was found to
dock with a score of −10.15 kcal/mol, and therefore, any
molecule that scored with a more negative docking score (i.e.,
better binding) was selected. As a result, 616 NP molecules
which show docking scores ranging from −10.16 to −13.83
kcal/mol were selected for scaffold analysis as they exhibited
higher binding affinity than that of the cocrystal ligand.

ML Model-Based Screening. The anticancer potential of
the 616 NPs was further evaluated using the RF_MACCS ML
model to predict their activity against lung cancer. Of these,
205 molecules were predicted as active, which were majorly
found to harbor indolocarbazole (19%), anthraquinone (15%),
and aristolactam (8%) scaffolds (Figure 3). The anticancer
activity of indolocarbazoles has been studied against a wide
range of cellular targets and has given rise to potent drugs like
staurosporine, midostaurin, etc.30,31 Also, anthraquinone and
aristolactam classes of molecules target various key proteins in
cancer cells, which has resulted in the development of
inhibitors like doxorubicin, epirubicin, and aristolactam
IIIa.32,33 It was also observed that the three top-scoring
molecules with the most favorable binding affinity exhibited
docking scores between −13.24 and −13.83 kcal/mol and all
of them had indolocarbazole backbone (Table 3). Therefore,
the top 3 molecules were selected for molecular dynamics
analysis.

Molecular Dynamics to Ascertain the Stability of the
Protein−Ligand Complexes. The stability and dynamic
behavior of the top three NPs with the lowest binding
affinities, i.e., compounds S5�3509 (−13.83 kcal/mol), S6�

Figure 5. Interactions of the S5�3509 bound complex with (A) the various residues of the protein structure and the different types of interaction
they are involved in. (B) Ligand and surrounding residues are shown in a 2D interaction diagram along with their percentage. (C) H-bonds formed
during 100 ns simulation time.
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20862 (−13.50 kcal/mol), and S7�9517 (−13.24 kcal/mol),
were thereafter checked using 100 ns MD simulations. The
cocrystal ligand of 5CAO was also subjected to a 100 ns
simulation as a control. The RMSD analysis of the protein
backbone indicated that apart from minor fluctuations, all of
the systems stabilized after 30 ns of simulation time (Figure
4A). The average RMSD values of S7�9517, S5�3509, and
S6�20862 were 2.26, 2.36, and 2.45 Å, respectively, which
were either lower or similar to that of the cocrystal ligand (2.45
Å) (Figure 4A). This demonstrates that the identified potential
inhibitors are stable within the active site of the protein. Also,
to test the flexibility of residues that may have contributed to
overall movements in the system, the RMSF of the Cα chain
was calculated for the protein−ligand complexes (Figure 4B).
The RMSF plot shows that the behavior of the residues is
almost similar in all of the complexes, thereby demonstrating
no significant perturbation in the protein due to the binding of
the identified ligands.

Molecular Dynamics-Based Interaction Analysis. The
interaction study of the ligand−receptor complexes for a 100
ns simulation period indicated that all of the three lead
molecules S5�3509, S6�20862, and S7�9517 established
hydrogen bonds with the protein backbone via Gln791 and

Met793, similar to the cocrystal ligand (Figures 5−7 and S1).
The S6�20862 molecule had maintained the H-bond with
Met793 for 96% of the total simulation time like the cocrystal
ligand, while in the case of both S5�3509 and S7�9517, this
interaction was maintained for 99% of the MD time. On the
other hand, the H-bond with Gln791 was present for 91% of
the simulation time in the cocrystal ligand-bound complex,
whereas in the case of S5�3509, it was present for 99% of the
time. This interaction was also present in the S6�20862 and
S7�9517 bound proteins; however, it was water-mediated and
maintained for 90 and 89% of the time, respectively.
Additionally, these three ligands showed H-bond interaction
with Cys797 for different time intervals, viz, 50% in S5�3509,
81% in S6�20 862, and 91% in S7�9517. Moreover, the
ligand S6�20 862 demonstrated additional H-bonds with
Asp800 and Leu718, while S7�9517 formed H-bond with
Asp800. Hydrophobic interactions, in addition to hydrogen
bonds, are also crucial for the binding of drugs to their targets.
The cocrystal ligand displayed hydrophobic interactions with
Leu718 and Phe723, which have been maintained in all three
ligand-bound complexes (Figure 5−7 and S1).

Binding Affinity Calculations and Per-Residue-De-
composition Analysis. The MMBSA method was used to

Figure 6. Interactions of the S6�20 862 bound complex with (A) the various residues of the protein structure and the different types of interaction
they are involved in. (B) Ligand and surrounding residues are shown in a 2D interaction diagram along with their percentage. (C) H-bonds formed
during 100 ns simulation time.
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evaluate the ligand’s binding affinity and stability using the
snapshots of the protein−ligand binding over the last 10 ns of
the simulation. It was found that binding free energies
(ΔGbind) of S5�3509 (−73.41 ± 3.84 kcal/mol) and S6�
20 862 (−67.13 ± 3.67 kcal/mol) were better than the

cocrystal ligand (−64.77 ± 2.89), while for S7�9517, the
value was comparable (−61.76 ± 3.88 kcal/mol) (Table 3).
The contribution of the individual energies in the overall
binding energy was also calculated and it was observed that the
Coulomb energy (ΔEcoulomb) and lipophilic energy (ΔElipo) of

Figure 7. Interactions of the S7�9517 bound complex with (A) the various residues of the protein structure and the different types of interaction
they are involved in. (B) Ligand surrounding residues are shown in a 2D interaction diagram along with their percentage; (C) H-bonds formed
during 100 ns simulation time.

Figure 8. Per residue energy decomposition analysis of the identified inhibitors against the EGFR mutant protein.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07338
ACS Omega 2024, 9, 4528−4539

4536

https://pubs.acs.org/doi/10.1021/acsomega.3c07338?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07338?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07338?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07338?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07338?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07338?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07338?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07338?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07338?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the three identified ligands were better than the cocrystal
ligand, while the van der Waals energy (ΔEvdw) was either
comparable or lower than the cocrystal ligand (Table 3).
Additionally, the contribution of the individual amino acids

in the protein−ligand complex was also examined, wherein the
residues having ΔGbind less than −1 kcal/mol were considered
to be the key contributors to stability. The contribution of the
residues Leu718, Phe723, Leu792, Met793, and Leu844 was
found to be present in the three potential inhibitors and the
cocrystal ligand (Figure 8). However, the contributions of a
few amino acids, such as Pro794, Phe795, Gly796, Cys797, and
Arg841, were observed only in the identified molecules.
Moreover, Leu718, Phe723, and Gly796 were observed to have
remarkable contributions to ligand stability with the ΔGbind
values ranging from approximately −3 to −7.3 kcal/mol.
Overall, the three identified NPs having indolocarbazole
backbone show conserved hydrogen and hydrophobic
interactions and exhibit binding energies better than the
cocrystal complex.

Structural Similarity of Known Drugs with the
Computationally Identified Potential Inhibitors. The
three compounds identified from the current study were
checked for their structural similarity with known drugs using
the DrugBank database for a better understanding of the
structure−activity relationship of these molecules. Using a
structural similarity cutoff of >80%, seven drugs�rebeccamy-
cin, becatecarin, edotecarin, lestaurtinib, staurosporine, K-
252a, and 7-hydroxystaurosporine�were identified. There-
after, a literature survey was performed to find the bioactivity
of these molecules against EGFR and its mutants. Herein, we
identified staurosporine and its derivative 7-hydroxystauro-
sporine as mutant-selective EGFR inhibitors. Zhao et al. have
shown that staurosporine inhibits T790M/L858R mutation
and wild-type EGFR with IC50 values of 1.1 and 74.2 nM,
respectively.34 Similarly, Mansour et al. showed that the IC50
inhibitory value of staurosporine against T790M/L858R
mutation was 2.3 nM in comparison to 125 nM for wild-
type EGFR.35 Overall, several studies have documented the
selectivity of staurosporine against the T790M/L858R
mutation of EGFR over wild-type EGFR ranging from 55 to
∼300 folds.35−39 Moreover, staurosporine had also demon-
strated dose-dependent inhibition of cell proliferation of A549
cells with IC50 values ranging from 4.29 to 9.50 μM,40,41

respectively. In addition, staurosporine also inhibits other lung
cancer cell lines, such as N417, H209, and Ma-31, with IC50
values of 54, 29, and 602 nM,42 respectively, demonstrating its
potency. The similarity between the compounds identified in
the current study and the drug staurosporine is primarily due
to the indolocarbazole scaffold that is common in all of these
compounds. Thus, in the current study, indolocarbazole
scaffold-based molecules have been computationally identified
as the most favorable, which show mutant selective activity
against EGFR.

■ CONCLUSIONS
One of the primary hurdles of anticancer therapeutics is the
development of resistance that renders the known drugs
ineffective, a major issue in lung cancer as well. Therefore,
there is a continuous need to identify molecules that can be
developed as potential leads to lung cancer. As natural
products are an excellent source of NCEs that have proven
biological activities due to their structural features, we have
utilized the knowledge of antilung cancer phytomolecules to

develop ML models. Various ML algorithms and chemical
fingerprints were used to develop multiple models, among
which the random forest model having MACCS fingerprint
showed the best performance. To validate the model capability,
an external test validation set and Y-randomization technique
were used, which indicated satisfactory performance. To
analyze the feature importance, mean decrease in impurity
was calculated and k-means clustering with t-SNE was
performed for chemical space exploration. The model was
then used to screen NPs having binding affinity better than the
cocrystal ligand of the EGFR double-mutant protein. Further,
analysis revealed that compounds with an indolocarbazole
scaffold were majorly present in top-scoring docked molecules,
and therefore, the top three protein−ligand complexes were
evaluated for their stability in the protein active site using MD
simulations and MM-GBSA analyses. Thus, the integration of
ML and a structure-based approach allowed us to identify
indolocarbazole-based molecules that exhibit inhibitory
potential against lung cancer.
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